
ARTICLE

�nature communications | 1:131 | DOI: 10.1038/ncomms1130 | www.nature.com/naturecommunications

© 2010 Macmillan Publishers Limited. All rights reserved.

Received 30 Mar 2010 | Accepted 3 Nov 2010 | Published 30 Nov 2010 DOI: 10.1038/ncomms1130

Accurately determining the distribution of rare variants is an important goal of human genetics, 
but resequencing of a sample large enough for this purpose has been unfeasible until now. 
Here, we applied Sanger sequencing of genomic PCR amplicons to resequence the diabetes-
associated genes KCNJ11 and HHEX in 13,715 people (10,422 European Americans and 3,293 
African Americans) and validated amplicons potentially harbouring rare variants using 454 
pyrosequencing. We observed far more variation (expected variant-site count ~578) than would 
have been predicted on the basis of earlier surveys, which could only capture the distribution of 
common variants. By comparison with earlier estimates based on common variants, our model 
shows a clear genetic signal of accelerating population growth, suggesting that humanity 
harbours a myriad of rare, deleterious variants, and that disease risk and the burden of disease 
in contemporary populations may be heavily influenced by the distribution of rare variants. 
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Models of human genetic diversity have an important role 
in both population genetics and genetic epidemiology, 
and considerable effort has been expended to character-

ize human genetic diversity by directly sequencing DNA from large 
population samples (for example, refs 1–4) and from the ongoing 
1000 Genomes and Personal Genomes projects5,6. To study the dis-
tribution and role of truly rare variants, it is necessary to sequence 
extremely large numbers of individuals, a project that has only 
recently become feasible.

An inherent problem with such a deep resequencing effort is dis-
tinguishing actual rare genetic variants from stochastic sequencing 
errors, which will occur at almost every site if enough individuals are 
resequenced. Regenotyping the sites of potential rare variants can 
mitigate this uncertainty; however, for large-scale studies, there are 
so many rare single-nucleotide polymorphism (SNP) calls that reg-
enotyping all of them becomes cost prohibitive. Another approach is 
to focus on variants for which the sequence evidence is very strong. 
This worked well for Sanger sequencing in the HapMap project7; 
however, crucially, the HapMap project had a much smaller sample 
size and targeted high-confidence calls of common SNPs for inclu-
sion on a SNP chip. False-negative SNP calls were a minor con-
cern for HapMap, whereas for a comprehensive catalogue of rare 
variation, it is important to minimize them. Therefore, to catalogue 
rare variants in a thorough and cost-effective manner, in this study 
we assign probabilities to genotype calls, explicitly estimating our  
uncertainty for each call. This approach differs from earlier meth-
ods8,9 by using the overlapping genotypes of the (Sanger) ENCODE 
and (SNP Chip) HapMap projects to train a Dirichlet mixture 
which relates genotypes to the distribution of phred probability 
scores. As we assign probabilities to all genotype calls, all analyses of 
the genotypes are also probabilistic, carrying the genotype uncertainty 
forward to quantitative estimates of the resulting uncertainty in our 
site-frequency spectrum (SFS) and population-genetic estimates.

In this study, we selected genes KCNJ11 and HHEX for rese-
quencing in 13,715 individuals. Such a large sample made some 
unique population-genetic calculations possible, such as a model of 
the growth rate of the European population over the last few thou-
sand years. Earlier population-genetic models of European popu-
lation growth10 based their estimates on higher-frequency variants 
than the bulk of variants ascertained in our study. By estimating the 
distribution of times at which a variant of a given contemporary 
frequency might have plausibly arisen in the ancestral population, 
we have been able to compare our growth-rate estimate with ear-
lier estimates. We were also able to separately estimate mutation 
rate and demographic parameters, which are normally confounded 
in equilibrium population genetics11, and estimate the mutation 
rate specific to each gene locus, using a population-genetic model 
similar to those described in Wakeley and Takahashi11 and Boyko 
et al.12 Our SFS showed far more rare variation than would have 
been predicted by classical models of population genetics, and our 
population genetics calculations established a clear genetic signal of 
a recent acceleration in European population growth.

Results
Sequencing assay. We resequenced these genes in 13,715 ARIC 
(Atherosclerosis Risk In Communities) individuals (3,293 African 
Americans and 10,422 individuals of European ancestry, Supple
mentary Methods). We applied Sanger sequencing of PCR products 
from genomic DNA from 50 amplicons covering the coding regions, 
introns and near flanking regions (see Supplementary Methods). We 
achieved excellent sequence coverage of the loci, and called variant 
sites in a way that assigned probability scores to each (see Methods). 
To quantify the rate of sequencing error, we validated potential rare 
variants by barcoding and pooling of the relevant PCR amplicons, 
and then submitted them en masse to 454 Roche sequencing. We 
validated 216 sites, the majority of which were high-probability 

variant calls in our initial genotyping. We used the results of this 
exercise to calibrate our genotype probabilities with their accuracy 
in calling rare variants (Supplementary Methods).

There are many variants with predicted biological impact: com-
bined over the two genes, there are 35 sites with a probability of at 
least 0.35 that the genotype varies in a way that would change the 
protein product; 19 of these are identified by PolyPhen13 as poten-
tially damaging, on the basis of cross-species sequence conserva-
tion at those sites. Figure 1 is a survey of the potentially damaging 
variants, and gives the probabilities that the variants are present 
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Figure 1 | Physical location of selected variants. For each variant shown, 
the figure shows the reference residue, the location, the variant residue 
and, in parentheses, the variant’s posterior probability. Variants identified 
by Polyphen13 as potentially damaging to the protein product are shown  
in magenta, others are in cyan. (a) Variants that change the protein  
structure in KCNJ11. (b) Variants in HHEX. No sufficiently homologous  
crystal structure for HHEX is available for homology modelling; hence,  
we show the gene structure instead. Blue regions depict exons. Green  
regions depict neighbouring intronic/untranslated regions (30 base pairs  
in both directions). Black bars indicate excluded intronic sequence.  
Non-coding variants are shown in grey, and show the reference allele,  
the build 36 coordinate on chromosome 10, the variant allele and the 
posterior probability of the variant.
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at the indicated sites. By contrast, dbSNP14 (http://www.ncbi.nlm.
nih.gov/projects/SNP/) reports just two and ten missense SNPs 
in HHEX and KCNJ11, respectively. Although a PolyPhen call of 
‘damaging’ is not definitive, this observation of rare variation at a 
large number of evolutionarily conserved sites is consistent with the 
expectation that rare, recent variants are more randomly distributed 
than common variants, because selection pressures have had less 
time to act on them. The KCNJ11 protein structure in Figure 1 was 
determined by homology modelling using SWISS-MODEL15, and 
covers residues 33–357 (out of a total of 390 residues). There were 
other protein-changing KCNJ1 variants at sites not covered by the 
model. Those identified by Polyphen as benign were V13M, R29H 
and L361F (posterior probabilities 1.00, 0.35 and 0.85, respectively). 
Those identified as potentially damaging were E23K, R31W, R371H, 
P374R and S385C (posterior probabilities 1.00, 0.36, 0.97, 0.96 and 
1.00, respectively). No sufficiently homologous crystal structure for 

HHEX is available for homology modelling; therefore, we show the 
gene structure instead (Fig. 1b).

Variant counts. The data reveal a vast number of rare variants. By 
drawing repeated samples from the genotype probabilities, counting 
the number of variants in each such sample and taking the average 
of these counts, we compute the expected number of variant sites in 
this sample to be 578.6 (s.d. = 7.6), with 316.9 in HHEX and 261.7  
in KCNJ11 (see descriptions of loci and count sampling in Methods). 
In sub-samples, the number of singleton-variant sites observed 
increases almost linearly with sample size (Fig. 2, which shows the 
counts for variants found in the European-American cohort).

The full spectra for both population groups are shown in Supple-
mentary Figure S1. Spectra for synonymous and non-synonymous 
variants are shown in Supplementary Figure S2. The spectra for non-
coding regions seem to be very similar to those in Figure 3, because 
non-coding sites dominate the class of sites in which nucleotide 
variation can have no impact on the protein residue sequence.

Population genetic calculations. We fit a model of exponential 
growth to the SFS (see Fig. 3) of our European-American sample 
(see Methods). To avoid complications from evolutionary selec-
tion pressures, such as those described in Ohta16, we restricted this  
analysis to sites at which no selection pressure is to be expected 
(Methods). The excess of rare variants in HHEX and KCNJ11 fits 
well with this model (Fig. 3), giving a mean posterior growth rate  
of 1.094 (that is, an increase of 9.4%) per generation (Fig. 4a).

The variance in this estimate is high; however, combined with 
earlier demographic estimates, our growth-rate estimate gives 
a clear genetic signal that over the last few millennia, the rate of 
population expansion has accelerated substantially. Because previ-
ous genomic studies of human population samples have been based 
on either resequencing a small group of individuals or on HapMap 
SNPs ascertained with a bias towards common variation, these 
have only captured the distribution of common variants (relative 
minor allele frequency ~0.05). As shown in Figure 4b, we find that 
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Figure 2 | Number of variants as a function of sample size. Counts of the 
number of observed segregating sites as a function of sample size for (a) 
HHEX and (b) KCNJ11. Solid blue line shows the total number of segregating 
sites. Red shows singletons, and yellow, brown and purple lines show the 
numbers of variants with relative minor allele frequency  <0.01, 0.01–0.05 
and more than 0.05, respectively. Roughness in these curves indicates 
stochasticity in the number of variants observed across multiple sample 
populations. Dashed lines show extrapolations of the expected number 
of segregating sites in larger samples according to Watterson’s classical 
estimate. In all cases, we found far more segregating sites at larger sample 
sizes than Watterson’s estimate would have predicted.
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Figure 3 | Site-frequency spectra. Site-frequency spectra in (a) HHEX 
and (b) KCNJ11 over ‘neutral sites’ (see Methods) in the two genes for 
the European sub-population. The x axis depicts the number of variants 
observed at a site; the y axis depicts the expected number of sites at which 
that many variants were seen. Green bars show the expected number of 
sites, as determined by sampling from the posterior genotypic distributions 
for each sampled individual, and error bars show the 99% confidence 
intervals from these samples. The black line shows the expected SFS 
spectrum, given the Wright–Fisher constant population size model and 
mutation rate Θ estimated by Watterson’s method (Equation 4.16,  
Hartl & Clark (2007)) The blue line shows the mean posterior SFS given 
the population model used to calculate the mutation rate in Figure 4. 
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most of the variants in this part of the frequency spectrum arose 
about 100–3,000 generations ago, or about 2,500–75,000 years ago, 
assuming 25 years per generation. In the exceptionally large sample 
resequenced here, singletons correspond to mutations that arose dur-
ing the last ~100 generations (Fig. 4b), and thus carry information 
about the demographics of Europe after its widespread adoption of 
agriculture17. Despite relying on shallower regenotyping data, ear-
lier studies10 also found a good fit to an exponential growth model, 
but with the substantially lower modal growth rate of 1.004 per gen-
eration. Our posterior distribution implies that the growth rate is 
bound below by 1.015; hence, by comparing our results with those 
of Gutenkunst et al.10, we conclude that Europe’s population growth 
rate accelerated substantially over the last 2,000 years, and our mean 
posterior growth-rate estimate implies an acceleration by more than 
an order of magnitude. Reliable census estimates of Europe’s pop-
ulation begin around 155018, and the growth rate in Europe since 
1600 has been ~11.5% per generation (estimated from Table 1.3 of 
Livi-Bacci19, assuming 25 years per generation). This suggests that 
in future, even deeper resequencing efforts will reveal an SFS with 
even greater proportions of rare and missense variants with potential 
consequences for human health.

Mutation rate estimates. Our model yields mean mutation rate 
estimates of ~4.9×10 − 8 and ~5.1×10 − 8 mutations per site per gener-
ation for HHEX and KCNJ11, respectively (Fig. 4c). These estimates 
are in approximate agreement with earlier genome-wide estimates 
based on human–chimpanzee divergence20 or de novo mutations in 
monogenic disorders21; however, our extremely deep sampling has 
enabled estimates local to each gene. These estimates will become 
more precise in the future using samples across larger sets of genes 
(which will make the demographic parameter estimates more pre-
cise) and larger groups of people (which will make all parameter 
estimates more precise).

Discussion
The majority of the variants we found are extremely rare and could 
only have been captured by the kind of exceptionally deep rese-
quencing described here (Figs 1 and 2). From the perspective of 
classical population genetics for stable populations, this abundance 
of rare variation is surprising: the expected number of singletons in 
our data is at least five times greater than the standard Wright–Fisher 
model22 would predict, and we find a nearly linear increase in the 
number of singletons as the sample size grows, whereas the classic 
theory for stable populations predicts that discovery of new variant 
sites will rapidly saturate as the sample size increases. This departure 
from the expected distribution suggests recent explosive human 
population growth, which has produced gene genealogies with a 
preponderance of short, recent genealogical branches. Assuming 
mutations are uniformly distributed over these genealogies, most 
mutations will have fallen on those very recent branches; thus, most 
variants will appear in only a few contemporary individuals. We 
thus predict that rare human genetic variation will tend to be more 
damaging than the common variants that have been the main focus 
of genetic studies up to this point. This is because in a sufficiently 
large sample, every human gene is likely to harbour many rare vari-
ants that have arisen so recently that selection can have influenced 
the frequencies of only the most severely deleterious alleles (Fig. 1). 
We also predict that all individuals carry multiple loss-of-function 
alleles in their genome21,23–26. Although these predictions must be 
tested in a future assay, a simple calculation assuming a conserva-
tive mutation rate of 1×10 − 9 still implies that the human genome of 
~3×109 sites is saturated with mutations arising just in the current 
human generation of 6.7×109 people. This supports the concerns 
raised by Lynch21 regarding burgeoning human ‘mutational load’ and  
bears on the ‘missing heritability’ still unexplained by genome-wide 
association studies27. This myriad of rare but potentially large-effect 
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Figure 4 | Mutation rate estimates. These estimates are based on 
drawing an average over 100 coalescent trees per grid point. (a) Estimated 
marginal posterior distribution over growth rates per generation during 
the exponential growth phase. Red error bar in the lower left-hand corner 
shows the 95% confidence interval of the growth rate in the European 
lineage estimated in Table 1 of Gutenkunst et al.,10 which is much lower, 
because the more common variants used in that estimate pertain to a more 
remote time in our history. (b) Estimated marginal posterior distributions 
on the time when variants of various relative minor allele frequencies arose 
in the population, relative to the logarithm of number of generations ago. 
Blue, green, red, cyan and magenta lines correspond to distributions for 
variants with relative minor allele frequency (RMAF) of 5×10 − 5, 5×10 − 4, 
5×10 − 3, 5×10 − 2 and 5×10 − 1, respectively. A RMAF of 5×10 − 5 corresponds 
to singletons in our data set, which, according to our model, mostly arose 
in the last 2,500 years. Most previous analyses have dealt with SNPs with 
a RMAF on the order of 5×10 − 2, corresponding to much earlier mutations. 
(c) Estimated marginal posterior distribution over mutation rates given 
the SFS in the two genes. Blue and green lines are for HHEX and KCNJ11, 
respectively.
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variants are embedded in diverse gene regulatory pathways, suggesting  
that considerable phenotypic differences may arise from low-frequency 
genetic architectures28,29. Knowledge of these variants may provide 
good individual phenotypic predictive ability within families, but 
their individual rarity in a population will mean that they will have 
very low population-attributable risk. This suggests that the best 
scale for inference about the genetics of complex disorders may be 
individuals with genomic regions of highly shared ancestry, including  
the family unit itself.

Methods
DNA sequencing. Using traditional Sanger fluorescent dideoxy methods on ABI 
3730 capillary sequencers, we resequenced HHEX and KCNJ11 in the ARIC cohort. 
Primers were designed to yield tiled amplicons across the full HHEX (7.9 kb) and 
KCNJ11 (5.5 kb) genes, including exons and introns and 1.2 kb upstream of the 
transcriptional start site, so that the coverage began for HHEX at global coordinate 
(build 36) 94438570 and ended at 94446433, and for KCNJ11 began at 17362320 
and ended at 17367885. See Supplementary Table S1 for primer sequences. The 
design was successful in providing coverage for more than 90% of each gene. Low-
quality sequence reads and amplicons that failed to map to the related amplicon in  
the human reference sequence were removed, leaving 50 amplicons in overlapping 
tiles across the genes. There was one region that failed to map in HHEX that 
spanned 442 bp, including 100 bp of the coding region. There were three such  
regions in KCNJ11: one spanning 43 bp, another spanning 59 bp and a third  
spanning 537 bp, none of which were in the coding regions. These mapping 
failures were likely caused by very high GC content interspersed with simple 
tandem repeats. Trace files have been deposited in the NCBI trace archive under 
center_name = “bcm” and center_project = “rhicf ”.

Genotype calling. Rare variants are a challenge to score by Sanger sequencing, 
because they are likely to be present in a population sample only as heterozygotes. 
Heterozygotes are difficult to distinguish from aberrations in Sanger sequencing 
data, because the PCR products in the sequencing gel come from both chromo-
somes; hence, heterozygous genotypes appear as a superposition of the two alleles. 
In particular, a heterozygous SNP resembles a ‘double peak’ in the Sanger trace file, 
but so do certain types of noise. The most popular program for analysing Sanger 
sequence data, phred30, was designed for haploid organisms, and explicitly treats 
such superposition as a sign of noisy data; hence, it cannot be used to directly 
identify heterozygous SNPs. Various approaches have been used to overcome 
this limitation by using only phred to highlight the double peaks, then analysing 
them separately. However, phred was carefully trained on a substantial corpus of 
sequencing data, although from haploid clones; therefore, we developed a way to 
make use of that previous training to evaluate each of the peaks by masking one al-
lele to render our diploid sequence haploid-like (detailed below). In our approach, 
we effectively separated the colour channels at double peaks to obtain separate 
phred calls for each possible nucleotide in such a way that, as much as possible, 
phred would interpret them as clean haploid peaks.

The distribution of phred software comes with the source code; hence, we were 
able to modify the way it responds to double peaks in the trace files: we pro-
grammed it to zero out each peak channel so that the other peak could be rescored 
using phred’s standard machinery without being confounded by the superposi-
tion. Phil Green and Brent Ewing have very generously agreed to permit the use 
and distribution of our patch to phred, and to continue providing the version of 
the source code to which it applies (version 0.020425.c.) Once modified, phred 
reports up to three scores for each of the peaks in a trace file: it always reports the 
standard phred score, and in the case of a double peak it potentially also reports 
the two scores obtained by zeroing out each of the peak channels. There is only one 
instance when these two extra scores are censored: it often happens that the domi-
nant channel for one peak ‘runs on’ into an overlap with the next peak, creating a 
double peak that has nothing to do with genetic variation. We programmed phred 
to ignore a double peak if it immediately follows a peak on the same channel  
as its minor peak, and the amplitude of the minor peak is  <20% of that of the 
major peak.

A number of individuals genotyped in the HapMap 3 project were also 
sequenced in the ENCODE project31, and we used this comparison data to train 
the priors in our model. We took the HapMap 3 genotypes as the gold standard, 
and at 830 sites with both HapMap 3 genotypes and Sanger sequence data we ran 
our modified phred. For each site with a given genotype g, as reported by HapMap 
3, we counted how many times each type of peak was observed in the ENCODE 
trace files at that site. Trace files from the reverse strand were associated with the 
complementary genotype. This gave us a set of per-site counts for types of peaks. 
We used these counts to train Dirichlet mixture priors Tg (on the types of peaks 
observed at a site with given genotype g) and Sgp (on the phred scores observed  
at a site with genotype g and peak type p) in much the same way as described in  
Sjölander et al.32, except that we considered priors with up to six mixture components 
and, for each number of mixture components, we sampled mixture weights and 
pseudocounts using Hamiltonian Markov Chain Monte Carlo33, using a flat hyperprior 

on the mixture weights and exponential distributions of mean 1 on the pseudo-
counts for each component. From among the six priors constructed this way (one 
for each possible number of mixture components), we chose the one with the 
highest total probability (that is, the probability of the data given the constructed 
prior multiplied by the probability of the prior given the hyperprior) and used that 
as Tg. Similarly, for each genotype g and peak type p, we constructed counts for the 
scores associated with them as follows: for every site where this genotype and peak 
type was observed, we counted the number of times each phred score was observed 
in people with that genotype and peak type at that site. We trained a mixture prior 
Sgp from these counts in the same way as we trained Tg.

We used this prior in a Markov Chain Monte Carlo series at each site that also 
accounted for the population-level genotype frequencies at the site, so that it takes 
stronger evidence to call rarer genotypes. The software application, SnppnS, is 
available as Supplementary Software or can be downloaded from http://micortex.
org/software.php.

Sampling of site-frequency spectra. Because we generate genotype probability 
distributions rather than categorical genotype calls, there is some uncertainty in 
the SFS for our genetic data. To generate Figure 3, we drew samples from the poste-
rior genotype distributions for every position, and used these categorical genotypes 
to generate an SFS. We repeated this sampling 1,000 times. The error bars in  
Figure 3 represent the 99% confidence intervals on the site counts for each bin. To 
show concordance with the predicted SFS from the population genetics calculation 
in the next section, the spectra in Figure 3 show the frequency distribution only 
for variants at the same set of ‘neutral’ sites used in that calculation: wobble sites 
or those at least 30 base pairs from a coding region. So that each site would come 
from a population of the same size, in the European (African)-American sample, 
we ignored all sites called in fewer than 10,000 (3,000) people. For sites called in 
more than 10,000 (3,000) people, we randomly sampled a group of 10,000 (3,000) 
and drew our counts from that.

Population genetics calculations. To minimize the complications of admixture, 
we restricted this analysis to the European-American sample. Our model thus has 
three parameters that we needed to search over: the mutation rate µ, the estimated 
population size at the start of ARIC, N, and the growth rate during the exponential 
phase r. We did a grid search over these parameters using the following values: µ: 
10 − 8 per site per generation, up to 9×10 − 8, in steps of 10 − 9; r: 1.01 per generation, 
up to 1.15 per generation in steps of 0.0025; and N: 2×105, up to 4×106, in steps  
of 105. Because we were comparing with the growth-rate estimate in Gutenkunst  
et al.,10 of 1.004 per generation, we also separately computed the following likeli-
hoods for r in the vicinity of that, and found them to be negligible.

We fit these parameters to the SFS from our genetic data. To avoid confounding 
by selection pressures, for this calculation we used an SFS restricted to either sites 
that were at least 30 base pairs from an exon or third-position sites in codons that 
could mutate to any nucleotide with no impact on the protein product. We also 
ignored all sites with genotype calls for fewer than 10,000 people. For sites called 
in more than 10,000 people, we computed their contributions to the SFS from 
random samples of 10,000 individuals. We were thus able to assume for this calcu-
lation that we had full sample data in exactly 10,000 people at all sites considered.

Our calculation is similar to those described in Wakeley and Takahashi11 and 
Boyko et al.,12 and is described in the Supplementary Methods. 
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