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Natural ecosystems are characterized by striking diversity of form
and functions and yet exhibit deep symmetries emerging across
scales of space, time, and organizational complexity. Species-area
relationships and species-abundance distributions are examples of
emerging patterns irrespective of the details of the underlying
ecosystem functions. Here we present empirical and theoretical
evidence for a newmacroecological pattern related to the distribu-
tions of local species persistence times, defined as the time spans
between local colonizations and extinctions in a given geographic
region. Empirical distributions pertaining to two different taxa,
breeding birds and herbaceous plants, analyzed in a framework
that accounts for the finiteness of the observational period exhibit
power-law scaling limited by a cutoff determined by the rate
of emergence of new species. In spite of the differences between
taxa and spatial scales of analysis, the scaling exponents are
statistically indistinguishable from each other and significantly
different from those predicted by existing models. We theoretically
investigate how the scaling features depend on the structure of
the spatial interaction network and show that the empirical scaling
exponents are reproduced once a two-dimensional isotropic tex-
ture is used, regardless of the details of the ecological interactions.
The framework developed here also allows to link the cutoff time
scale with the spatial scale of analysis, and the persistence-time
distribution to the species-area relationship. We conclude that
the inherent coherence obtained between spatial and temporal
macroecological patterns points at a seemingly general feature
of the dynamical evolution of ecosystems.

biogeography ∣ macroecology ∣ spatial ecology

Understanding local extinction processes has gained urgency
as the number of threatened species increases throughout

the world because of factors such as habitat destruction or climate
change (1–5), but a synthesis of theory and empirical evidence
accounting for the relevant ecological dynamics is lacking. In this
context, we address here the study of persistence times of trophi-
cally equivalent co-occurring species in relation to the spatial
scale of observation. The persistence time τ of a species within
a geographic region is defined as the time incurred between
its emergence and its local extinction (see refs. 6 and 7 and Fig. 1).
At a local scale, persistence times are largely controlled by eco-
logical processes operating at short time scales (e.g., population
dynamics, dispersal, immigration, and contraction/expansion of
species geographic ranges) as local extinctions are dynamically
balanced by colonizations (8, 9). At a global scale, originations
and extinctions are controlled by mechanisms acting on macro-
evolutionary time scales.

From a theoretical viewpoint, the simplest baseline model for
population dynamics is a random walk without drift, according to
which the abundance of a species in a geographic region has the
same probability of increasing or decreasing by one individual at
every time step. According to this scheme, local extinction is
equivalent to a random walker’s first passage to zero, and thus
the resulting persistence-time distribution has a power-law decay
with exponent 3∕2 (10).

A more realistic description can be achieved by accounting for
basic ecological processes such as birth, death, migration, and
speciation in neutral (11–14) mean-field schemes, as follows.
Consider a community of N individuals belonging to different
species. At every time step a randomly selected individual dies
and space or resources are freed up for colonization. With prob-
ability ν the site is taken by an individual of a species not currently
present in the system; ν is equivalent to a per-birth diversification
rate and it accounts for both speciation and immigration from
surrounding communities. With the residual probability 1 − ν
the individual who died is replaced by one offspring of an indi-
vidual randomly sampled within the community (15, 16). As such
the probability of colonization by a species depends solely on its
relative abundance in the community. The asymptotic behavior of
the resulting persistence-time distribution [i.e., pτðtÞ] exhibits a
power-law scaling limited by an exponential cutoff:
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Fig. 1. Species persistence times. Persistence time τ within a geographic
region is defined as the time incurred between a species’ emergence and
its local extinction. Recurrent colonizations of a species define different per-
sistence times. The number of species in the ecosystem as a function of time
(gray shaded area) crucially depends on species emergences and persistence
times. We analyze two long-term datasets about North America breeding
birds (22) and herbaceous plants from Kansas prairies (23). (Inset) Observa-
tional routes of the Breeding Bird Survey. Aggregating local information com-
prised in a given geographic area, we reconstruct species presence–absence
time series that allow the estimation of persistence-time distributions.
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pτðtÞ ∝ t−αe−νt; [1]

with exponent α ¼ 2 (7). In formula 1, time is expressed in gen-
eration time units (11); i.e., it has been rescaled such that the
birth rate is equal to one. Notably, in the mean-field scheme
the probability distribution pτðtÞ depends solely on the diversifi-
cation rate that accounts for speciation and migration processes
and imposes a characteristic time scale 1∕ν for local extinctions.
Although per-birth speciation rates are not expected to vary with
the spatial scale of analysis, per-birth immigration rates are
argued to decrease as the spatial scale increases. In fact, the pos-
sible sources of migration (chiefly dependent on the geometrical
properties of the boundary and the nature of dispersal processes)
are argued to scale sublinearly with the community size (17),
which in turn is typically linearly proportional to geographic area
(2, 8). As continental scales are approached, migration processes
(almost) vanish and the diversification rate ultimately reflects
only the speciation rate.

From an empirical viewpoint, species and genera persistence
times deducted from fossil record data have been suggested to
follow either power-law [with nontrivial exponents in the range
1.5–2 (18–20)] or exponential distributions (19, 21). It has been
argued, however, that data quality, in particular for species, pre-
cludes a critical assessment (7). Also, local analyses of species
persistence over ecological time scales suggest power-law distri-
butions with nontrivial exponents (6).

In what follows we provide evidence for power-law behavior,
either empirically or from a broad spectrum of theoretical deri-
vations. Implications on emerging macroecological patterns are
examined, with special attention to possible biogeographical
effects.

Empirical Persistence-Time Distributions
We empirically characterize species persistence-time distribu-
tions by analyzing two long-term datasets covering very different
spatial scales: (i) a 41-y survey of North American breeding birds
(22) and (ii) a 38-y inventory of herbaceous plants from Kansas
prairies (23).

The North American Breeding Bird Survey consists of a record
of annual abundance of more than 700 species over the 1966–
present period along more than 5,000 observational routes.
The spatial location of the routes analyzed is shown in Fig. 1.
We consider only routes with a latitude less than 50° because den-
sity of routes with a long surveyed period drastically decreases
above the 50th parallel. Noting that in many regions the survey
started only in 1968, we discard the first two years of observations
in order to have simultaneous records for all the regions in the
system. The spatial extent of the observational routes allows us to
analyze species persistence times at different spatial scales. We
consider 20 different scales of analysis with linearly increasing
values of the square root of the sampled area starting from A ¼
10;000 km2 to A ¼ 3.8 · 106 km2. We also analyze the whole sys-
tem, which corresponds to an area of A ¼ 7.8 · 106 km2. For
every scale of analysis A we consider several overlapping square
cells of area A inside the system. A three-dimensional presence–
absence matrix P is thus built. Each element pstc of the matrix is
equal to 1 if species s is observed during year t in at least one of
the observational routes comprised in cell c; otherwise pstc ¼ 0.
For every scale of analysis we discard the cells that (i) do not have
a continuous record for the whole period (41 y) or (ii) have more
than 5% of their area falling outside the system. For every cell
and every species we measure persistence times from pre-
sence–absence time series derived from the second dimension
of matrix P. Persistence time is defined as the length of a contig-
uous sequence of ones in the time series. For every scale of anal-
ysis we consider all the measured persistence times regardless of
the species they belong to and the cell where they are measured.

The effect of possible imperfect detection of species (24) on mea-
sured persistence times has also been investigated (see SI Text).

The herbaceous plant dataset (23) comprises a series of 51
quadrats of 1 m2 from mixed Kansas grass prairies where all in-
dividual plants were mapped every year from 1932 to 1972. In
order to meet the data quality standard required for our analysis
as discussed above for the breeding bird data, we discard 10 quad-
rats and the first three years of observations. Because of the
limited number of observational plots in the herbaceous plant
dataset, we limit our analysis to quadrat spatial scale A ¼ 1 m2.
Analogously to the previous case, we reconstruct the matrix P
from presence–absence data for every species, year, and quadrat.

Note that, when dealing with empirical survey data, the effect
of the finiteness of the observational time window on the mea-
sured species persistence times must be properly taken into
account. To this end, we have developed tools to extend the in-
ference of persistence-time distributions for periods longer than
the observational window. In particular, we analytically derive,
given the persistence-time probability density function, the distri-
bution of two additional variables that can actually be measured
from empirical data: (i) the persistence times τ0 of species that
emerge and go locally extinct within the observed time window
ΔTw and (ii) the variable τ00 that comprises τ0 and all the portions
of species persistence times that are partially seen inside the
observational time window but start or/and end outside (Fig. 2A
and Materials and Methods). The finiteness of the time window
imposes a cutoff to pτ0 ðtÞ. On the contrary pτ00 ðtÞ has an atom
of probability in t ¼ ΔTw corresponding to the fraction of species
that are always present during the observational time. By match-
ing analytical and observational distributions for pτ0 ðtÞ and pτ00 ðtÞ,
it is possible to infer the persistence-time distribution pτðtÞ. The
scaling exponent and the diversification rate for the herbaceous
plant persistence-time distributions have been determined with a
simultaneous nonlinear fit of observational and analytical pτ0 ðtÞ
and pτ00 ðtÞ. Confidence intervals are equal to the standard error
of the fit. For breeding birds, we repeat the nonlinear fit for
different spatial scales of analysis. The reported scaling exponent
and the confidence interval have been obtained by averaging
results across spatial scales.

Remarkably, the persistence times of breeding birds at differ-
ent spatial scales of analysis and of herbaceous plants prove to be
best fitted by a power-law distribution with an exponent α ¼
1.83� 0.02 and α ¼ 1.78� 0.08, respectively (Fig. 2 B and C).
It is important to note that both scaling coefficients derived
empirically are significantly different from the predictions of
the existing baseline models discussed above (the random-walk
persistence time yields an exact exponent α ¼ 3∕2; the mean-field
model yields α ¼ 2).

Theoretical Persistence-Time Distributions
In this section we provide a theoretical rationale for the univer-
sality of the scaling behavior of persistence-time distributions
with respect to the topology of the interactions allowed by the
environmental matrix. In particular, we provide evidence on how
nontrivial exponents of the type observed empirically can be
reproduced by simple theoretical models once dispersal limita-
tion and the actual network of spatial connections are taken into
account. We have implemented the neutral game described above
in regular one-, two-, and three-dimensional lattices in which
every site represents an individual (15, 16). We have also explored
the patterns emerging from the application of the model to den-
dritic structures mimicking riverine ecosystems where dispersal
processes and ecological organization are constrained by the net-
work structure. Indeed, many features of riverine ecosystems
have been shown to be affected by the connectivity of river net-
works (25, 26). In particular, river geometry has been studied in
relation to extinction risk (27), migration processes (28), persis-
tence of amphibian populations (29), macroinvertebrate dispersal
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(30), and freshwater fish biodiversity (14, 31). For general calcu-
lations of the topological structure and metric properties relevant

to dendritic ecological corridors, we employ the features of opti-
mal channel networks (OCNs) (32). They hold fractal character-
istics known to closely conform to the scaling of real networks
(33). Among the advantages of the use of OCNs, one recalls
the possibility to fit one such construct into any assigned domain
(e.g., a square, Fig. 3), thus allowing exactly the same size and
number of nodes of a two-dimensional lattice to be endowed with
altered directionality of connections. To account for limited dis-
persal effects, we allow only the offsprings of the nearest neigh-
bors of the individual who died to possibly colonize the empty
site. In the networked landscape the neighborhood of a site is
defined by the closest upstream and downstream sites. Limited
dispersal promotes the clumping in space of species, which en-
hances their coexistence and survival probability (16, 34). Indeed
we find that in all the considered landscapes, persistence-time
distributions still follow a power-law behavior characterized by
smaller, nontrivial scaling exponents (namely α ¼ 1.92 for the 3D,
α ¼ 1.82 for the 2D, α ¼ 1.62 for the OCN, and α ¼ 1.50 for the
1D landscape, Fig. 3) limited by an exponential cutoff. Remark-
ably, the exponent obtained via simulation in a two-dimensional
landscape (α ¼ 1.82� 0.01) is close to those found in both breed-
ing birds and herbaceous plants datasets (α ¼ 1.83� 0.02 and
α ¼ 1.78� 0.08, respectively).

We also study how persistence-time distributions deducted
from the theoretical model change with dispersal broader than
nearest neighbors (see SI Text). As expected, as long as the mean
dispersal distance remains small with respect to the system size,

A

B

C

Fig. 2. Empirical persistence-timedistributions. (A) A schematic representation
of the variables that can be measured from empirical data over a time window
ΔTw : τ0, persistence times that start and end inside the observational window,
and τ00 , which comprises τ0 and all the portions of persistence times seen inside
the time window that start or/and end outside. Times to local extinction τe are
also presented. (B) Breeding birds and (C) herbaceous plants probability density
functionpðtÞof τ0 (green), τ00 (blue), andpersistence time τ (red). Filledcircles and
solid lines show observational distributions and fits, respectively. The best fit is
achievedwithpτðtÞ ∝ t−α withα ¼ 1.83� 0.02andα ¼ 1.78� 0.08 for breeding
birds and herbaceous plants, respectively. Note that previous estimates (6) for
B are revisited here in the light of the tools developed and of a longer dataset.
The spatial scale of analysis is A ¼ 10;000 km2 and ΔTw ¼ 41 y for B and
A ¼ 1 m2 and ΔTw ¼ 38 y for C. The finiteness of the time window imposes
a cutoff to pτ0 ðtÞ and an atom of probability in t ¼ ΔTw to pτ00 ðtÞ, which corre-
sponds to the fraction of species that are always present during the observa-
tional time. pτðtÞ and pτ0 ðtÞ have been shifted in the log–log plot for clarity.

A

B C D

Fig. 3. Persistence-time distributions are dependent on the structure of the
spatial interaction networks. (A) Persistence-time exceedance probabilities
PτðtÞ (probability that species’ persistence times τ be ≥t) for the neutral in-
dividual-based model (15, 16) with nearest-neighbor dispersal implemented
on the different topologies shown in the inset. Note that in the power-law
regime if pτðtÞ scales as t−α, PτðtÞ ∝ t−αþ1. The scaling exponent α is equal to
1.50� 0.01 for the one-dimensional lattice (red), α ¼ 1.62� 0.01 for the net-
worked landscape (yellow), 1.82� 0.01 and 1.92� 0.01, respectively, for the
2D (green) and 3D (blue) lattices. Errors are estimated through the standard
bootstrap method. The persistence-time distribution for the mean-field
model (global dispersal) reproduces the exact value α ¼ 2 (black curve).
For all simulations ν ¼ 10−5 and time is expressed in generation time units
(11). (Bottom) Sketches of the color-coded spatial arrangements of species
in a networked landscape (B), in a two-dimensional lattice with nearest-
neighbor dispersal (C), and with global dispersal (D).
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the distribution eventually ends up scaling as the one predicted
by the nearest-neighbors dispersal. We also relax the neutral
assumption by implementing an individual-based competition/
survival trade-off model (16). Specifically, species with higher
mortality rates are assumed to hold less competitive ability to
colonize empty sites (2, 35). It is important to note that the
trade-off model also exhibits power-law persistence-time distribu-
tion with exponents indeed close to those shown by the neutral
model (see SI Text). Our theoretical results are thus robust with
respect both to changes in the dispersal range and to relaxations
of the neutrality assumptions. This confirms our expectation that
a power-law distribution for species persistence times is the result
of emergent behaviors independent of fine ecological details,
thus supporting the neutral assumption that effective interaction
strength among species is weak (36) and does not significantly
constrain the dynamics of ecosystems. We also note that our
results are not seen as a test for the neutrality hypothesis for
breeding birds or herbaceous plants dynamics, but rather as tools
to reveal emerging universal and macroscopic patterns (37, 38).

Discussion and Conclusions
In the previous section we established a hierarchy of scaling
exponents ranging from the smallest, proper to 1D interactions,
to larger values namely for directional (network-like), 2D, and 3D
dispersals. We thus suggest that the coherence of the empirical
scalings would stem from the two-dimensional isotropic nature
of the environmental matrix available to the ecological processes
relevant to both breeding birds and herbaceous plants.

We also suggest that species persistence-time distribution, ow-
ing to its robustness and scale-invariant character, is a synthetic
descriptor of ecosystem dynamics and of biodiversity. In fact,
other key macroecological patterns are intimately related to the
persistence-time distribution. A first clear example is the direct
link with ecosystem diversity, as explained below. In our frame-
work species emerge as a point Poisson process with rate λ ¼ νN
and last for a persistence time τ. The mean number of species S in
the system at a given time is therefore S ¼ λhτi (39) where hτi is
the mean persistence time. Therefore, the smaller exponents
found, say, for networked environments with respect to two-
dimensional ones, imply longer mean persistence and, in turn,
higher diversity. This echoes recent results suggesting a higher
diversity of freshwater versus marine ray-finned fishes (40, 41).

Another evidence of the effective way in which species persis-
tence-time distribution can characterize ecosystem diversity is the
link with the species-area relationship, which characterizes the
increase in the observed number of species with increasing sam-
ple area. The spatial extent of the breeding bird dataset and the
tools developed for the data analysis allow us to study how the
persistence-time distribution depends on the spatial scale of ana-
lysis (Fig. 4A). As expected, while the scaling exponent remains
the same, the diversification rate ν decreases with the geographic
area A and is found to closely follow a scaling relation of the type
ν ∝ A−β, with β ¼ 0.84� 0.01 (Fig. 4B), for a wide range of areas.
This scaling form of the cutoff time scale 1∕ν can be related to
the species-area relationship. Assuming that the number of indi-
viduals scales isometrically with the sampled geographic area
(2, 8), i.e.,N ∝ A, andgiven that hτi ¼ ∫ tpτðtÞdt ∝ να−2 (seeSIText)
one gets

S ¼ λhτi ∝ A1−βðα−1Þ ¼ Az: [2]

The observational values β ¼ 0.84� 0.01 and α ¼ 1.83� 0.02
give an exponent z ¼ 0.30� 0.02, which is close to the species-area
relation measured directly on the data for the same range of areas
(z ¼ 0.31� 0.02, Fig. 4C). Conversely, one could have used the
observed species-area exponent to infer the scaling properties of
the diversification rate.

Finally, from a conservation perspective, a meaningful assess-
ment of species’ local extinction rates is deemed valuable. We
propose the distribution of the times to local extinction τe
(Fig. 2A) as a tool to quantify the dynamical evolution of the
species assembly currently observed within a given geographic
area. Mathematically, τe is defined as the time to local extinction
of a species randomly sampled from the system, regardless of its
current abundance. When formula 1 holds for persistence times,
the distribution of the times to local extinction pτeðtÞ is shown to
scale as pτeðtÞ ∝ t1−αe−νt (see Materials and Methods). Therefore,
not only do the developed theoretical and operational tools allow
to infer the scaling behavior of persistence times, but also of the
time to local extinction even from relatively short observational
windows. Although these patterns cannot provide information
about the behavior of a specific species or of a particular patch
inside the ecosystem considered (e.g., a biodiversity hot spot),
they can effectively describe the overall dynamical evolution of
the ecosystem diversity. In particular, the scaling behavior allows
us to extrapolate species persistence-time distributions for wide
geographic areas, which are hard to estimate, from measures of
persistence on smaller areas, which are, on the contrary, more
practical and feasible. We thus conclude that the biogeographical
characters of species persistence, stemming from the structure of
the spatial interaction networks and from local constraints to
species emergence rates, add a previously undescribed ingredient
to a rich literature bearing major implications for the inventory of
life on Earth.

Materials and Methods
Inference of the Persistence-Time Distribution from a Finite Observational Per-
iod. The exact derivation of the probability distribution of the variables τ0

and τ00 (Fig. 2A) follows. In this theoretical framework, the probability νdt
of observing a diversification event in a time step dt is assumed to be a con-
stant; thus species emergence in the system due to migration or speciation
is seen as a uniform point Poisson process with rate λ ¼ νN (where N is total
number of individuals in the system and λ has the dimension of the inverse of
a generation time). We term t0 the emergence time of a species in the system,
and T0 and Tf ¼ T0 þ ΔTw the beginning and the end of the observational
time window, respectively. A species emerged at time t0 will be continuously
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Fig. 4. Biogeography of species persistence time. (A) Observational distribu-
tions pτ0 ðtÞ and pτ00 ðtÞ (interpolated solid circles) for the breeding bird dataset
and corresponding fitted persistence-time distributions pτðtÞ ∝ t−αe−νt (solid
lines) for different scales of analysis: Area A ¼ 8.5 · 104 km2 (green), A ¼ 3.4 ·
105 km2 (blue), A ¼ 9.5 · 105 km2 (red). νðAÞ provides the cutoff for the
distribution, whose scaling exponent is unaffected by geographic area. Note
that the position of the cutoff of pτðtÞ is inferred from the estimate of the
atom of probability of pτ00 ðtÞ, which is more sensitive to the scale of analysis.
(B) Scaling of the diversification rate ν with the geographic area ν ∝ A−β ,
β ¼ 0.84� 0.01. (C) Empirical species-area relationship (SAR). The plot shows
the mean number of species S found in moving squares of size A. We find
S ∝ Az, z ¼ 0.31� 0.02. Slope and confidence interval have been obtained
averaging 41 SARs, one per year of observation.
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present in a geographic region for its persistence time τ until its local extinc-
tion at time t0 þ τ.

We first analyze the distribution of τ00, the most complex case. The variable
τ00 can be expressed as a function of the random variables τ and t0, which
are probabilistically characterized. We can distinguish four different
cases (Fig. 2A):

1. the species emerges and goes locally extinct within the time window;
2. the species emerges during the observations and it is still present at the

end of the time window;
3. the species emerges before the beginning of the observations and goes

locally extinct within the time window;
4. the species is always present for all the duration of the observations;

or, mathematically,

τ00 ¼

8>><
>>:

τ; if T0 ≤ t0 ≤ Tf and t0 þ τ ≤ Tf

Tf − t0; if T0 ≤ t0 ≤ Tf and t0 þ τ > Tf

t0 þ τ − T0; if 0 < t0 < T0 and T0 ≤ t0 þ τ ≤ Tf

Tf − T0; if 0 < t0 < T0 and t0 þ τ > T

:

We express the probability of observing τ00 conditional on a persistence time
of duration τ as

pτ00 ðtjτÞ ¼
1

N

�
hδðτ − tÞΘðt0 − T0ÞΘðTf − ðt0 þ τÞÞΘðTf − T0 − τÞi

þ hδðTf − t0 − tÞΘðt0 − T0ÞΘðTf − t0ÞΘðt0 − ðTf − τÞÞi
þ hδðt0 þ τ − T0 − tÞΘðt0ÞΘðTf − t0 − τÞΘðT0 − t0Þ
× Θðt0 − T0 þ τÞi þ hδðTf − T0 − tÞΘðt0ÞΘðT0 − t0Þ
× Θðt0 − Tf þ τÞΘðτ − Tf þ T0Þi

�
; [3]

where the operator h·i is the ensemble average with respect to the random
variable t0, δðxÞ and ΘðxÞ are the Dirac delta distribution and the Heaviside
function, respectively. N is the normalization constant.

When comparing analytical and observational distributions, we assume
that the system is at stationarity and unaffected by initial conditions; i.e.,
T0 is far from the beginning of the process. Mathematically this is obtained
taking the limit T0;T f → þ∞ with Tf − T0 ¼ ΔTw . By solving the ensemble
averages and by marginalizing with respect to τ, Eq. 3 finally takes the form
(see SI Text for a step-by-step derivation)

pτ00 ðtÞ ¼
1

N
ððΔTw − tÞpτðtÞΘðΔTw − tÞ

þ ΘðΔTw − tÞ
Z

∞

t>0
pτðτÞdτ

þ ΘðΔTw − tÞ
Z

∞

t>0
pτðτÞdτ

þ δðt − ΔTwÞ
Z

∞

ΔTw

ðτ − ΔTwÞpτðτÞdτÞ; [4]

where N simplifies to

N ¼ ΔTw þ hτi − 2ΔTwPτðΔTwÞ þ 2

�Z
ΔTw

0

ðPτðtÞ − tpτðtÞÞdt
�
;

with PτðtÞ ¼ ∫ þ∞
t pτðτÞdτ being the exceedance cumulative distribution of the

persistence-time probability density function.
The variable τ0 comprises only the first of the four cases listed in Eq. 3. Thus

the probability distribution pτ0 ðtÞ follows directly from the first term of Eq. 4,

pτ0 ðtÞ ¼
1

N0 ðΔTw − tÞpτðtÞΘðΔTw − tÞ;

where the normalization constant N0 is equal to

N0 ¼
Z

ΔTw

0

ðΔTw − τÞpτðτÞdτ;

which completes the derivation.

Distribution of Times to Local Extinction. We term τe the time to local extinc-
tion of a species randomly sampled among the observed assembly at a certain
time T (Fig. 2A). Analogously to the derivation described above, we can
express τe as

τe ¼ t0 þ τ − T if 0 < t0 < T and t0 þ τ ≥ T:

We then express the probability distribution of the times to local extinction
conditioned to a persistence time τ as

pτeðtjτÞ ¼
1

C
hδðt − ðt0 þ τ − TÞÞΘðt0 þ τ − TÞΘðT − t0ÞΘðt0Þi;

where the constant C ensures proper normalization. Solving the ensemble
average operators yields

pτeðtjτÞ ¼
1

C
Θðτ − TÞΘðt − τ þ TÞ:

Marginalizing over τ and considering the system at stationarity (T → þ∞), we
finally obtain

pτeðtÞ ¼
1

C

Z
∞

t
pτðτÞdτ; [5]

whereC is simply hτi. Eq. 5 allows us to derive the distribution of the times to
local extinction given the persistence-time distribution. Particularizing now
to the case of persistence-time distributions of the shape pτðtÞ ∝ t−αe−νt , Eq. 5
translates into pτe ðtÞ ∝ t1−αe−νt .
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