Skip to main content
. 2011 Jan 4;589(Pt 4):797–803. doi: 10.1113/jphysiol.2010.201467

Table 1.

Summary table of the evidence for NF-κB involvement in response to CO2

Experimental model Cellular Effect Evidence of NF-κB involvement Reference
Rat hepatic IRI ↓ TNFα ↓ NF-κB staining by IHC Li et al.
↑ IL-10
↓ Apoptosis
↓ Liver injury
In vitro buffered hypercapnia (MEF, A549 lung epithelial cells and others) ↓ TNFα, ICAM-1 and CCL2 ↓ NF-κB luciferase promoter reporter Cummins et al.
↑ IL-10 ↓ Nuclear p65 accumulation
↓ IκBα degradation
↑ Nuclear lKKα
In vitro hypercapnic acidosis (pulmonary endothelial cells) ↓ ICAM-1, IL-8 ↓ Nuclear p65 binding (EMSA) Takeshita et al.
↓ Neutrophil adherence ↓ IκBα degradation
In vitro hypercapnia (macrophages) ↓ IL-6, TNFα No change in p65 or IκBα Wang et al.
IL-10 unaffected ↓ IL-6 promoter activity
↓ Phagocytosis
In vitro hypercapnia acidosis (wound healing model in A549 lung epithelial cells) ↓ Wound healing ↓ IκBα degradation O’Toole et al.
↓ Cell migration ↓ NF-κB luciferase promoter reporter
Effect of HCA lost when NF-κB inhibited
Drosophila (flies +/− pathogen at a range of CO2 concentrations) ↑ Mortality Proteolytic cleavage of Relish unchanged Helenius et al.
↓ Antimicrobial peptide genes Hypercapnia inhibits Rel targets in parallel or downstream of proteolytic activation of Rel
HHS Vulnerability Disclosure