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Craniosynostosis, defined as the premature fusion of the cranial sutures, presents many challenges in classification and
treatment. At least 20% of cases are caused by specific single gene mutations or chromosome abnormalities. This article maps
out approaches to clinical assessment of a child presenting with an unusual head shape, and illustrates how genetic analysis

can contribute to diagnosis and management.

In brief

¢ Craniosynostosis is best managed in a multispecialty tertiary
referral unit.

o Single suture synostosis affects the sagittal suture most com-
monly, followed by the coronal, metopic and lambdoid sutures.

e Both environmental factors (especially intrauterine fetal head
constraint) and genes (single gene mutations, chromosome
abnormalities and polygenic background) predispose to cra-
niosynostosis.

e Most genetically determined craniosynostosis is characterised
by autosomal dominant inheritance, but around half of cases
are accounted for by new mutations.

e Apart from the genetic implications, it is important to recog-
nise cases with a genetic cause because they are more likely to
be associated with multiple suture synostosis and extracranial
complications.

e Genes most commonly mutated in craniosynostosis are
FGFR2, FGFR3, TWISTI and EFNBI.

e As well as being associated with syndromes, some clinically
non-syndromic synostosis (usually affecting the coronal
suture) can be caused by single gene mutations, particularly
the Pro250Arg mutation in FGFR3.

e In severe cases, initial care should be directed towards main-
tenance of the airway, support of feeding, eye protection and
treatment of raised intracranial pressure.

INTRODUCTION

During infancy and childhood, the skull vault (calvaria) expands
to accommodate the growing brain. This growth occurs predomi-
nantly at the narrow seams of undifferentiated mesenchyme, termed
cranial sutures, which lie between different bones. The paired
frontal and parietal bones are separated in the midline by the metopic
and sagittal sutures, respectively; the frontal and parietal bones
are separated by coronal sutures; and the parietal bones are separated
from the single occipital bone by lambdoid sutures (Figure 1a and b).
Craniosynostosis describes the premature fusion of one or more of the
cranial sutures: secondary distortion of skull shape occurs because
of a combination of lack of growth perpendicular to the fused
suture, and compensatory overgrowth at the non-fused sutures.
The overall prevalence of craniosynostosis has been estimated
at between 1 in 2100 and 1 in 2500 births.? Craniosynostosis is
important to recognise and treat because it can be associated

David Johnson! and Andrew OM Wilkie*:1:2

10xford Craniofacial Unit, Oxford Radcliffe Hospitals NHS Trust, John Radcliffe
Hospital, Oxford, UK; 2Weatherall Institute of Molecular Medicine, University of Oxford,
Oxford, UK

European Journal of Human Genetics (2011) 19, 369-376; doi:10.1038/ejhg.2010.235;
published online 19 January 2011
Keywords: craniosynostosis; FGFR; TWIST

*Correspondence: Professor AOM Wilkie, Weatherall Institute of Molecular Medicine,
University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
Tel: +44 1865 222619; Fax: +44 1865 222500; E-mail: awilkie@hammer.imm.ox.ac.uk

Received 11 June 2010; revised 6 October 2010; accepted 28 October 2010;
published online 19 January 2011

with many complications affecting sensory, respiratory and neuro-
logical function.

CLINICAL OVERVIEW

The aims of clinical assessment are to determine: (1) whether
craniosynostosis is present; (2) whether there are additional features
suggesting an associated syndrome and (3) to assess whether urgent or
elective management is required. Craniosynostosis is very hetero-
geneous in its causes and presentation, and correspondingly in its
management. Most isolated non-syndromic cases present electively,
but a minority of syndromic cases present acutely and require
immediate intervention. Classifications of craniosynostosis based on
the combination of sutures closed, associated features suggesting a
syndrome, and identifiable aetiological factors (for example, intrau-
terine constraint,>* teratogenic exposure and genetic abnormalities)
all have validity, and should be considered in combination.

The most common presentation is with an unusual head shape in
the first year of life; the head may be long and narrow (scaphocephaly,
dolichocephaly; Figure 1c and d), triangular at the front (trigonoce-
phaly; Figure le and f), broad and flattened (brachycephaly; Figure 1g
and h) or skewed (plagiocephaly Figure 1i and j). To seek aetiological
clues, the history should focus on any family history of unusual
head shapes, prenatal exposures (for example, valproate ingestion
for maternal epilepsy), evidence of fetal intrauterine constraint
(primiparity, multiple pregnancy, abnormal lie and oligohydramnios)
and birth history. Obstructed labour and assisted delivery or caesarean
sections are frequent, but more likely to be the consequence, rather
than the cause of craniosynostosis. In assessing the functional con-
sequences of the condition, the most important clinical information
pertains to the airway, feeding, eye protection and raised intracranial
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Figure 1 Diagnostic features of craniosynostosis. (a) Schematic diagram showing positions of the major cranial sutures. (b) CT scan (vertex view of skull) showing
maijor sutures; anterior is at top. (c,d) Sagittal synostosis: note long, narrow head. (e,f) Metopic synostosis: note hypotelorism and triangular profile of forehead.
(g,h) Bicoronal synostosis: broad, flattened head. (i,j) Right unicoronal synostosis: note flattened brow and anterior position of ear on affected side, deviation of
nasal tip and prominent brow on unaffected side. (k-m), Congenital anomalies of feet or hands characteristic of Pfeiffer syndrome (k), Apert syndrome (I) and
craniofrontonasal syndrome (m). (n) Crouzonoid facial appearance. (0) Severe hypertelorism, grooved nasal tip and left unicoronal synostosis in craniofrontonasal
syndrome. (p) Ptosis and left unicoronal synostosis in Saethre-Chotzen syndrome. (q) Positional plagiocephaly: prominence on right anteriorly and left posteriorly,
with right ear anterior and parallelogram shape to skull. (r) CT reconstruction showing left unicoronal synostosis. (s) CT reconstruction showing cloverleaf skull.

(t) CT venogram showing abnormal venous drainage in multisuture syndromic craniosynostosis. See text for further details.
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pressure (ICP). It is essential to elicit any evidence of breathing
difficulty, choking or vomiting on feeds, failure of eyelids to cover
eyes during sleep, or irritability, as these may be indications for acute
intervention.

The clinical examination should follow a set pattern to avoid
overlooking clues. Our own routine is to start with the hands and
feet looking for congenital anomalies, for example, a broad radially
deviated thumb or big toe in Pfeiffer syndrome (Figure 1k), more
extensive syndactyly in Apert syndrome (Figure 11) and longitudinally
split nails in craniofrontonasal syndrome (Figure 1m). Examine the
face for dysmorphic features, including hyper- or hypotelorism,
exorbitism, midface hypoplasia, asymmetry and ear size, position
and shape. The combination of exorbitism, flattened malar region
and beaked nose signals a ‘crouzonoid’ appearance (Figure 1n), likely
to be associated with FGFR2 mutation. If there is hypertelorism, view
the nose from above looking for a shallow groove, which suggests
craniofrontonasal syndrome (Figure 10). Ptosis, low frontal hairline
and small ears with prominent horizontal crura are features of
Saethre-Chotzen syndrome (Figure 1p). Look at the skull shape
from front, back, sides and top, feel the sutures for ridging (associated
with suture fusion), assess the size, shape and tension in the fonta-
nelles, and measure the head circumference. The cephalic index (ratio
of maximum breadth to maximum length of skull, normally between
0.76 and 0.83 (in boys) or 0.84 (in girls))> provides an objective
measure of its overall proportions, but requires calipers for accurate
measurement. Finally look in the mouth for a cleft palate and
complete the general physical examination. The parents should be
assessed similarly for signs suggestive of a carrier state.

It is important, but not always easy, to distinguish synostotic
plagiocephaly (caused by unicoronal or, less commonly unilambdoid
synostosis) from non-synostotic plagiocephaly. The latter is a very
common condition related to deformation and shear stress on the
skull during late pregnancy and delivery, and frequently increases in
severity before the acquisition of head control, because infants tend to
be nursed in a supine position. Clues may be obtained by viewing the
head, and particularly the position of the ears, from above (compare
Figure 1i, j with q). In synostotic plagiocephaly caused by unicoronal
synostosis, the ear on the affected side is shifted forward, and the
distance to the flattened brow contour is reduced. The skull
when viewed from above is a rhomboid shape. In non-synostotic
anterior plagiocephaly, the ear on the flattened side is more posterior
(parallelogram shape when viewed from above). If doubt remains,
referral to a specialist unit is recommended.

DIAGNOSTIC APPROACHES
Computed tomography (CT) scanning and three dimensional recon-
struction using both bone and soft tissue windows is the investigation
of choice.® This should clearly reveal the patency, or closure, of each
individual suture (Figure 1b, r and s). CT of the brain should also be
performed seeking associated anatomical abnormalities (for example,
ventriculomegaly and agenesis of corpus callosum) and to check the
fluid spaces for evidence of craniocerebral disproportion. CT veno-
graphy is required in complex cases where abnormal venous drainage is
suspected (Figure 1t). Skull radiographs are of limited use as their
sensitivity for detecting sutural patency is significantly less than CT. They
are most useful when screening cases of plagiocephaly when the clinical
findings are not conclusive. Magnetic resonance imaging (MRI),
although ideal for the brain, is less good at visualising the cranial sutures.
Craniosynostosis should ideally be managed in a multidisciplinary
setting. Full workup should also include baseline psychological,
speech/language, hearing and orthoptic assessments. Neurosurgical
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review with ICP monitoring may be required, although this is more
commonly used later in childhood to assess symptoms suggestive of
raised ICP.

MOLECULAR AND GENETIC BASIS OF DISEASE

In a recent analysis of a 10-year prospective cohort of craniosynostosis
presenting to our unit, a genetic diagnosis was achieved in 21% of
cases, comprising 86% single gene disorders and 15% chromosome
abnormalities (one patient had both).” The genes most frequently
mutated were FGFR2 (32% of all genetic cases), FGFR3 (25%),
TWISTI (19%) and EFNBI (7%). Figure 2 illustrates the domain
structures of proteins encoded by these four genes, together with the
clinical presentation and molecular distribution of mutations in the
cohort survey, illustrating the relative prevalence of the major muta-
tions causing craniosynostosis. Much rarer, but well established
associations of gene mutations and craniosynostosis are for FGFRI
(mild Pfeiffer syndrome), POR (Antley-Bixler syndrome) and RAB23
(Carpenter syndrome); further information about these genes is
provided below. Single-gene mutation associations that are based on
only a handful of cases are not further discussed; these include
mutations in EFNA4 (non-syndromic coronal synostosis), ESCO2
(Roberts syndrome), GLI3 (Greig syndrome), JAGI (Alagille
syndrome), KRAS (Noonan syndrome), RECQL4 (Baller Gerold
syndrome) and TGFBRI or TGFBR2 (Loeys-Dietz syndrome).
Mutation in MSX2, the first genetic cause of craniosynostosis to be
molecularly determined,’ is exceptionally rare, having been reported
to date only in the original family, but several duplications including
MSX2 have been associated with craniosynostosis.'®

FGFR?2 (fibroblast growth factor receptor type 2)
The FGFR2 gene encodes a transmembrane receptor tyrosine kinase
(Figure 2a) comprising an extracellular ligand-binding region (immu-
noglobulin-like domains Igl, IgIT and IgIII), a single pass transmem-
brane region (TM) and split tyrosine kinase domain (TK1 and TK2).
Heterozygous mutations of FGFR2 cause three classical craniosynos-
tosis syndromes, those of Apert, Crouzon and Pfeiffer. All exhibit
a characteristic crouzonoid facial appearance (Figure 1n). Less
commonly, mutations may present with non-syndromic synostosis,”
or Beare-Stevenson syndrome (multisuture synostosis associated with
cutis gyrata). Mutations in FGFR2 and FGFR3 tend to encode highly
localised, recurrent missense substitutions encoding proteins with
gain-of-function properties. The cellular consequences of mutation
are complex, including enhancement of proliferation, differentiation
and apoptosis of osteoblasts bordering the cranial suture mesenchyme;
premature differentiation is probably the most important factor
leading to craniosynostosis.!>12

Apert syndrome is characterised by bicoronal synostosis and bilateral
symmetrical complex syndactyly of the hands and feet (Figure 1I).
Other frequent complications include cleft palate (44%) and learning
disability, requiring special needs education (44%).!> Over 98% of
cases are caused by specific missense mutations of FGFR2, either
Ser252Trp (66%) or Pro253Arg (32%), in the linker between the IgIl
and IgIIl domains (Figure 2a); the former substitution is associated
with a higher frequency of cleft palate, but milder syndactyly.'* These
substitutions specifically increase the affinity and broaden the speci-
ficity of FGF-ligand binding, explaining the exquisite genotype—
phenotype correlation.!* Nearly all Apert syndrome mutations arise
de novo, and have been shown to originate exclusively from the father.
These mutations provide a paradigm for paternal age effect mutations
that are enriched in sperm owing to a paradoxical selective advantage
to mutant spermatogonial cells in the testis.!>!6
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Figure 2 Distribution and types of mutation that commonly cause craniosynostosis. The major domains of the proteins encoded by the FGFR2 (a), FGFR3
(b), TWIST1 (c) and EFNBI (d) genes are shown to scale, together with the position and types of mutation identified, and their associated phenotypes.
Dashed line before EPH domain encoded by EFNBI indicates 5’ untranslated region. The data, which were obtained from the Oxford cohort study,” convey
the relative prevalence of the most common mutations, but many rare mutations were absent in this survey. Asterisk indicates position of Ala391Glu
mutation of FGFR3. crs, craniosynostosis. See text for information on protein domains.

Pfeiffer syndrome is usually characterised by broad, radially deviated
thumbs and/or big toes (Figure 1k), sometimes with cutaneous
syndactyly, and includes individuals previously classified with a
‘Tackson-Weiss” phenotype. The craniofacial severity is variable, an
important subgroup presenting with severe multisuture synostosis
(‘Kleeblatschadel’) (Figure 1s), which is very challenging to manage
and associated with significant mortality. FGFR2 mutations in Pfeiffer
syndrome overlap those in Crouzon syndrome (Figure 2a), but the
majority of severe cases are caused by a small subset of substitutions
encoding Trp290Cys, Tyr340Cys, Cys342Arg or Ser351Cys.!”

Crouzon syndrome is usually the mildest of the FGFR2-associated
disorders and the clinical diagnosis is suggested by the combination
of crouzonoid facies (Figure 1n) and absence of major abnormalities
of the hands and feet. Although bicoronal synostosis is most common,
Crouzon syndrome can present with late-onset pansynostosis.'®1° It is
important to be aware of this possibility in a child with a crouzonoid
appearance, because apparently mild distortion of the skull shape may
mask the presence of raised ICP. The association of crouzonoid facies
with acanthosis nigricans is caused by a specific FGFR3 mutation (see
below).

The distribution of mutations causing Pfeiffer and Crouzon syn-
dromes in FGFR2 overlaps considerably. Most mutations (94%) occur
in the third extracellular immunoglobulin-like domain encoded by
exons IITa or ITlc, where they cause constitutive activation by covalent
cross-linking of receptor monomers. The remainder of the mutations
are scattered in seven other exons of the gene, including several
mutations in the tyrosine kinase domain.?’ Abnormal splicing of
the IIlc exon tends to be associated with more severe limb abnorm-
alities, so these mutations generally present with Pfeiffer or occasion-
ally even Apert syndrome (Alu element insertions).?!
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FGFR3 (fibroblast growth factor receptor type 3)

FGFR3 encodes a protein that has a domain structure closely
resembling its paralogue FGFR2 (Figure 2b). Although FGFR3 muta-
tions are commonly associated with bone dysplasia (hypo-
chondroplasia-achondroplasia-thanatophoric dysplasia series), two
heterozygous mutations cause specific craniosynostosis syndromes,
Muenke syndrome and Crouzon syndrome with acanthosis nigricans
(Figure 2b).

Muenke syndrome, defined by identification of the Pro250Arg
substitution, is individually the most common genetic abnormality
found in craniosynostosis, comprising ~ 5% of all cases.” The asso-
ciated phenotype is not distinctive and was not properly delineated
until the mutation was described in 1996 (ref. 22). Patients usually
present with either unicoronal or bicoronal synostosis, but at least
20% of mutation carriers do not have clinically significant craniosy-
nostosis. The facial appearance ranges from normal to a dysmorphic
appearance easily mistakable for Saethre-Chotzen syndrome. Minor
digital abnormalities (especially brachydactyly) are not characteristic
and there should be a low threshold for requesting the genetic test to
establish the diagnosis. An important complication is low frequency
hearing loss, requiring the fitting of hearing aids in ~20% of
patients.”> The Pro250Arg substitution is the exact equivalent to the
Apert Pro253Arg substitution in FGFR2, and also causes ligand-
dependent gain-of-function.?* However the reasons for the specific
association of this mutation with craniosynostosis are not fully
understood.

Crouzon syndrome with acanthosis nigricans is characterised by the
Ala391Glu substitution. The acanthosis nigricans, which develops
during childhood, is usually not apparent at presentation, so specific
testing should be requested in the diagnostic workup of Crouzon



syndrome. A positive result should prompt a careful neurosurgical
assessment as hydrocephalus is a frequent association.?

TWISTI (twist homologue 1)

Saethre-Chotzen syndrome is characterised by heterozygous mutations
of TWISTI, which encodes a transcription factor belonging to the
basic helix-loop-helix family (BHLH motif, Figure 2¢). The facial
appearance is fairly characteristic, but experience is required in its
recognition (Figure 1p). Affected individuals usually present with
unicoronal or bicoronal synostosis, but non-penetrance for cranio-
synostosis occurs. Abnormal extremities (broad, laterally deviated first
digits, 2/3 cutaneous syndactyly and brachydactyly) are variable and
only occasionally diagnostic. Saethre-Chotzen syndrome results from
haploinsufficiency of TWIST1, which may be the consequence of
many different mutations, including whole gene deletions, intragenic
nonsense and frameshifting mutations, and missense substitutions;
note that the last category is largely confined to the highly conserved
BHLH motif required for DNA binding and dimerisation (Figure 2c)
(ref. 26). No genotype—phenotype correlation is described, except that
large deletions are associated with learning disability (not generally a
feature of Saethre-Chotzen syndrome),m27 and occasional missense
mutations in the C-terminal Twist box apparently confer increased
risk of a more non-specific synostosis phenotype (with unknown
penetrance).?® Rearrangements of a polyglycine-rich tract (amino
acids 82-92), which turn up occasionally during mutation screening,
seem to be harmless in the heterozygous state.’ Twist1 has a key role
in maintaining the boundary between neural crest and cephalic
mesoderm at the site of the developing coronal suture.?

EFNBI (ephrin-B1)
Craniofrontonasal syndrome is an X-linked disorder that presents
paradoxically with heterozygous females more severely affected than
hemizygous males. Females have severe hypertelorism, unicoronal or
bicoronal synostosis, bifid nasal tip, characteristic longitudinal
nail splits (Figure 1m and o) and, at lower frequency, sloping
shoulders, asymmetric nipples, bifid digits and agenesis of the corpus
callosum.*®

The identification of causative mutations in EFNBI, which confer
loss of function and are correspondingly diverse (whole gene deletions,
intragenic nonsense and frameshifting and splice site mutations, and
missense substitutions; Figure 2d) (refs. 31,32), has provided an
explanation for the paradoxical inheritance pattern. The encoded
protein ephrin-B1 (which comprises an EPH domain that interacts
with Eph receptor tyrosine kinases, single pass transmembrane (TM)
sequence and intracellular PDZ (protein interaction) domain) is
involved in cell recognition, so that cells expressing the molecule
tend to group together (homophilic sorting). In the female, random
X-inactivation generates groups of cells that either express, or do not
express ephrin-Bl, and the homophilic sorting process increases
the patch size of these cells, causing abnormal tissue boundaries
(for example, in the coronal sutures and limbs).>* This process has
been termed cellular interference.’! In males this cannot occur, and it
is presumed that functional redundancy between different ephrin
family members mitigates the consequences of complete lack of
ephrin-B1.

Other genes

The heterozygous FGFRI mutation encoding Pro252Arg occurs at the
equivalent position in FGFR1 to the Apert (FGFR2) and Muenke
(FGFR3) mutations. However it is an unusual cause of Pfeiffer
syndrome accounting for fewer than 10% of cases. Syndactyly of the
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feet, characteristically affecting digits 2—5 with a wide sandal gap with
digit 1, seems to be the most characteristic feature.>*

Whereas most genetically determined craniosynostosis is charac-
terised by dominant inheritance, Antley-Bixler syndrome (features
include disordered sex development and radio-humeral synostosis;
mutation in POR encoding cytochrome P450 oxidoreductase)®® and
Carpenter syndrome (with polysyndactyly; mutation in RAB23 encod-
ing RAB23, member of RAS oncogene family)>® are recessive dis-
orders. These mutations demonstrate pathogenic roles for steroid
metabolism and hedgehog (or possibly Wnt) signalling in cranial
suture development, both of which are at present poorly understood.

Chromosome abnormalities

A wide variety of chromosome abnormalities have been associated
with craniosynostosis, many in single cases only. The clearest causal
link is with deletions of 7p21.1, which includes the TWIST1 gene.26’27
Other non-random associations that do not show complete pene-
trance are with deletions of 9p22 and 11q23.3-qter (metopic synos-
tosis).>” Craniosynostosis is recognised as a low frequency association
of the 22q11.21 microdeletion. Published studies of the prevalence of
submicroscopic chromosomal abnormalities in syndromic cranio-
synostosis have ranged widely, from 6.7%’ to 28% (ref. 38). The
Oxford study’ showed a predominance (85%) of metopic or sagittal
synostosis in patients with chromosome abnormalities. Compared
with single gene disorders, which often required reoperation (58% of
cases), patients with chromosome abnormalities followed a less
aggressive course (reoperation rate 17%) suggesting a different,
secondary origin of the associated craniosynostosis.

MANAGEMENT
Genetic testing strategy
Although targeted genetic testing is appropriate for patients in whom
a specific diagnosis is suspected, the general issue arises whether those
with non-syndromic synostosis should be offered genetic testing.
In the Oxford study, causative mutations were present in 11% multi-
suture, 37.5% bicoronal and 17.5% unicoronal synostosis, but were
absent in all sagittal, metopic and lambdoid synostosis cases tested.
Although the numbers of patients tested in some groups were
relatively small, the low success rate of molecular diagnosis in sagittal
synostosis has been independently confirmed.*® The numbers
of mutations found in the non-syndromic patients were seven in
FGEFR3, three in the IIla or Illc exons of FGFR2 and one in TWIST].
On the basis of these data, we recommend that as a minimum, genetic
testing of FGFR3 (for the Pro250Arg mutation) and FGFR2 (mutation
hotspots in exons Ila and Illc), should be offered for all patients
presenting with coronal or multisuture synostosis. The higher genetic
load associated with coronal synostosis is likely to reflect the distinct
embryological origin of the coronal suture, at the boundary between
the developing frontal bone (neural crest origin) and parietal bone
(cephalic mesoderm).840

A flow diagram to aid prioritisation of genetic testing is shown in
Figure 3.

Genetic counselling/risk assessment

Where no molecular or cytogenetic diagnosis is made and the family
history is negative, we suggest a sibling recurrence risk of 2% for
sagittal and metopic synostosis, 5% for unicoronal synostosis and 10%
for bicoronal and multisuture synostosis. These figures are informed
by older epidemiological studies,"*>™** but do involve some guess-
work, because these studies included patients in whom mutations
could now be identified. Offspring risks are not well documented; they
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Figure 3 Flow diagram for molecular genetic diagnosis of craniosynostosis,
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lambdoid synostosis

TWIST1 exon 1 sequence and MLPA

showing the minimum tests recommended for each clinical presentation. In

practice, the Oxford laboratory bundles sequencing of the FGFR1, FGFR2 (exons lIlla and llic), FGFR3 and TWISTI genes together into a single ‘level 1’
screen to simplify the workflow.4! If the suggested tests are negative, the diagnosis should be reviewed.

are probably low (~5%) in the case of non-syndromic sagittal,
metopic and unicoronal synostosis, but likely to be substantially
higher (30-50%) in bicoronal and possibly multisuture synostosis.

For individuals with identified single gene disorders, the main issue
surrounds the recurrence risk that should be given for apparently
de novo mutations. In the case of FGF receptor mutations, provided
that the blood of both parents is negative for the mutation, the
recurrence risk is very low (well under 1%). This is because the vast
majority of cases arise from mutations occurring in adult spermato-
gonia, which although subject to strong positive selection never
populate large proportions of the sperm.'>!® However, a single case
of true mosaicism for FGFR2 mutation was recently described.*> At
the opposite end of the spectrum, mosaicism was present in 19% of
first affected individuals in pedigrees with EFNBI mutations, so
the mutation must be looked for very carefully in the parents
(for example, by heteroduplex analysis in addition to DNA sequen-
cing).3? A recurrence risk of 10% for the siblings of sporadic females
with CFNS is appropriate. Mosaicism for TWISTI mutations,
although theoretically possible, has not been reported; however, the
sample size of de novo TWISTI mutations is relatively small, so a
cautiously low (2%) sibling recurrence risk is appropriate.

PRENATAL DIAGNOSIS

Where a molecular abnormality has been identified in the family, the
issues regarding prenatal or preimplantation diagnosis do not differ
substantially from those in other genetic disorders. More problematic
is the question whether it is feasible to diagnose craniosynostosis
prenatally by ultrasound or other imaging techniques. Cranial sutures
form very late (~16 weeks gestation)*® compared with most other
embryonic structures, therefore at the time when most routine
ultrasound diagnosis is being undertaken (~20 weeks), insufficient
time has elapsed for growth distortion of the skull to have occurred,
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except in the most severe cases. Although there have been a few
reports of ultrasound diagnosis of craniosynostosis around this time,*”
the majority of even syndromic craniosynostosis is not detected
during the pregnancy. When the issue is to screen for recurrence
of craniosynostosis present in an older sibling, evidence of Apert
syndrome can be sought by careful examination of the limbs
for syndactyly. In most other situations, a late ultrasound is
recommended to check for cephalopelvic disproportion, but caution
should be exercised in providing any confident opinion in the prenatal
period that craniosynostosis, except for the most severe forms, has
been excluded.

TREATMENT AND CARE

Acute management

Care of neonates and infants with severe multisuture synostosis is
directed towards maintenance of the airway, support of feeding,
eye protection, and treatment of raised ICP. Respiratory difficulty
may require urgent sleep study assessment by specialist paediatric
respiratory physicians and ear, nose and throat (ENT) surgeons,
necessitating either continuous positive airway pressure support,
nasal stenting, tonsillectomy/adenoidectomy, choanal dilatation,
early midface advancement or tracheostomy, depending on the
anatomical cause. Exposure keratitis occurs if the eyelids are unable
to close and an urgent ophthalmology opinion should be sought, with
consideration given to tarsorraphies or early midface advancement
to provide eye protection.

Raised ICP associated with craniosynostosis has several different
causes, which require different treatments. Hydrocephalus needs a
shunt; obstructive sleep apnoea is treated by improving the airway (see
above). Craniocerebral disproportion (the consequence of cranio-
stenosis) requires calvarial expansion. Foramen magnum decompres-
sion might be required if there is tonsillar herniation. In multisuture



synostosis, abnormal venous drainage poses a significant hazard when
operating on the back of the skull (Figure 1t).

Elective management

Elective surgical management of craniosynostosis has three major
objectives, which are to correct the skull deformity, prevent its
progression and reduce the future risk of raised ICP. At the Oxford
unit, the majority (~60%) of primary surgical procedures are
performed between the ages of 6 months and 2 years. Attention
must be given to secondary sensory deficits, for example, resulting
from ptosis (Saethre-Chotzen syndrome), strabismus (unicoronal
synostosis and craniofrontonasal syndrome), hearing loss (conductive
in the case of FGFR2 mutations and sensorineural in the case of
Muenke syndrome) and dental malocclusion (especially FGFR2 muta-
tions). Associated malformations, such as syndactyly and cleft palate
(Apert syndrome) also require surgery.

Regular follow-up throughout childhood is advisable, particularly
to monitor for symptoms of raised ICP, such as headaches, behaviour
change, or decline in school performance. Information on the pre-
sence of specific mutations is of prognostic value: for example, coronal
synostosis has a worse prognosis (higher risk of repeat surgery and
persistent deformity) in the presence of the Muenke syndrome
mutation;*$49 subjects with TWIST! mutations are at higher risk
for secondary development of raised ICP;*° large TWIST1 deletions
are associated with a higher risk of learning disability.2%

CONCLUSIONS

Genetic workup should be an integral part of the management of
craniosynostosis as it contributes both to risk assessment for the
family and prognostic information for the patient. Although the
molecular bases of the common craniosynostosis syndromes have
been defined, it is likely that a single molecular aetiology remains to be
identified in a further 10-15% of individuals. Whole genome assess-
ment of copy number changes and DNA sequencing are likely to
identify further predisposing loci, and consideration should be given
to other mechanisms of disease such as mosaicism and imprinting
defects. Although surgery is expected to remain the mainstay of
management for the foreseeable future, the identification of signalling
pathways pathologically activated in the cranial suture (such as the
RAS-ERK pathway activated by Apert syndrome mutations)®! raises
the possibility of the use of adjuvant medical therapies in the future.
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