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Saccharomyces cerevisiae cells lacking Mne1 are deficient in
intron splicing in the gene encoding the Cox1 subunit of cyto-
chrome oxidase but contain wild-type levels of the bc1 complex.
Thus,Mne1 has no role in splicing ofCOB introns or expression
of the COB gene. Northern experiments suggest that splicing of
the COX1 aI5� intron is dependent on Mne1 in addition to the
previously known Mrs1, Mss116, Pet54, and Suv3 factors. Pro-
cessing of the aI5� intron is similarly impaired in mne1� and
mrs1� cells and overexpression of Mrs1 partially restores the
respiratory function ofmne1� cells. Mrs1 is known to function
in the initial transesterification reaction of splicing. Mne1 is a
mitochondrial matrix protein loosely associated with the inner
membrane and is found in a high mass ribonucleoprotein com-
plex specifically associated with the COX1 mRNA even within
an intronless strain. Mne1 does not appear to have a secondary
function in COX1 processing or translation, because disruption
ofMNE1 in cells containing intronless mtDNA does not lead to
a respiratory growth defect. Thus, the primary defect inmne1�

cells is splicing of the aI5� intron in COX1.

Cytochrome c oxidase (CcO)3 biogenesis requires the ex-
pression and interaction of subunits encoded bymitochondrial
and nuclear genomes. A myriad of nuclear-encoded assembly
factorsmediate CcO biogenesis (1, 2). These factors function in
the processing of mitochondrial CcO subunit mRNAs, their
translation and insertion into the inner membrane, and forma-
tion of metal and heme cofactor centers. Assembly is initiated
with the synthesis and maturation of the Cox1 subunit, one of
the three catalytic core components (3, 4).COX1 is the oneCcO
gene that is universally present in the mitochondrial genome.
The COX1 mRNA requires processing prior to translation on
mitochondrial ribosomes. Cox1 contains three of the redox
centers of the enzyme with heme a, a3, and CuB cofactors (5).
The last redox center, the binuclear CuA center, exists within
the Cox2 subunit.

Mitochondrial genomes of non-metazoan species tend to be
larger due to the presence of non-coding regions including
introns and additional genes not present in animals (6–8). In
Saccharomyces cerevisiae, introns are commonly found in
COX1 as well as COB (the cytochrome b subunit of the bc1
complex) and the large ribosomal RNA gene (9). Two types of
introns, groups I and II, exist in COX1. Some of these introns
contain open reading frames encoding maturases, related to
DNA endonucleases for group I introns and reverse transcrip-
tases for group II introns (8). Group I intron-containing COX1
alleles have been generated numerous times during evolution
due to the invasive nature of the introns containing a DNA
homing endonuclease (10). Most commonly used laboratory
yeast strains contain up to seven introns within COX1 and in
such multiple-intron strains, exons may be as short as 24–37
bases. No compelling rationale is known why introns are main-
tained in COX1 and COB.
The generation of mature COX1 mRNA transcript requires

processing of introns in addition to cleavage of the polycis-
tronic precursor RNA. Both group I and group II introns cata-
lyze their own splicing, but require different combinations of
nuclear-encoded factors as well as intron-encoded maturases
to mediate intron excision and ligation of flanking exons (11).
Cells unable to properly processmitochondrial introns are defi-
cient or attenuated in translation of the respective mRNAs and
present with defects in respiratory growth.
Somenuclear-encoded factors function in the processing of a

specific intron, whereas others, such as Mss116, aid in splicing
of all mtDNA introns in yeast (12). Group I intron splicing
requires that the RNA folds into an active conformation per-
mitting the self-splicing reaction (13). Some of the nuclear fac-
tors, e.g.Mss116, have been shown to facilitate the RNA folding
reaction or stabilize the RNA tertiary fold (14, 15).
COX1 introns in yeast are annotated as aI1-aI4 and aI5�, -�,

and -�. The aI3, aI4, aI5�, and aI5� introns are group I introns,
whereas aI1, aI2, and aI5� are group II introns. Concerning
accessory factors, Cox24 is necessary in the processing of aI2
and aI3 COX1 introns (16) and in addition may have a role in
mitochondrial translation (17). Intron aI4 processing requires
Nam2, Ccm1, and a maturase encoded by the COB bI4 intron
(18, 19). Excision of the aI5� intron ofCOX1depends on several
accessory factors including Pet54, Mrs1, Mss18, Mss116, and
Suv3 (20). The requirement for multiple factors may arise due
to the fact that the 3� splice site of aI5� lies unusually far from
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the catalytic core of the intron. Mrs1 also functions in the exci-
sion of the bI3 ofCOB (21). Yeast harboringmutations in one of
these accessory factors are respiratory deficient due to attenu-
ated levels of mature COX1 transcripts. The growth defect of
certainmutants, e.g. cox24� cells (16) andmss18� cells (22), are
partially rescued in intronless strains suggestive of additional
functions.
Our present study showing that the mitochondrial protein

Mne1 has a role in COX1 intron splicing was initiated by our
interest in characterizing mitochondrial proteins with limited
functional annotation. Mne1 was reported to be a mitochon-
drial protein in a large-scale localization study (23). In addition,
a high throughput screen of the growth sensitivity of the yeast
disruptome to 1144 chemicals allowed the grouping of deletion
strains according to growth fitness in the presence of chemical
or stress conditions (24). The mne1� strain exhibited a drug
sensitivity pattern similar to a number of mutants (cox17,
cox5b, cox23, mss51, and cox10) impaired in CcO biogenesis
suggesting a role for Mne1 in this process. Cells lacking Mne1
were found to have a specific impairment in CcO assembly.
Studies presented show that mne1� cells are defective in pro-
cessing of the aI5� COX1 intron and that this defect can be
partially suppressed by overexpression of Mrs1. Our results
identify Mne1 as a novel component of the splicing apparatus
responsible for processing of group I intron aI5�. This conclu-
sion is supported by previous preliminary observations (25).

EXPERIMENTAL PROCEDURES

Yeast Strains, Plasmids, and Media—S. cerevisiae strains
used in the study are listed in Table 1. A derivative of W303
containing the long form of COX1 with 7 introns consisting of
aI1, aI2, aI3, aI4, aI5�, aI5�, and aI5� was used (26). An intron-
less variant was obtained from Dr. Brigitte Meunier. Strain
BY4741 contains the same long COX1 genes with the seven
COX1 introns (27). Yeast cells were grown in YP (1% yeast
extract, 2% bactopeptone) or amino acid-supplemented SC

medium, containing 2% glucose, lactate, or glycerol as a carbon
source. Cloning procedures were performed in Escherichia coli
DH5� as described (28). The MNE1 open reading frame was
PCR amplified from the WT genomic DNA with or without
addition of a single Myc epitope tag using the primers as listed
in Table 2. The resulting constructs were cloned into pRS426
vector under control of theMET25 promoter and CYC1 termi-
nator (29). We also used pRS415-based pMRS1 plasmid con-
taining MRS1 ORF under its own promoter and terminator
(30). All constructs were verified by sequencing. A genomically
Myc-tagged variant of MNE1 was generated by homologous
recombination, inserting the 13xMyc tag 3� to the ORF using
the template plasmid pFA6a-13Myc-HIS3 (31). The lithium
acetate protocol (32) was used to transform the yeast cells.
Mitochondria Isolation and Procedures—Mitochondria were

isolated as described previously (33). Mitochondrial protein
concentrations were quantified by the Bradford assay. CcO and
succinate dehydrogenase/succinate cytochrome c reductase
(bc1) enzymatic activities were determined as described previ-
ously (34). The specific activities were normalized tomitochon-
drial protein levels and presented as a percentage of wild type.
Localization Studies—Cells were fractionated into cytosolic

and mitochondrial fractions as described (35). For selective
rupture of the outer membrane, mitochondria were sonicated
(3� 30 swith 50%duty cycle) in hypotonic buffer (50mMNaCl,
20 mM HEPES, pH 7.4). The resulting mixtures were fraction-
ated at 165,000 � g for 1 h at 2 °C. Alkaline extraction using 0.1
M Na2CO3, pH 11.5, was performed as described (36). Protein-
ase K treatment of isolatedmitochondria was done as described
previously (37).
Blue Native Gel Electrophoresis (BN-PAGE)—BN-PAGE was

performed as described (38). Clarified mitochondrial lysates
were run on a continuous 5–13% gradient gel. For RNase or
DNase treatment experiments, lysates were treated with the
indicated amounts of RNase A or RNase-free TURBO-DNase

TABLE 1
Yeast strains used in this work

Strain Genotype Reference

W303 MAT� ade2–1 his3–1,15 leu2–3,112 trp1–1 ura3–1 26
W303-1B MAT� ade2–1 his3–1,15 leu2–3,112 trp1–1 ura3–1 ��i� B. Meunier
W303mne1� MAT� ade2–1 his3–1,15 leu2–3,112 trp1–1 ura3–1 mne1�::CaURA3 This study
W303-1Bmne1� MAT� ade2–1 his3–1,15 leu2–3,112 trp1–1 ura3–1 ��i� mne1�::HIS3MX6 This study
BY4741 MATa his3�1 leu2�0 met15�0 ura3�0 Invitrogen
BY4741 ade2� MATa his3�1 leu2�0 met15�0 ura3�0 ade2�::URA3 30
BY4741 ade2� mrs1� MATa his3�1 leu2�0 met15�0 ura3�0 ade2�::URA3 mrs1�::kanMX4 30
BY4741 ade2� mss18� MATa his3�1 leu2�0 met15�0 ura3�0 ade2�::URA3 mss18�::kanMX4 30
BY4741 ade2� pet54� MATa his3�1 leu2�0 met15�0 ura3�0 ade2�::URA3 pet54�::kanMX4 30
BY4741 ade2� mne1� MATa his3�1 leu2�0 met15�0 ura3�0 ade2�::URA3 mne1�::kanMX4 This study
BY4743 MATa/� his3�1/his3�1 leu2�0/leu2�0 met15�0/MET15 ura3�0/ura3�0 lys2�0/LYS2 Invitrogen
BY4743mne1� MATa/� his3�1/his�31 leu2�0/leu2�0 met15�0/MET15 ura3�0/ura3�0 lys2�0/LYS2 mne1�::kanMX4/

mne1�::kanMX4
Invitrogen

NB40–36A MAT� lys2 leu2–3,112 arg8�::hisG ura3–52 45
cox1�::ARG8m MATa lys2 leu2–3,112 arg8�::hisG ura3–52 �cox1�::ARG8m� 45
cox1�::ARG8m mne1� MATa lys2 leu2–3,112 arg8�::hisG ura3–52 �cox1�::ARG8m� mne1�::URA3 This study
DTY833 MATa ade1� arg4� aro2� his7� lys5� ura2�
DY5113 MATa ade2–1 his3–1,15 leu2–3,112 trp1� ura3–1
MNE1-13Myc MATa ade2–1 his3–1,15 leu2–3,112 trp1� ura3–1 MNE1-13Myc::HIS3MX6 This study
MNE1-13Myc (�i) MATa ade2–1 his3–1,15 leu2–3,112 trp1� ura3–1 ��i� MNE1-13Myc::HIS3MX6 This study
MNE1-13Myc rho0 MATa ade2–1 his3–1,15 leu2–3,112 trp1� ura3–1 MNE1-13Myc::HIS3MX6 �rho0� This study
MSS51-13Myc COA1-3HA MATa ade2–1 his3–1,15 leu2–3,112 trp1 ura3–1 COA1-3HA::TRP1 MSS51-13Myc::HIS3MX6 42
MSS51-13Mycmne1� MATa ade2–1 his3–1,15 leu2–3,112 trp1 ura3–1 COA1-3HA::TRP1 MSS51-13Myc::HIS3MX6 mne1�::CaURA3 This study
COA1-13Myc MATa ade2–1 his3–1,15 leu2–3,112 trp1� ura3–1 COA1-13Myc::HIS3MX6 42
COA1-13Mycmne1� MATa ade2–1 his3–1,15 leu2–3,112 trp1� ura3–1 COA1-13Myc::HIS3MX6 mne1�::TRP1 This study
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(Ambion). Separated protein complexes were transferred onto
PVDF membrane (Bio-Rad) and analyzed by standard
immunoblotting.
In Vivo Labeling of Mitochondrial Translation Products—

The cells were pre-grown overnight in either complete or sup-
plemented SC medium containing 2% raffinose or galactose,
reinoculated, and grown to an A600 of 0.8. The labeling, prepa-
ration, and separation of the samples by SDS-PAGE were done
as described previously (39). Radiolabeled proteins were visu-
alized by autoradiography.
Mitochondrial RNA Isolation and Procedures—Cells were

grown overnight in SC medium and harvested by centrifuga-
tion at 3,500 � g for 5 min. Collected cells were washed with
diethyl pyrocarbonate (DEPC)-treated autoclaved distilled
water and resuspended in ice-cold DEPC water-based STE
buffer (0.65 M sorbitol, 20 mM Tris-HCl, pH 7.2, 1 mM EDTA)
with 1 mM PMSF. Cold sterile glass beads (0.2–0.45 mm) were
added to the cell suspension and the cells were broken by exten-
sive vortexing for 5min. After sedimentation of the glass beads,
respective supernatants were placed into new tubes and the
beadswerewashedwith an equal volumeof ice-cold STEbuffer.
Upon pooling of the supernatants, intact cells and cell debris
were removed by a short centrifugation step at 4,000� g at 4 °C
for 3 min. The cleared extracts were fractionated for 15 min at
20,000 � g (4 °C) to pellet mitochondria, which were subse-
quently used for RNA isolation. Mitochondria were resus-
pended in 650 �l of sterile TES buffer (10mMTris-HCl, pH 7.5,
10 mM EDTA, pH 8.0, 0.5% SDS, DEPC-treated), mixed with
the equal volume of acidic phenol, pH 4.5, and incubated for 60
min at 65 °C with careful vortexing every 20min. Following the
incubation, mixtures were cooled on ice for 2 min and centri-
fuged for 5 min at 11,750 � g at room temperature. The upper
layer of each respective supernatant was mixed with 0.4 ml of
chloroform and spun down for 5 min at 11,750 � g at RT. RNA
was precipitated from the obtained supernatants upon the

addition of 50 �l of 3 MNaAc, pH 5.2 (DEPC-treated), followed
by addition of 0.9 ml of molecular biology grade absolute etha-
nol and centrifugation for 10 min at 16,000 � g at 4 °C. The
resulting pellet was washed with 70% ethanol, air-dried, and
resuspended in RNase-free water (Ambion). Isolated mito-
chondrial RNAs were treated with the DNA-free kit (Ambion)
as described by the manufacturer. Reverse transcription-poly-
merase chain reaction (RT-PCR)was performedusing theOne-
step RT-PCR kit from Qiagen, using 350 ng of RNA as a tem-
plate. Primers used are shown in Table 2.
RNA for Northern analysis was isolated as described (40)

from S. cerevisiaeW303WT andmne1� strains grown at 30 °C
in 50 ml of YP with 2% raffinose to A600 � 0.8–1.0. Northern
blot analysis of COX1 introns was performed as previously
described (41) with the following exception: normalized RNA
samples equivalent to 10�g were glyoxylated and run on a 1.2%
agarose gel with RNA-grade 1� TAE buffer (40 mM Tris ace-
tate, 1 mM EDTA), pH 8, at RT. The 5�-end labeled DNA oligo-
nucleotide probes used for hybridization are listed in Table 2.
To assess the aI5� splicing defect, we used an RNase protection
assay described previously (30).
Immunoprecipitations and ImmunoblotAnalysis—Immuno-

precipitations of Mne1-Myc were performed essentially as
described (42) using anti-Myc agarose-coupled beads (Santa
Cruz Biotechnology), except that DEPC-treated, sterile water
and RNase inhibitor (RNasin Plus, Promega) were used. For
immunoblotting, mitochondrial or cytosolic protein was
loaded onto a 12%polyacrylamide gel, separated by SDS-PAGE,
and transferred onto a nitrocellulose membrane. Membranes
were decorated with the indicated primary antibodies and visu-
alized with ECL reagents (Pierce), following incubation with
horseradish peroxidase-conjugated secondary antibodies or
with the Odyssey Infrared Imaging System (LI-COR Biosci-
ences) when fluorescent secondary antibodies were used. Anti-
Myc antibody was obtained from Roche Diagnostics. Antibod-

TABLE 2
Oligonucleotides used in this work

Product Position Oligonucleotide (5� to 3�)

MNE1 Forward TATTTAGGATCCATGAAGTTACTTTTTAAAAGATATTCGTCT
Reverse TATTTACTCGAGTTATTTTTGTTGCATTTGCTTAGATCTTAT

MNE1-Myc Forward TATTTAGGATCCATGAAGTTACTTTTTAAAAGATATTCGTCT
Reverse TATTTACTCGAGCTACAAGTCCTCTTCAGAAATGAGCTTTTGCTCGAGTTTTTGTTGCATTTGCTTAGA

mne1�::HIS3MX6 cassette Forward CGGCGAGAAAAAATGATAGTAGTGTGCCAAGAAGAATATGCGGATCCCCGGGTTAATTAA
Reverse CGGCAAATTTTACATATAATCATTATTTTTGTTGCATTTGCGAATTCGAGCTCGTTTAAAC

MNE1-13Myc::HIS3MX6 cassette Forward CTATTTTCTTACATAAGATCTAAGCAAATGCAACAAAAACGGATCCCCGGGTTAATTAA
Reverse GAGTCTGATATCACTTTATAGAATGTAAACGGCAAATTTTACGAATTCGAGCTCGTTTAAAC

COX2 exon fragment Forward GATTCGTTGTAACAGCTGCTGATG
Reverse GACCTGTCCCACACAACTCAG

COX1 E5�-E5� Forward GCTCTAATCCATGGTGGTTCAATTAG
Reverse GAAAATGTCCCACCACGTAGTAAG

COX1 E5�-aI5� fragment Forward GCTCTAATCCATGGTGGTTCAATTAG
Reverse AATAATTATAAGAGTTTCCCCGTTAGC

COX1 aI5�-E5� fragment Forward AAGAGATTATAAATCTGGTGCTACAGC
Reverse GAAAATGTCCCACCACGTAGTAAG

COX1 aI5�-pre-mRNA probe Forward AATTAACCCTCACTAAAGGGAAAGCTTAAGAGTAAAATTCTTAAAGTG
Reverse AATACGACTCACTATAGGGCGTCGACAAAATGTCCCACCACGTAGTAAGTC

COX1 E6 probe GAATAATGATAATAGTGCAATGAATGAACC
21S rRNA exon probe CAACATCAACCTGTTCGATCG
COX1 aI1 probe GTTTCTAATGTTGTACCTGGAG
COX1 aI2 probe GAATAAACAGAGATATGTTTATC
COX1 aI3 probe GCTAAATAAGGTCCCAACTTATC
COX1 aI4 probe CCATCACCATCAATTAATCCAGC
COX1 aI5� probe TCTATTTGATCTTGGATAAATATC
COX1 aI5� probe CCATCTCCTTCAAATAATCC
COX1 aI5� probe GGTTTATTCTGTTTTATC
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ies to CcO subunits Cox1, Cox2, and Cox3 were obtained from
Mitosciences, and antisera to the mitochondrial outer mem-
brane porin and cytosolic phosphoglycerol kinase (Pgk1) were
from Invitrogen andMolecular Probes, respectively. Anti-Sod2
was a gift from Dr. Val Culotta. Dr. Alex Tzagoloff provided
Atp2 (F1) antiserum. Dr. Bernard Trumpower provided anti-
Rip1 and anti-Cyt1.
Miscellaneous—The oxygen consumption of cells grown to

stationary phasewas determined using a 5300ABiologicalOxy-
genMonitor (Yellow Springs Instrument Co.). The rate of oxy-
gen consumption presented as a percentage of wild type was
calculated from the linear response (43).

RESULTS

Mne1 Is Required for Normal Respiration—MNE1 was dis-
rupted in two yeast genetic backgrounds, W303 and BY4743.
The disruptants were found to propagate normally on glucose-
containing growthmedium but exhibited a growth impairment
on medium containing glycerol and lactate as carbon sources
(Fig. 1A). The growth defect was slightly exacerbated at 37 °C.
As mentioned, a high throughput drug sensitivity screen re-
vealed a pattern of drug inhibition of mne1� cells resembling
that of mutants impaired in CcO biogenesis suggesting a role
for Mne1 in this process (24). Therefore, we investigated CcO
biogenesis in yeast cells lacking Mne1 in both genetic back-

FIGURE 1. Deletion of Mne1 results in a CcO-specific respiratory defect. A, respiratory growth of mne1� strains. Mutant and the isogenic wild-type (WT) cells
were pre-grown in complete (YP) or synthetic (SC) liquid medium, serially diluted, and spotted onto the respective plates containing 2% glucose or glycerol/
lactate as a carbon source. Pictures of the plates were taken after 4 and 7 days of incubation at 30 or 37 °C. B, CcO and SDH/bc1 activities from the mne1� and
corresponding WT mitochondria, normalized to total protein. Enzymatic activities are shown as a percentage of wild-type specific activity, error bars indicate
S.D. (n � 3). C, steady-state levels of core CcO subunits (Cox1, Cox2, and Cox3) and Rip1 were analyzed by immunoblotting 20 �g of mitochondria isolated from
the indicated WT and mne1� strains. The mitochondrial outer membrane porin served as a loading control. D, BN-PAGE analysis of the respiratory complexes
in WT and mne1� mitochondria. Isolated organelles (75 �g) were solubilized in a lysis buffer containing 1% digitonin. Protein complexes were separated on the
continuous 5–13% gradient gel under native conditions. Western blotting with antibodies against Cox2, Cyt1, and Atp2 (anti-F1) was used to assess the
distribution of respiratory complexes.
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grounds and found them to have attenuated CcO activity but
bc1 activity (Complex III) was unaffected in W303 cells (Fig.
1B). Consistent with attenuated CcO activity, steady-state lev-
els of the threemitochondrially encoded subunits Cox1–3were
reduced in mne1� cells with Cox1 levels being most markedly
depleted (Fig. 1C). Rip1 levels reporting on the bc1 complex
were slightly attenuated as was the outer membrane protein
Por1. BN-PAGE of digitonin-solubilized mitochondria was
carried out to visualize respiratory complexes (Fig. 1D). The
monomeric and dimeric forms of ATP synthase (Complex V)
were unaffected inmne1� cells, but CcO supercomplexes were
markedly impaired as reported by the Cox2 subunit immuno-
blot. Cells lackingMne1mainly have the dimericComplex III in
both backgrounds. Thus, mne1� cells have a specific defect in
CcO.
Mne1 Is a Mitochondrial Matrix Protein—To confirm that

Mne1 is a mitochondrial protein, MNE1 was chromosomally
tagged with a Myc epitope tag to permit visualization of the
Mne1 protein. The Myc-tagged Mne1 was expressed and
equally functional to the untagged Mne1 protein (Fig. 2A).
Mne1-Myc was found to be associated with gradient-purified
yeast mitochondria with no apparent localization in the cyto-
plasm (Fig. 2C). Sonication of purified mitochondria to sepa-
rate membranes from the soluble fraction revealed the pres-

ence of Mne1-Myc in both fractions with an enrichment in the
membrane-associated fraction (Fig. 2D). Incubation of mito-
chondria with sodium carbonate resulted in solubilization of
Mne1 suggesting that Mne1 is only loosely associated with the
membrane fraction. To confirm the mitochondrial subcom-
partmentalization of Mne1, protease protection assays were
carried out using proteinase K susceptibility (Fig. 2E). Mne1
was protected against the addition of proteinase K in intact
mitochondrial as well as in mitochondria with outer mem-
branes permeabilized by hypotonic lysis. The intermembrane
space protein Cyb2 was degraded after hypotonic swelling but
not the matrix-localized Sod2 or Mne1-Myc. However, the
addition of dodecyl maltoside resulted in digestion of Mne1-
Myc by proteinase K. These studies are consistent with Mne1
residing within the matrix compartment and being loosely
associated with the inner membrane. The tagged Mne1 is pre-
dicted to have a mass of �90 kDa, but BN-PAGE analysis of
digitonin-solubilized mitochondria revealed that Mne1-Myc
fractionates as a large complex in excess of 200 kDa as well as a
smaller, less apparent complex of �140 kDa (Fig. 2F).
Lack of Mne1 Affects Cox1 Transcript Processing—Mne1 is

thus found to be amitochondrial matrix protein that influences
CcO biogenesis.Mutations in numerous nuclear-encoded CcO
assembly factors lead to attenuated Cox1 synthesis due to

FIGURE 2. Mne1 is a soluble matrix protein associated with mitochondrial inner membrane. A, respiratory growth of mne1� cells complemented with the
vector-borne MNE1 and cells with chromosomally tagged Mne1. Cells were grown and tested as in E. B, whole cell lysates of untagged and MNE1::Myc strains
were analyzed by SDS-PAGE and Western blot with anti-Myc and anti-porin. C, immunoblot of mitochondria (Mito.) and the post-mitochondrial fraction (Cyto.)
purified from the MNE1::Myc strain. Anti-Myc antibodies have been used to detect tagged Mne1. Phosphoglycerol kinase (Pgk1), a cytosolic marker and Porin,
a mitochondrial outer membrane protein were used to verify fractionations. D, isolated mitochondria (50 �g) were sonicated in 20 mM HEPES (pH 7.4) and 50
mM NaCl or incubated on ice for 30 min with 0.1 M sodium bicarbonate (pH 11.5). 2 mM phenylmethylsulfonyl fluoride was added in both cases. The soluble and
pellet fractions were separated by centrifugation at 165,000 � g for 1 h, and analyzed by Western blot. Soluble matrix protein Sod2 and integral membrane
protein Cox2 were detected with the respective antibodies. M, total mitochondria; S, supernatant; P, pellet. E, intact or osmotically swollen mitochondria were
incubated with or without 0.1 mg/ml of proteinase K (Prot. K) for 30 min on ice. A combination of detergent and proteinase K treatment was used to exclude
the possibility that Mne1-Myc is a proteinase-resistant protein. Following centrifugation, the treated organelles were separated by SDS-PAGE and analyzed by
immunoblotting with anti-Myc, anti-Cyb2, and anti-Sod2. F, mitochondria (50 �g) isolated from untagged or MNE1::Myc cells were solubilized with 1%
digitonin and analyzed by BN-PAGE as described in the legend to Fig. 1D.
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sequestration of the COX1 translation activator Mss51 in a
stalled assembly intermediate (44). To assess whether mne1�
cells exhibited a defect in translation of Cox1, a mitochondrial
protein translation assay was conducted in which cells were
treated with [35S]methionine in the presence of cycloheximide
to inhibit protein synthesis in the cytoplasm. Only mitochon-
drial translation products can be synthesized after cyclohexi-
mide treatment. Cells lackingMne1 showed normal labeling of
certain mitochondrial proteins, but marked attenuation in

Cox1 labeling in the initial 15-min pulse as well as the subse-
quent 60-min chase period (Fig. 3A, left panels). During the
chase period the labeled Cox2 and Cox3molecules diminished,
as they are unstable in the absence of Cox1 (39).
The dramatic attenuation in Cox1 labeling in mne1� cells

may arise from impaired translational initiation. Sequestration
of Mss51 within early Cox1 assembly intermediates was ruled
out, because overexpression of MSS51 failed to restore Cox1
synthesis inmne1� cells (data not shown). To assess the status

FIGURE 3. The absence of Mne1 affects early steps of Cox1 biogenesis in the strains containing mitochondrial introns. A, in vivo labeling of mitochondrial
translation products in WT and mne1� cells with or without ([�i]) mitochondrial introns. Cells were pulsed for 15 min with [35S]methionine at 30 °C. The reaction
was stopped by addition of cold methionine; following a 60-min chase at 30 °C samples were subjected to SDS-PAGE and analyzed by autoradiography.
B, MNE1 was deleted in the arg8� strain with ectopic ARG8 replacing the COX1 codons (cox1�::ARG8m). The cells were grown in complete synthetic medium
containing 2% glucose and 0.2� arginine (4 mg/liter), serially diluted, and spotted on glucose-containing SC with (�Arg) or without (	Arg) 1� arginine (20
mg/liter) and SC containing 2% glycerol/lactate. The plates were incubated at 30 °C for 2 (glucose plates) or 4 days (glycerol plates). The arg4 mutant strain was
used as a control. C, BN-PAGE analysis of Cox1 early assembly intermediates. Mitochondria (30 to 50 �g) purified from the WT and mne1� strains containing a
13xMyc epitope-tagged version of MSS51 or COA1 were analyzed by native electrophoresis and immunoblot with anti-Myc antibodies. The monomeric form
of complex V that served as a loading control was visualized with anti-F1 serum. D, steady-state levels of the indicated proteins in WT and mne1� mitochondria
assessed by SDS-PAGE. The outer membrane protein porin, visualized by the respective antibody was used as a loading control. E, respiratory growth of mne1�
strains with and without mitochondrial introns. Cells were handled as described in the legend to Fig. 1A, except that plates were incubated at 30 °C for 2
(glucose plates) or 4 days (glycerol plates). F, oxygen consumption by mne1� cells with or without ([�i]) mitochondrial introns. Cells were grown overnight in
liquid complete medium with 1% glucose and oxygen consumption was measured. The results are shown as a percentage of WT oxygen consumption and
represent the averages of three independent experiments. Error bars indicate S.D.
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of expression at the COX1 locus in mne1� cells, we used an
Arg8 reporter strain constructed by Fox and co-workers (45).
Arg8 is encoded by a nuclear gene and is imported to the mito-
chondrial matrix where it participates in the biosynthesis of
arginine. The reporter strain, constructed in an arg8� back-
ground, contained the ARG8 gene in place of mtDNA COX1
ORF (cox1�::ARG8) such that translation of Arg8 is under the
control of the translational activators of Cox1 (45). The growth
of this strain in medium lacking arginine indicates the mito-
chondrial translation of ARG8 mRNA. Deletion of MNE1 in
this strain did not produce arginine auxotrophy, implying that
translation occurred normally at theCOX1 locus in the mutant
cells (Fig. 3B). As expected, no growth of these strains occurred
on glycerol as the Cox1 ORF was replaced with Arg8.
Newly synthesized Cox1 readily associates with the Mss51

translational activator as the initial Cox1 assembly intermedi-
ate (45, 46). Formation of the �440 kDa Mss51 complex con-
taining Cox1, Cox14, and Ssc1 correlates with Cox1 translation
and early assembly (46). The presence of the high mass Mss51
complex was assessed in mne1� cells containing a chromo-
somally Myc-tagged Mss51. This complex was not present in
mne1� cells, although smallerMss51 complexes were apparent
and these correlate with the translational activator function of
Mss51 (46) (Fig. 3C). Similarly, a downstream Cox1 assembly
complex involving Coa1 was markedly attenuated in mne1�
cells.
The lack of theMss51 complex containing newly synthesized

Cox1 and thewild-type translation ofARG8 expressed from the
COX1 locus led us to consider COX1 mRNA transcript pro-
cessing. The involvement of numerous accessory factors in
intron splicing reactionsmotivated us to deleteMNE1 in a yeast
strain lacking any mitochondrial introns. Previous work with
mutants lacking the intron-splicing factors Cox24 or Mss18
showed partial restoration of respiratory function with intron-
less mtDNA (16, 22). Anmne1� derivative within an intronless
variant ofW303 lacked the respiratory growth phenotype char-
acteristic ofmne1� in the intron-containing W303 strain (Fig.
3E). Labelingmitochondrial proteins in the [35S]-labeled trans-
lation assay showed normal Cox1 labeling in the pulse and no
diminution during the chase phase of the reaction (Fig. 3A).
Consistent with these results, oxygen consumption (Fig. 3F)
and CcO activity were at WT levels. Thus, the growth impair-
ment observed inmne1� cells is dependent on the presence of
introns in the mitochondrial genome.
Mne1 Functions in aI5� Intron Processing—Northern analy-

sis was carried out with total mitochondrial RNA isolated from
W303 WT and mne1� strains harboring a COX1 with seven
confirmedmtDNA introns (Fig. 4). 5�-End labeled probes com-
plementary toCOX1 exon 6 or to each intron were used for the
analyses. Hybridization with the COX1 exon 6 probe shows a
2.2-kb mature COX1 mRNA in the WT strain (lane 1). This
band is greatly diminished in mne1� cells where instead two
larger bands of �3.8 and 6.3 kb are apparent (lane 2, transcript
sizes are indicated to the right of each panel in Fig. 4). Intron-
specific probes for the three COX1 group II introns show that
splicing of the aI1, aI2, and aI5� introns is not affected in the
absence of Mne1 (lanes 4, 6, and 16). The spliced aI3, aI4, and
aI5� introns are not visible in the Northern blots and appear to

be unstable in mitochondria (1.4 kb signals seen in lanes 7–10,
13, and 14 aremost likely cross-hybridization to the 15S rRNA).
Strong hybridization signals running just below the large ribo-
somal subunit band with the aI3 and aI4 intron probes are
detected in the WT strain and suggest that these bands repre-
sent the splicing intermediates containing the single introns
and exons. The same band is also visible with the exon probe in
the WT strain in lane 1. These aI3 and aI4 splicing intermedi-
ates are greatly reduced in the mne1� strain (lanes 8 and 10).
However, with both probeswe see a signal for a 6.3-kb band also
seen with the COX1 exon probe. This suggests that this band
contains more than one unspliced intron. The aI5� probe
shows little difference between the WT and mne1� cells with
the exception of a slightlymore intense band running below the
small ribosomal subunit rRNA, which is possibly the excised
aI5� intron (lane 12). The greatest difference in hybridization
signals is seen with the aI5� probe. The strongest signal (at 3.8
kb) in the mne1� strain comigrates with the large ribosomal
subunit band and most likely represents a COX1 RNA that has
all introns but aI5� removed. A second signal is detected for a
RNAof about 6.3 kb, which comigrates with the signals seen for
the aI3 and aI4 intron probes. This suggests that the 6.3-kb
band represents multiple RNA species that all contain the aI5�
intron and also aI3 and/or aI4.
One interpretation of these data is that aI5� intron splicing is

defective in mne1� cells. To test this prediction, RT-PCR and
nuclease protection assays were carried out. Probes generated

FIGURE 4. The absence of Mne1 attenuates splicing of the aI5� intron of
COX1. Northern blot analysis of COX1 introns in WT and mne1� cells. The
blots were hybridized with 32P-labeled probes complementary to COX1 exon
6, COX1 introns aI1, aI2, aI3, aI4, aI5�-�, and 21S rRNA exon 1. The schematic
(top) shows the molecular organization of the COX1 gene from the intron-
containing W303 strain and the size (in bp) of each intron is given below its
name. Group I introns are indicated by a black line and group II introns by a
gray line. Sizes for COX1 mRNA splice variants containing either single or mul-
tiple introns aI3, aI4, and/or aI5� are shown below. In the Northern panels we
have indicated the position of the large and small ribosomal rRNAs as LSU and
SSU, respectively, on the left. The numbers to the right of each Northern panel
indicate the approximate size of the indicated transcripts.
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to the E5� and E5� exons and two in the aI5� intron were used
for RT-PCR (Fig. 5A). RT-PCR with the two exonic probes
showed a fragment whose size is consistent with the spliced
RNA. The level of this spliced band is attenuated in mne1�
cells. RT-PCR using one of the two exon primers and an aI5�
primer showed a band enriched inmne1� cells from cells with
mtDNA containing introns but absent from intronless mne1�
cells. A control experiment verified the absence of contaminat-
ing DNA (data not shown). RT-PCR with COX2 primers
showed similar levels of product in the RNA from the three
strains. An RNase protection assay was performed using a
radiolabeled probe containing a complementary sequence to
the E5� exon and a 3� segment of the aI5� intron as shown in
Fig. 5B. Hybridization of this probe to RNA isolated from WT
or mne1� cells revealed primarily ligated exons in WT cells
but enhanced accumulation of the aI5�-containing COX1
pre-mRNA in mne1� cells. This accumulation is more appar-
ent in the band representing the incomplete digestion of the
pre-mRNA bound probe (marked by an asterisk) consistent
with unspliced aI5�. The intensity of this band is a sensitive
indicator of a change in the pre-mRNA level comparedwith the
intense band just below that represents the complete digestion
of the probe. The combination of Northern, RT-PCR, and
RNase protection assays documents an aI5� splicing defect in
mne1� cells.
A splicing defect of the aI5� intron is also seen in mrs1�,

pet54�, and mss18� cells (Fig. 5B). The abundance of the
unspliced intron is most prominent inmrs1� andmne1� cells.
Mne1 Forms a Riboprotein Complex—As mentioned, Mne1-

Myc forms a high mass complex seen on BN-PAGE. With a
defined role for Mne1 in splicing of the aI5� intron, we

addressed whether the BN-PAGE Mne1 complex contained
RNA. Digitonin-solubilized mitochondrial lysates were incu-
bated with RNase A or TURBO DNase prior to BN-PAGE.
DNase treatment failed to perturb the complexes, but protease-
free RNase treatment markedly attenuated the larger Mne1
complex (Fig. 6A). The Mne1-Myc complexes are not evident
in rhoo cells lackingmtDNA (Fig. 6B), althoughMne1 is equally
abundant by steady-state immunoblotting (Fig. 6C). To assess
whether the RNA associated with Mne1-Myc was from COX1,
Mne1-Myc was immunoprecipitated from digitonin-solubi-
lized mitochondria. RT-PCR was carried out on the resus-
pended precipitates. A positive RT-PCR signal was observed in
intron-containing Mne1-Myc mitochondria but not in intron-
less or untagged organelles using probes that amplify the aI5�
intron (Fig. 6D). Using COX1 exon probes, a positive RT-PCR
signal was observed in the immunoprecipitations from tagged
strains regardless of whether COX1 introns were present (Fig.
6D). No RT-PCR signal was observed using primers forCOB or
COX3 even using two additional PCR cycles (data not shown).
Likewise, BN-PAGE showed the same Mne1-Myc complex in
strains with and without introns (Fig. 6E). Thus, Mne1 associ-
ates with the COX1 mRNA and not exclusively with the aI5�
intron.
Respiratory Growth in mne1� Cells Is Partially Restored by

Overexpression of Mrs1—Previous work has shown that splic-
ing of the COX1 aI5� intron is dependent on Mrs1, Pet54,
Mss116,Mss18, and Suv3 (30). In an in vitro study on splicing of
the aI5� intron, Mrs1 was found to promote the first step in
splicing, whereasMss116 acts subsequently in the exon ligation
reaction (47). Because Mrs1 functions at an early step in aI5�
splicing, we sought to assess the functional relationship ofMrs1
and Mne1. The overexpression of MRS1 in mne1� cells par-
tially restores respiratory growth at 30 °C but not 37 °C (Fig. 7).
In contrast, overexpression ofMNE1 failed to suppress the res-
piratory growth defect of mrs1� cells (data not shown). The
lack of an effect of MNE1 overexpression in mrs1� cells is an
expected result, because Mrs1 is also important in the splicing
of the bI3 intron of COB. In contrast, mne1� cells show no
defect in function of the Cob-containing bc1 complex (Fig. 1B).

DISCUSSION

Mne1 is shown for the first time to be an important accessory
factor in the splicing of COX1 preRNA through the removal of
the aI5� intron. Mne1 does not appear to have a secondary
function in CcO biogenesis under standard laboratory growth
conditions, because the disruption ofMNE1 in cells containing
intronless mtDNA does not lead to a respiratory growth defect.
Mne1 contrasts therefore fromCox24 andMss18 that function
in splicing of COX1 introns aI2/aI3 and aI5�, respectively, in
that deletion strains lacking either Cox24 orMss18 remain par-
tially compromised without mtDNA introns (16, 22). Mne1 is a
mitochondrial inner membrane-associated, matrix-localized
protein. Mne1 is a constituent of a dynamic high molecular
weight ribonucleoprotein complex specifically containing
COX1 RNA. Splicing of aI5� is strongly compromised in
mne1� and mrs1� cells but less so in pet54� and mss18�
strains. The respiratory defect of mne1� cells is partially ame-
liorated by overexpression of Mrs1 that functions in the first

FIGURE 5. Mne1 contributes to the splicing of the aI5� intron. A, RT-PCR
analysis of aI5� splicing defect in mne1� cells with and without mitochondrial
introns. The schematic depicts primers used for RT-PCR. The upper panel
shows COX1 mRNA with (unspliced) and without (spliced) aI5� intron. The
bottom panel shows amplification of intronless COX2 mRNA that served as a
loading control. The PCR products were amplified with 16 cycle reactions.
B, RNase protection assay for aI5� splicing defect. Mitochondrial mRNAs were
isolated from WT, mrs1�, pet54�, mss18�, and mne1� cells. Schematics show
the identity of the protected fragments, COX1 pre-mRNA containing aI5�
intron and COX1 ligated exon. The asterisk depicts incomplete digestion of
the single-stranded portion of the pre-mRNA bound probe. M1 and M2, mark-
ers; probe, no RNase control; tRNA, no mitochondrial RNA control. The inset
shows rRNA levels that were used as a loading control.
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step of aI5� intron excision. Mne1 may function with Mrs1 in
an early step of aI5� processing. In vitro studies are required to
define the precise role of Mne1 in intron splicing.
Splicing of the aI5� intron is known to require at least 5

proteins including Mrs1, Mss18, Mss116, Pet54, and Suv3 (22,
48). Pet54 and Mss116 act downstream of Mrs1 and enhance
the efficiency of the exon ligation in the presence of Mrs1 (47).
The aI5� intron contains insertions that appear to disrupt the
RNAconformation. Thus, accessory factors are likely needed to
stabilize the RNA conformer responsible for the splicing reac-
tion. Pet54 may serve this role as it contains an RNA recogni-
tionmotif and has an additional function as a translational acti-
vator of COX3 in yeast (20, 49). Mss116 may also contribute to
the folding of the aI5� intron. Mss116 was shown recently to
stabilize the tertiary fold of the aI5� intron (14, 15). Mne1 may
also contribute to this stabilization function through its ability
to bindCOX1mRNA, although its interaction is not exclusively
via the aI5� intron. Mss116 has RNA helicase activity (50) and
is required for splicing of all group I and II mitochondrial
introns (12). The helicase Suv3 functions in the degradosome to
remove spliced introns and in the process release limiting splic-
ing factors, but has an additional role in aI5� processing (51).
The aI5� intron is large (1571 nucleotides) and contains an

ORF of 43 kDa. This intron is very inefficient in self-splicing,
although the first step occurs in vitro in the presence of high
magnesium concentrations. The addition of purified Mrs1
stimulates the first transesterification reaction but the second
reaction does not proceed (47). Mrs1 is believed to stabilize the
catalytically competent conformation of the RNA. Mrs1 is
known to have a stabilizing role for the bI3 COB RNA (52, 53).
Mss18 is believed to function in the initial cleavage of the 5�
exon-intron junction of aI5b (22). Exon ligation is stimulated by
the addition of Mss116 (47). The role of Mne1 in this splicing
reaction is unresolved and will be the subject of future investi-
gations. Mrs1 function is not totally impaired in mne1� cells,
because Mrs1 has an additional unimpaired role in processing
the bI3 intron of COB and the aI5� of COX1 (21).

FIGURE 6. Mne1 is a component of RNase-sensitive high molecular weight
complex containing aI5� intron. A, mitochondria (50 �g) purified from the
WT MNE1::Myc strain were lysed in 1% digitonin and clarified lysates were
treated with either 4 units of RNase A or Turbo-DNase, or left untreated. Fol-
lowing a 30-min incubation at room temperature, samples were subjected to
BN-PAGE and analyzed by Western blot with antibodies against Myc and F1.
B, distribution of Mne1-Myc containing complexes in MNE1::Myc strain with
(rho�) and without (rhoO) mitochondrial DNA analyzed by native electropho-
resis as described above. Anti-porin antibody was used to detect the respec-
tive complex that served as a loading control. C, steady-state levels of Mne1-
Myc in the strains with and without mitochondrial DNA were assessed by
immunoblotting as described in the legend to Fig. 2D. D, clarified lysates
obtained from 450 �g of untagged or MNE1::Myc mitochondria with and
without introns were immunoprecipitated with goat polyclonal anti-Myc
beads under RNA-protecting conditions. Half of the entire fraction of each

respective bead eluate was analyzed by immunoblotting with anti-Myc anti-
bodies; the second half served as a template for an RT-PCR analysis with the
primers to aI5� intron or ligated COX1 E5�-E6� exon. The PCR products were
amplified with 30 and 24 reaction cycles, respectively. E, BN-PAGE analysis of
the Mne1 complexes in mitochondria with and without introns was per-
formed as described above.

FIGURE 7. Overexpression of MRS1 suppresses the respiratory growth
defect of the cells lacking Mne1. Cells lacking Mne1 (W303 background)
transformed with an empty episomal vector or plasmid expressing MRS1
were grown in the supplemented synthetic liquid medium allowing plasmid
propagation. Cells were serially diluted and spotted onto the respective
plates containing 2% glucose or glycerol/lactate as a carbon source. Pictures
of the plates were taken after 2 (glucose plates) and 4 (glycerol plates) days of
incubation at 30 or 37 °C.
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Mne1 resembles Mrs1, Mss18, and Pet54 in having only a
limited distribution within fungal species. Mne1 and Mrs1 are
found in Saccharomyces cerevisiae and Candida glabrata.
MRS1 was recently identified as a gene that causes cytonuclear
incompatibility in post-zygotic hybrids of Saccharomyces
cerevisiae (Sc) and S. bayanus (54). Chromosomal replacement
hybrids of these two species revealed that Sc-MRS1 fails to
complement the respiratory defect of S. bayanus mrs1� cells.
COX1 mRNA is not translated in this hybrid likely due to the
inability of Sc-Mrs1 to splice aCOX1 intron in S. bayanus cells.
Mrs1 may have co-evolved with the COX1 introns. A related
co-evolution connection was reported previously (55).
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