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Abstract Sepsis presents a major health care problem and
remains one of the leading causes of death within the intensive
care unit (ICU). Therapeutic approaches against severe sepsis
and septic shock focus on early identification. Adequate
source control, administration of antibiotics, preload optimi-
zation by fluid resuscitation and further hemodynamic
stabilisation using vasopressors whenever appropriate are
considered pivotal within the early—golden—hours of sepsis.
However, organ dysfunction develops frequently in and
represents a significant comorbidity of sepsis. A considerable
amount of patients with sepsis will show signs of severe
muscle wasting and/or ICU-acquired weakness (ICUAW),
which describes a frequently observed complication in
critically ill patients and refers to clinically weak ICU patients
in whom there is no plausible actiology other than critical
illness. Some authors consider ICUAW as neuromuscular
organ failure, caused by dysfunction of the motor unit, which
consists of peripheral nerve, neuromuscular junction and
skeletal muscle fibre. Electrophysiologic and/or biopsy
studies facilitate further subclassification of ICUAW as critical
illness myopathy, critical illness polyneuropathy or critical
illness myoneuropathy, their combination. ICUAW may
protract weaning from mechanical ventilation and impede

J. C. Schefold (><))

Department of Nephrology and Intensive Care Medicine,
Charité University Medicine,

Campus Virchow Klinikum, Augustenburger Platz 1,
13353 Berlin, Germany

e-mail: schefold@charite.de

J. Bierbrauer - S. Weber-Carstens

Department of Anaesthesiology and Operative Intensive Care
Medicine, Charité University Medicine,

Campus Virchow Klinikum and Campus Charité Mitte,
Berlin, Germany

rehabilitation measures, resulting in increased morbidity and
mortality. This review provides an insight on the available
literature on sepsis-mediated muscle wasting, ICUAW and
their potential pathomechanisms.
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1 Sepsis
1.1 Epidemiology and definition of sepsis

Sepsis is a leading cause of death in intensive care units
(ICU) [1-3]. In order to establish consensus definitions, the
terms systemic inflammatory response syndrome (SIRS),
sepsis, severe sepsis and septic shock have been proposed
[4-7]. These terms define gradual stages of disease severity
that correlate with mortality. Whereas SIRS defines a rather
unspecific inflammatory host response due to both infec-
tious and non-infectious origin, severe sepsis refers to a
proven systemic infection associated with acute organ
dysfunction. Criteria of septic shock are met once additional
volume-refractory hemodynamic failure occurs [4, 5].
Recently, there has been great effort in studying the
epidemiology of sepsis [2]. Data from the United States report
750,000 cases/year of severe sepsis [8] and an overall
mortality of 29% for 2001. A 9% annual increase of severe
sepsis incidence between 1977 and 2000 was reported [9].
Epidemiological trials from Germany indicate that 79,000
inhabitants (116/100,000) will suffer from sepsis each year
and an additional 75,000 inhabitants (110/100,000) will be
diagnosed with severe sepsis. Ninety-day mortality of severe
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sepsis amounts to 54%. With 60,000 sepsis-related deaths per
year in Germany, sepsis remains a leading cause of death and
a considerable burden for health care systems [10—12].

1.2 Fundamental clinical and pathophysiological
considerations in sepsis

Treatment of patients with sepsis should be implemented
according to international guidelines and recommendations,
e.g., as proposed by the Surviving Sepsis Campaign [4]. Early
identification and therapy initiation seem of pivotal impor-
tance and were shown to significantly improve patients’
prognoses. In general, guidelines for the treatment of severe
sepsis or septic shock aim to initiate early symptomatic organ
support therapies; e.g. early optimization of cardiac preload,
afterload and contractility in order to balance oxygen
delivery with oxygen demand influences survival rates in
sepsis [13]. Over the past years, several treatment approaches
have been associated with beneficial outcomes in large-scale,
mostly single-centre trials, including low-dose hydrocortisone
[14], glycemic control [15, 16] and recombinant activated
protein C [17]. Yet, these benefits could not be replicated by
confirmative studies [18-20].

Pathophysiologically, the first response to a severe
infection consists in the activation of antigen-presenting
immune cells. This occurs via pattern recognition receptors
[1, 21-23] and is accompanied by other immune mecha-
nisms such as cytokine liberation, endothelium and com-
plement activation, and release of oxygen radicals.
Cytokines (tumour-necrosis factor alpha (TNF-«), interleu-
kin (IL)-6 and IL-1) and complement factors (C3a and C5a)
may then act as key mediators during this stage of
inflammation [21]. Clinical signs of infection such as
leukocytosis, increased respiratory rate or acute organ
failure may then develop [1] and, as a protective measure,
the immune system coordinates an immunological and
endocrine counter-regulation which is mediated by up-
regulation of key anti-inflammatory cytokines (e.g. 1L-10,
tumour-growth factor-B) [7, 24-27]. This may lead to
prolonged hypo-inflammatory states (“immunoparalysis”)
[27], which have been linked to secondary/nosocomial
infection, prolonged ICU stay, chronic multiple organ
failure and an increased mortality [21-31]. Ongoing clinical
trials investigate measures of immunostimulation [28-30]
or removal of inhibitory factors [31] to reverse this
immunological condition.

Inflammation-mediated organ dysfunction represents a
detrimental comorbidity of sepsis. As sepsis is frequently
accompanied by short- and long-term affection of neuro-
muscular function, it has been postulated that the “motor
unit” presents another system affected by inflammation-
mediated multiple organ dysfunction: Sepsis is not only
associated with involuntary loss of muscle mass, which is
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frequently referred to as muscle wasting, but also severe
neuromuscular dysfunction resulting in “ICU-acquired
weakness” (ICUAW). Patients with acute respiratory
distress syndrome show a particularly high incidence for
ICU-acquired weakness [32].

2 Sepsis-induced muscle wasting and ICUAW:
an imbalance in protein metabolism

William Osler first commented on the “rapid loss of flesh”
that occurs with severe sepsis in 1892 [33]. Today, this
phenomenon remains a frequent complication of critical
illness—particularly sepsis—and is often referred to as
muscle wasting. However, because sepsis led to a fairly
rapid death in Osler’s days, the primary focus was rather
survival than sepsis-associated long-term complications.
Yet, once ICU and artificial organ support therapies are
available, more patients survive the initial stages of
systemic inflammation/sepsis and critical care specialists
are increasingly confronted with profound muscle weak-
ness, which is often accompanied by difficulties in weaning
from respiratory support. Sepsis-induced multiple organ
failure has been identified as one of the primary risk factors
for this major and frequent complication of critical illness
[34]. As a confusing number of various terminologies
referred to similar or identical clinical presentations of this
neuromuscular disorder, a recent round table conference
held in 2009 proposed the mutual term “ICUAW” [35].
Whereas ICUAW is usually accompanied by muscle
wasting, muscle wasting does not necessarily lead to
neuromuscular dysfunction, since overall muscle strength
depends both on total muscle mass and force generating
capacity (force per cross-sectional area), which is affected in
ICUAW but not necessarily in muscle wasting syndromes

[36] (Fig. 1).
2.1 Sepsis-associated muscle wasting

As mentioned above, muscle force capacity may remain
stable in muscle wasting syndromes [36]. Muscle wasting
can be triggered by other conditions than sepsis, including
disuse, denervation, fasting, cancer, cardiac failure and
renal dysfunction. As these conditions frequently coincide
with sepsis, systematic research of sepsis-specific muscle
wasting and ICUAW may be challenging in humans. This
seems especially the case as sepsis is often accompanied by
prolonged bedrest/immobilisation, application of sedatives,
acute or chronic organ dysfunction, malignancy as an
underlying disease, medication using glucocorticoids and
others.

An imbalance between muscle protein synthesis and
muscle protein degradation causing net loss of muscle mass
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Fig. 1 Risk factors involved in
muscle wasting and ICUAW.
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is considered to present the main mechanism of muscle
atrophy in muscle wasting and may result from decreased
protein synthesis and/or increased protein degradation [36]

(Fig. 1).
2.2 Decreased muscle protein synthesis during sepsis

Even though studies on sepsis-induced muscle protein
degradation received more attention, animal models of
sepsis clearly indicate that sepsis also decreases protein
synthesis in skeletal muscles [37] and preferentially inhibits
myofibrillar and sarcoplasmatic protein synthesis within
fast twitch muscles [38].

One central mechanism is decreased protein transla-
tion by lower amounts of active translation initiation
factor complex eIF4E/elF4G, possibly resulting from
decreased phosphorylation of elF4G and mammalian
target of rapamycin (mTOR) [37]. Interestingly, mTOR
activation presents an important downstream target of
anabolic insulin/insulin like growth factor 1 (IGF-1)
signalling, which may be impaired in sepsis since
decreased insulin sensitivity presents a frequently ob-
served complication of sepsis [39-44]. Further indirect
evidence for contribution of impaired insulin signalling to
decreased protein synthesis comes from the observation
that the proinflammatory cytokines IL-6 and TNF-o have
been linked to both insulin resistance [45, 46] and muscle
atrophy [47-50] and that local IGF-1 application prevents
sepsis-induced muscle atrophy [37], possibly by inhibition
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of sepsis-induced increases of muscle atrogin-1 and the
proinflammatory cytokine IL-6 [51]. IL-1 may lead to
decreased protein synthesis as well, as an animal model of
abdominal sepsis showed cytokine-dependent decreases of
phosphorylated elF4G that was primarily attributed to this
cytokine [52]. There is evidence that systemic cytokine
response in sepsis results in local amplification of
proinflammatory cytokines within muscle [36], possibly
aggravating decreased protein synthesis in skeletal muscle
during sepsis.

Nutritional aspects may contribute to decreased muscle
protein synthesis as well. Administration of the essential
branched chain amino acid leucine has been shown to
increase protein synthesis in rat skeletal muscles during
ageing, exercise or food-deprivation [53-56]. However,
under certain conditions including sepsis, the muscle may
be resistant to leucine-stimulated protein synthesis [37].
Although the exact mechanisms of sepsis-induced leucine
resistance remain to be elucidated, this phenomenon was
accompanied by an 80% reduction in the amount of active
elF4E/elF4G complex (besides other factors) and could be
completely reversed by the combination of TNF binding
protein and glucocorticoid receptor antagonist RU486 [57].
Exploring the underlying mechanism of sepsis-induced
resistance to leucine-stimulated protein synthesis may
contribute to a better understanding of the mechanisms
involved in sepsis-mediated reductions of active translation
initiation factor complexes, particularly the elF4E/elF4G
complex.
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2.3 Increased muscle protein degradation during sepsis

Data from studies in cultured cells, animals and humans
indicate an increase of sepsis-associated muscle protein
degradation by several mechanisms, including the ubiquitin
proteasome system (UPS) [58—61] and lysosomal systems
[50, 62-64]. Calcium-dependent non-lysosomal calpains
and pro-apoptotic pathways (caspases) have also been
associated with sepsis-induced muscle atrophy [66—68].1t
has been postulated that caspases and calpains are respon-
sible for the cleavage of myofibrillar proteins preceding
their proteasomal degradation [65—67] and that cleavage is
necessary as the proteasome cannot degrade intact myofibril-
lar proteins. Protein degradation by proteasomal and/or
lysosomal systems may not be sepsis-specific as various other
conditions associated with muscle wasting share similar or
identical biochemical and transcriptional pathways.

During muscle wasting, defective insulin signalling may
not only be involved in decreased muscle protein synthesis,
but also in increased muscle proteolysis, since mTOR
inhibits autophagy-induced lysosomal proteolysis [68].
mTOR activation is regulated by phosphorylated Akt,
another key downstream effector of insulin signalling.
Phosphorylated Akt leads to phosphorylation of FOXO3
transcription factors, which results in FOXO3 translocation
from nucleus to cytoplasm and a thereby decreased
transcription of atrophy gene atrogin-1 [69].

E3 ubiqitin ligases, such as atrogin-1 and muscle ring
finger protein 1 (MuRF-1), represent substrate specific
enzymes involved in the UPS that prevent unselective
degradation by the proteasome and have been shown to be
markedly induced during experimental atrophic conditions
[70, 71]. Whereas myosin heavy chain and other myofi-
brillar proteins including myosin binding proteins were
identified as MuRF-1 substrates [72, 73], the only atrogin-1
substrates identified so far include MyoD and translation
initiation factor elF3-f, which are both known to regulate
protein synthesis [74, 75]. It is therefore possible, that
atrogin-1 leads to muscle atrophy by selective breakdown
of key regulators of protein synthesis [76]. We emphasise
once more, that sepsis-mediated muscle wasting and ICU-
acquired weakness should not be used synonymously, as
ICUAW weakness represents its own entity, characterised
by additional factors.

3 ICUAW: clinical presentation, relevance, risk factors,
treatment options and subclassifications
3.1 General considerations on ICUAW

ICUAW presents a severe and frequent complication of
critical illness, confronting intensivists around the globe
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with various difficulties. It is believed that ICUAW can
affect more than half of all ICU patients [77]. This
substantial neuromuscular complication of critical illness
is associated with increased rates of morbidity and
mortality, substantially affecting both short- and long-term
clinical outcomes in septic patients [78—85]. By causing
prolongation of ICU stay and rehabilitation, ICUAW leads
to an increased risk of secondary complications and a
higher demand on already limited resources of health care
systems. ICUAW is further associated with decreases in
health-related quality of life (HRQOL) which may be
impaired for years after ICU discharge [85, 86]. Modern
critical care must therefore no longer solely focus on
survival, but particularly consider HRQOL after ICU
discharge.

3.2 Clinical presentation and diagnostic limitations
of ICUAW

ICUAW refers to the bedside diagnosis of pronounced
weakness in ICU patients without plausible aetiology other
than critical illness [35]. Whereas the patients’ history
usually reveal exposure to ICUAW-associated risk factors
(see below), physical examination of awake and coopera-
tive patients with typical ICUAW shows symmetric
weakness and decreased tone. This primarily affects the
lower limbs but may extend to tetraplegia in more severe
cases, explaining its prior terminology of acute quadriplegic
myopathy. Muscles innervated by cranial nerves are
normally—yet not necessarily—spared, while respiratory
muscle function is frequently abnormal. Deep tendon
reflexes may be normal, decreased or absent [35]. When-
ever suspecting ICUAW, it is fundamental to rule out
prolonged neuromuscular blockade (involvement of cranial
nerve-innervated muscles), pre-existing neuromuscular dys-
function and other conditions as alternative causes. Cur-
rently, ICUAW is frequently evidenced by difficulties in
weaning from mechanical ventilation or unexpected prob-
lems with mobilisation. However, as weaning from respi-
ratory support may not be initiated for several days or even
weeks, it seems important to consider possible ICUAW
before development of its full extent in order to prevent or
at least attenuate underlying pathology by minimising risk
factor exposure [34].

After all, earlier detection of ICUAW is possible and can
be obtained by assessment of voluntary maximum strength
in ICU patients, either by hand dynamometry or according
to the Medical Research Council (MRC)-score [35]. The
MRC-score grades manually tested strength from 0 (no
movement observed) to 5 (muscle contracts normally
against full resistance) in three functional muscle groups
of each extremity, with mean MRC-scores of <4 (antigrav-
ity strength) indicating ICUAW. It has shown good
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interobserver reliability in patients with Guillan—Barré
syndrome [87]. Values of <11-kg force for men and <7-kg
force for women at dominant-hand dynamometry have also
been described to identify ICU-acquired weakness in
previously healthy individuals [88]. Nevertheless—and in
spite of daily wake up calls, both approaches share one
major limitation—the requirement for patient cooperation
and consciousness, which may be inadequate due to
delirium resulting from sedation and/or septic encephalopathy.
Electrophysiologic testing offers an additional approach to
estimate neuromuscular dysfunction in unconscious patients
incapable of voluntary contraction. Moreover, electrophysio-
logic testing after direct muscle stimulation can be conducted
in unconscious/sedated patients and has been shown to predict
ICUAW with high sensitivity and specificity in mechanically
ventilated, sedated patients and differentiates between primary
nerve or muscle dysfunction [89]. However, as it requires
some expertise and certain devices to perform these measure-
ments, use of this technique is currently restricted to larger
facilities or experts.

3.3 Risk factors involved in ICUAW

While the exact molecular mechanisms contributing to
ICUAW remain to be elucidated, five central risk factors of
ICUAW have been repeatedly reported [34]. As there are
currently no specific therapies, minimising exposure to
these risk factors is crucial in order to prevent this
devastating neuromuscular complication. Possibly the most
important risk factor complex comprises conditions leading
to multiple organ failure, particularly severe sepsis and
septic shock. Some authors actually consider ICUAW an
additional organ failure following severe sepsis and septic
shock. The other four risk factors of ICUAW involve
muscle inactivity, disturbances of glucose metabolism
resulting in hyperglycaemia, administration of corticosteroids,
and use of neuromuscular blocking agents (Fig. 1).

3.4 Implications for minimising risk factor exposure
and treatment options

3.4.1 Sepsis

In addition to the optimum realisation of early goal-directed
sepsis therapy [13], there are a number of hypothetical
approaches targeting inflammation-mediated multiple organ
failure, such as reducing levels of distinct cytokines by
extracorporeal measures [31, 90-94] or restoring the immu-
nological equilibrium by pharmaceutical immunomodulation
[28-30]. However, the current literature on ICUAW has not
considered sepsis-induced affections in cellular immunity to
participate directly in the induction of neuromuscular
dysfunction.

3.4.2 Immobilisation

Schweickert and colleagues [95] recently reported that
patients undergoing an ambitious protocol of early and
determined mobilisation were more frequently able to get
out of bed, stand and occasionally walk with assistance
during mechanical ventilation whereas standard regimens
of physical therapy led to longer impairment of functional
status and recovery time. Besides, early mobilisation was
associated with a shorter duration of delirium. It is possible,
that additional electrical muscle stimulation (EMS) assists
in preventing ICUAW, since studies indicate that EMS
partially prevents muscle atrophy in critically ill patients
[96] and mitigates increased proteasome activation besides
stimulating insulin like growth factor in patients after major
abdominal surgery [97]. Preliminary data of our ongoing
trial on ICUAW prevention by daily EMS supports this, as
it indicates improvement of muscle membrane excitability
in critically ill patients at high risk for ICUAW (unpub-
lished data). Importantly, EMS can be initiated immediately
after ICU admission and could facilitate faster mobilisation
progress. Implementation of protocol-based sedation and
weaning measures may further reduce the incidence of
ICUAW and weanig failure (Fig. 2).

3.4.3 Intensive insulin therapy

Increased serum glucose levels are typical findings in
patients with severe sepsis and septic shock. Studies from
van den Berghe and colleages reported that intensive
insulin therapy (IIT) was associated with a lower incidence
of ICUAW [98, 99]. However, recent data from the NICE-
SUGAR trial demonstrates that 90-day mortality rate is
significantly lower in critically ill patients with liberal
glycemic control (serum glucose <180 mg/dl) vs. those
patients receiving IIT, the risk of severe hypoglycemia
being significantly higher in the IIT group [19, 20].
Although tight glycemic control as a general approach in
ICU patients is currently controversial, it seems reasonable
that protocol-based glycemic control targeting prevention of
excessive blood glucose levels and variability help reduce
the incidence of ICUAW.

3.4.4 Glucocorticoid exposure

Although de Jonghe et al. identified corticosteroid admin-
istration as the strongest predictor for ICU-acquired
weakness [100], data from a recent meta-analysis does not
indicate a clear relationship between systemic levels of
corticosteroids and myotoxic effects in patients with sepsis
[81]. Development of steroid induced myopathy [101, 102]
may be dependent on steroid doses applied, which is in line
with findings from our group, that do not indicate an
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Fig. 2 Suggested beneficial effects of electrical muscle stimulation
(EMS) with regard to muscle hypertrophy, atrophy, aerobic capacity,
membrane excitability and membrane translocation of GLUT4. EMS
may preserve membrane excitability. Membrane translocation of
GLUT#4 is regulated by IGF-1, AMPK, PGC-1« and its downstream
targets, which may all be affected by EMS. Atrophy gene expression
(MuRF-1, atrogin-1) increases upon desphosphorylation of FoxO3
trancription factors, which is inhibited by downstream insulin

association between low-dose hydrocortisone application
and impaired muscle membrane excitability—one of the
key features in [CUAW patients with predominant myopathy
[103]. Yet, as this observation has to be confirmed by other
groups, strict indication is still warranted considering low-
dose hydrocortisone administration.

3.4.5 Neuromuscular blockers

Treatment with neuromuscular blocking agents has been
reported to contribute to ICUAW development. Initial
reports stated that vecuronium and pancuronium may be
particularly harmful in regard to critical illness neuromus-
cular abnormalities [104]. It remains unclear, however,
whether this is simply attributable to the rather widespread
use of these substances at that time. Importantly, renal
function must be taken into account, as some neuromuscu-
lar blocking agents undergo excretion via the kidneys. As
firm conclusions regarding specific deleterious effects of
neuromuscular blockers are precluded, cautious use is still
warranted [34].
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signalling. EMS electrical muscle stimulation, /GF-/ insulin growth
factor-1, GLUT4 glucose transporter 4, /RS- insulin receptor
substrate 1, AMPK AMP-activated protein kinase, P/3K phopshoino-
sitide 3-kinase, PPAR peroxisome proliferator-activated receptor,
PGC-1a PPAR-y coactivator 1, pAKT phosphorylated Akt protein
kinase B, mTOR mammalian target of rapamycin, FoxO3 forkhead
box O3, MuRF muscle-specific ring finger protein

3.5 Subclassification of ICUAW

Depending on electrophysiologic or histological documen-
tation of neuropathy and/or myopathy, ICUAW can be
further subclassified as critical illness myopathy (CIM),
critical illness polyneuropathy (CIP), or critical illness
myoneuropathy (CIMN), which is more frequent than
previously thought and applies to ICUAW patients with
coinciding neuropathy and myopathy [35]. Myopathy is
likely to present the predominant feature of ICUAW and
has been shown to precede neuropathy in patients with
CIMN [89]. Yet, as both histology and electrophysiology
are currently not obtained during clinical routine, subclas-
sification of ICUAW may seem of less importance to
clinicians dealing with this complication. We just recently
demonstrated that myopathy occurs earlier and more
frequent, whereas additional polyneuropathy develops later
and less frequent. By showing that additional polyneurop-
athy was associated with longer ICU length of stay, we
suggest that differential diagnosis of ICUAW becomes
more important to clinicians [105].
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3.6 Sepsis-induced myopathy: CIM and CIMN

Three characteristics are commonly described in patients with
CIM or CIMN [106-108]:

—  Selective thick filament loss
— Predominant type II muscle fibre atrophy (Fig. 3)
—  Muscle membrane inexcitability

Unspecific but predominant type II (fast twitch) muscle
fibre atrophy has been repeatedly described within muscle
tissue from CIM/CIMN biopsies [35]. Selective but patchy
loss of myosin filaments can be visualised by electron
microscopy and is considered a hallmark of CIM, explaining
its additional terminology of thick filament myopathy [35].
In contrast to these morphologic alterations, non-excitable
muscle membrane is detected by electrophysiologic testing
[43, 108, 109] and has been shown to predict ICUAW in
mechanically ventilated, sedated patients with high sensitiv-
ity and specificity [89]. All three characteristics may result in
different mechanisms leading to ICUAW, as loss of muscle
mass (atrophy) correlates with decreased maximum force,

CIM Patient

Fig. 3 Muscle histologies (vastus lateralis muscle) from an ICU
patient with critical illness myopathy (subclassification of ICUAW)
and an ICU patient without this complication, referred to as ICU
control. ATPase/Toludine blue staining differentiates type I, Ila and IIb
muscle fibres as indicated

thick filament loss represents an additional reduction of force
generating capacity by additional myofilament dysfunction,
and non-excitable muscle membrane may be considered as
an incapability of the muscle to generate contraction-
preceding action potentials. Less frequently described histo-
logical signs of CIM/CIMN include acute necrosis [110,
111], regeneration [112] as well as loss of myofibrillar
ATPase staining [113], the latter affecting both type I and II
muscle fibres.

3.7 Suggested subcellular abnormalities in sepsis-induced
myopathy

A number of subcellular sites involved in excitation
contraction coupling may be affected in sepsis-induced
myopathy [36]. These include the sarcolemma, the sarco-
plasmatic reticulum, the contractile apparatus and the
mitochondria. As described above, one of the key features
of CIM/CIMN is that skeletal muscle becomes electrically
inexcitable, which has led to the concept that CIM/CIMN
could represent an acquired channelopathy involving
dysregulation of sodium channels located at the sarcolem-
ma. Experimental studies describe sarcolemmal injuries in
diaphragm and limb muscle that were in part associated
with excessive nitric oxide generation [114-116]. Altered
calcium homeostasis has been observed in a number of
studies on skeletal muscle during sepsis with calcium level
increases in some subcellular compartments and decreases
in others [36]. Contractile protein dysfunction resulting in
reduced force pCa relationship has been reported in
diaphragm and limb muscle in a number of sepsis models
[117-120]. It is likely that free radical generation is
involved in this mechanism, as either a superoxide
scavenger or NO synthesis inhibitor significantly attenuated
reduced endotoxin-induced force pCa relationships. TNF-
has been linked to decreases in titanic force generation due
to changes in myofilament function, as well [121, 122]. A
considerable amount of data indicates that sepsis also causes
profound alterations in respiratory muscle mitochondrial
function [36]. Limb muscle biopsies from septic patients
show decreased mitochondrial content and lower concen-
trations of energy rich phosphates [123].

4 Conclusions and outlook

In conclusion, sepsis and systemic inflammation may lead to
multiple organ failure, which is associated with loss of muscle
mass and/or onset of ICUAW. ICUAW presents a significant
clinical problem and is thought to affect up to 50% of all ICU
patients. As an increasing amount of patients survives sepsis,
long-term complications of critical care are likely to gain in
significance. Short term complications of ICUAW include
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secondary complications due to prolonged ICU stay, protrac-
tion of rehabilitation measures, failure in weaning from
mechanical ventilation and others. Currently, there is no
causal therapy of ICUAW and measures are restricted to
minimising risk factor exposure. Risk factors besides multiple
organ failure—which is most likely due to sepsis and systemic
inflammation—include excessive blood glucose levels,
immobilisation, exposure to neuromuscular blockers and
corticosteroid application. Therefore, measures such as
identification of risk patients, avoidance of unnecessarily
deep sedation, promotion of early mobilisation and EMS,
prevention of excessive blood glucose levels, rational admin-
istration of glucocorticoids and/or neuromuscular blockers as
well as early goal-directed therapy of sepsis seem to reduce
the severity and incidence of [ICUAW. Nutritional approaches,
immunomodulatory interventions, antioxidant treatment or
others might furthermore lower the incidence of muscle
wasting and ICUAW in critically ill patients.

Acknowledgments The authors of this manuscript certify that they
comply with the ethical guidelines for authorship and publishing in the
Journal of Cachexia, Sarcopenia and Muscle [124].

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

1. Annane D, Bellissant E, Cavaillon J. Septic shock. Lancet.
2005;365:63-78.

2. Annane D, Aegerter P, Jars-Guincestre MC, Guidet B. Current
epidemiology of septic shock: the CUB-Réa Network. Am J
Respir Crit Care Med. 2003;168:165-72.

3. Hotchkiss RS, Karl IE. The pathophysiology and treatment of
sepsis. N Engl J Med. 2003;348:138-50.

4. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM,
Jaeschke R, et al. Surviving sepsis campaign: international
guidelines for management of severe sepsis and septic shock:
2008. Crit Care Med. 2008;36:296-327.

5. American College of Chest Physicians/Society of Critical Care
Medicine Consensus Conference: definitions for sepsis and
organ failure and guidelines for the use of innovative therapies
in sepsis. Crit Care Med 1992;20:864—74.

6. Bone RC. Sepsis, the sepsis syndrome, multi-organ failure: a plea
for comparable definitions. Ann Intern Med. 1991;114:332-3.

7. Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care
Med. 1996;24:1125-8.

8. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo
J, Pinsky MR. Epidemiology of severe sepsis in the United
States: analysis of incidence, outcome, and associated costs of
care. Crit Care Med. 2001;29:1303-10.

9. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology
of sepsis in the United States from 1979 through 2000. N Engl J
Med. 2003;348:1546-54.

10. Engel C, Brunkhorst FM, Bone H, Brunkhorst R, Gerlach H,
Grond S, et al. Epidemiology of sepsis in Germany: results from

@ Springer

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

a national prospective multicenter study. Intensive Care Med.
2007;33:606-18.

Moerer O, Schmid A, Hofmann M, Herklotz A, Reinhart K, Werdan
K, et al. Direct costs of severe sepsis in three German intensive care
units based on retrospective electronic patient record analysis of
resource use. Intensive Care Med. 2002;28:1440-6.

Schmid A, Burchardi H, Clouth J, Schneider H. Burden of
illness imposed by severe sepsis in Germany. Eur J Health Econ.
2002;3:77-82.

Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich
B, et al. Early goal-directed therapy in the treatment of severe
sepsis and septic shock. N Engl J Med. 2001;345:1368-77.
Annane D, Sébille V, Charpentier C, Bollaert P, Frangois B,
Korach J, et al. Effect of treatment with low doses of
hydrocortisone and fludrocortisone on mortality in patients with
septic shock. JAMA. 2002;288:862—71.

Van den Berghe G, Wilmer A, Hermans G, Meersseman W,
Wouters PJ, Milants I, et al. Intensive insulin therapy in the
medical ICU. N Engl J Med. 2006;354:449-61.

van den Berghe G, Wouters P, Weekers F, Verwaest C,
Bruyninckx F, Schetz M, et al. Intensive insulin therapy in the
critically ill patients. N Engl J Med. 2001;345:1359-67.
Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF,
Lopez-Rodriguez A, et al. Efficacy and safety of recombinant
human activated protein C for severe sepsis. N Engl J Med.
2001;344:699-709.

Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel
K, et al. Hydrocortisone therapy for patients with septic shock. N
Engl J Med. 2008;358:111-24.

Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et
al. Intensive versus conventional glucose control in critically ill
patients. N Engl J Med. 2009;360:1283-97.

Finfer S, Heritier S. The NICE-SUGAR (normoglycaemia in
intensive care evaluation and survival using glucose algorithm
regulation) study: statistical analysis plan. Crit Care Resusc.
2009;11:46-57.

Cohen J. The immunopathogenesis of sepsis. Nature.
2002;420:885-91.

Opal SM, Girard TD, Ely EW. The immunopathogenesis of
sepsis in elderly patients. Clin Infect Dis. 2005;41:S504—12.
Schefold JC, Hasper D, Volk HD, Reinke P. Sepsis: time has come
to focus on the later stages. Med Hypotheses. 2008;71:203-8.
Hoflich C, Volk HD. Immunomodulation in sepsis. Chirurg.
2002;73:1100-4.

Kox WIJ, Volk T, Kox SN, Volk HD. Immunomodulatory
therapies in sepsis. Intensive Care Med. 2000;26:S124-8.
Schefold JC, Hasper D, Reinke P, Monneret G, Volk H. Consider
delayed immunosuppression into the concept of sepsis. Crit Care
Med. 2008;36:3118.

Volk HD, Reinke P, Décke WD. Clinical aspects: from systemic
inflammation to 'immunoparalysis’. Chem Immunol. 2000;74:162—
77.

Nierhaus A, Montag B, Timmler N, Frings DP, Gutensohn K, Jung
R, et al. Reversal of immunoparalysis by recombinant human
granulocyte-macrophage colony-stimulating factor in patients with
severe sepsis. Intensive Care Med. 2003;29:646-51.

Docke WD, Randow F, Syrbe U, Krausch D, Asadullah K, Reinke
P, et al. Monocyte deactivation in septic patients: restoration by
IFN-gamma treatment. Nat Med. 1997;3:678-81.

Meisel C, Schefold JC, Pschowski R, Baumann T, Hetzger K,
Gregor J, et al. Granulocyte-macrophage colony-stimulating
factor to reverse sepsis-associated immunosuppression: a
double-blind, randomized, placebo-controlled multicenter trial.
Am J Respir Crit Care Med. 2009;180:640-8.

Schefold JC, von Haehling S, Corsepius M, Pohle C, Kruschke
P, Zuckermann H, et al. A novel selective extracorporeal



J Cachexia Sarcopenia Muscle (2010) 1:147-157

155

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

intervention in sepsis: immunoadsorption of endotoxin, interleu-
kin 6, and complement-activating product Sa. Shock.
2007;28:418-25.

Bercker S, Weber-Carstens S, Deja M, Grimm C, Wolf S, Behse
F, et al. Critical illness polyneuropathy and myopathy in patients
with acute respiratory distress syndrome. Crit Care Med.
2005;33:711-5.

Osler SW. The principles and practice of medicine: designed for
the use of practitioners and students of medicine. New York: D.
Appleton and Company; 1910.

de Jonghe B, Lacherade J, Sharshar T, Outin H. Intensive care
unit-acquired weakness: risk factors and prevention. Crit Care
Med. 2009;37:S309-15.

Stevens RD, Marshall SA, Cornblath DR, Hoke A, Needham
DM, de Jonghe B, et al. A framework for diagnosing and
classifying intensive care unit-acquired weakness. Crit Care
Med. 2009;37:S299-308.

Callahan LA, Supinski GS. Sepsis-induced myopathy. Crit Care
Med. 2009;37:S354-67.

Lang CH, Frost RA, Vary TC. Regulation of muscle protein
synthesis during sepsis and inflammation. Am J Physiol
Endocrinol Metab. 2007;293:E453-9.

Vary TC, Kimball SR. Sepsis-induced changes in protein
synthesis: differential effects on fast- and slow-twitch muscles.
Am J Physiol. 1992;262:C1513-9.

Thorell A, Rooyackers O, Myrenfors P, Soop M, Nygren J,
Ljungqvist OH. Intensive insulin treatment in critically ill trauma
patients normalizes glucose by reducing endogenous glucose
production. J Clin Endocrinol Metab. 2004;89:5382—6.
Agwunobi AO, Reid C, Maycock P, Little RA, Carlson GL.
Insulin resistance and substrate utilization in human endotoxemia. J
Clin Endocrinol Metab. 2000;85:3770-8.

Carlson GL. Insulin resistance in sepsis. Br J Surg. 2003;90:259—-60.
Carlson GL. Hunterian Lecture: insulin resistance in human sepsis:
implications for the nutritional and metabolic care of the critically ill
surgical patient. Ann R Coll Surg Engl. 2004;86:75-81.

Mesotten D, Delhanty PJD, Vanderhoydonc F, Hardman KV,
Weekers F, Baxter RC, et al. Regulation of insulin-like growth
factor binding protein-1 during protracted critical illness. J Clin
Endocrinol Metab. 2002;87:5516-23.

Zauner A, Nimmerrichter P, Anderwald C, Bischof M, Schiefermeier
M, Ratheiser K, et al. Severity of insulin resistance in critically ill
medical patients. Metab Clin Exp. 2007;56:1-5.

Spranger J, Kroke A, Méhlig M, Hoffmann K, Bergmann MM,
Ristow M, et al. Inflammatory cytokines and the risk to develop
type 2 diabetes: results of the prospective population-based
European Prospective Investigation into Cancer and Nutrition
(EPIC)-Potsdam Study. Diabetes. 2003;52:812—7.

XuJ, KimHT, Ma Y, Zhao L, Zhai L, Kokorina N, et al. Trauma and
hemorrhage-induced acute hepatic insulin resistance: dominant role
of tumor necrosis factor-alpha. Endocrinology. 2008;149:2369-82.
Lang CH, Frost RA. Sepsis-induced suppression of skeletal
muscle translation initiation mediated by tumor necrosis factor
alpha. Metab Clin Exp. 2007;56:49-57.

Phillips T, Leeuwenburgh C. Muscle fiber specific apoptosis and
TNF-alpha signaling in sarcopenia are attenuated by life-long
calorie restriction. FASEB J. 2005;19:668-70.

Steffen BT, Lees SJ, Booth FW. Anti-TNF treatment reduces rat
skeletal muscle wasting in monocrotaline-induced cardiac cachexia.
J Appl Physiol. 2008;105:1950-8.

Ebisui C, Tsujinaka T, Morimoto T, Kan K, lijima S, Yano M, et
al. Interleukin-6 induces proteolysis by activating intracellular
proteases (cathepsins B and L, proteasome) in C2C12 myotubes.
Clin Sci. 1995;89:431-9.

Frost RA, Nystrom GJ, Jefferson LS, Lang CH. Hormone,
cytokine, and nutritional regulation of sepsis-induced increases

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

in atrogin-1 and MuRF1 in skeletal muscle. Am J Physiol
Endocrinol Metab. 2007;292:E501-12.

Vary TC, Deiter G, Lang CH. Cytokine-triggered decreases in
levels of phosphorylated eukaryotic initiation factor 4G in
skeletal muscle during sepsis. Shock. 2006;26:631-6.
Kobayashi H, Kato H, Hirabayashi Y, Murakami H, Suzuki H.
Modulations of muscle protein metabolism by branched-chain
amino acids in normal and muscle-atrophying rats. J Nutr.
2006;136:234S-6.

Freyssenet D, Berthon P, Denis C, Barthelemy JC, Guezennec
CY, Chatard JC. Effect of a 6-week endurance training
programme and branched-chain amino acid supplementation on
histomorphometric characteristics of aged human muscle. Arch
Physiol Biochem. 1996;104:157-62.

Ventrucci G, Ramos Silva LG, Roston Mello MA, Gomes
Marcondes MCC. Effects of a leucine-rich diet on body
composition during nutritional recovery in rats. Nutrition.
2004;20:213-7.

Sugawara T, Ito Y, Nishizawa N, Nagasawa T. Supplementation
with dietary leucine to a protein-deficient diet suppresses
myofibrillar protein degradation in rats. J Nutr Sci Vitaminol.
2007;53:552-5.

Lang CH, Frost RA. Glucocorticoids and TNFalpha interact
cooperatively to mediate sepsis-induced leucine resistance in
skeletal muscle. Mol Med. 2006;12:291-9.

Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The
role of the ubiquitin-proteasome pathway. N Engl J Med.
1996;335:1897-905.

Hasselgren P, Menconi MJ, Fareed MU, Yang H, Wei W,
Evenson A. Novel aspects on the regulation of muscle wasting in
sepsis. Int J Biochem Cell Biol. 2005;37:2156-68.

Rabuel C, Renaud E, Brealey D, Ratajczak P, Damy T, Alves A,
et al. Human septic myopathy: induction of cyclooxygenase,
heme oxygenase and activation of the ubiquitin proteolytic
pathway. Anesthesiology. 2004;101:583-90.

Klaude M, Fredriksson K, Tjader I, Hammarqvist F, Ahlman B,
Rooyackers O, et al. Proteasome proteolytic activity in skeletal muscle
is increased in patients with sepsis. Clin Sci. 2007;112:499-506.
Baracos V, Rodemann HP, Dinarello CA, Goldberg AL.
Stimulation of muscle protein degradation and prostaglandin
E2 release by leukocytic pyrogen (interleukin-1). A mechanism
for the increased degradation of muscle proteins during fever. N
Engl J Med. 1983;308:553-8.

Hummel RP, James JH, Warner BW, Hasselgren PO, Fischer JE.
Evidence that cathepsin B contributes to skeletal muscle protein
breakdown during sepsis. Arch Surg. 1988;123:2214.

Voisin L, Breuillé D, Combaret L, Pouyet C, Taillandier D,
Aurousseau E, et al. Muscle wasting in a rat model of long-lasting
sepsis results from the activation of lysosomal, Ca2+ -activated, and
ubiquitin-proteasome proteolytic pathways. J Clin Invest.
1996;97:1610-7.

Huang J, Forsberg NE. Role of calpain in skeletal-muscle protein
degradation. Proc Natl Acad Sci USA. 1998;95:12100-5.

Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B, et
al. Activation of caspase-3 is an initial step triggering accelerated
muscle proteolysis in catabolic conditions. J Clin Invest.
2004;113:115-23.

Tan FC, Goll DE, Otsuka Y. Some properties of the millimolar
Ca2+-dependent proteinase from bovine cardiac muscle. J Mol
Cell Cardiol. 1988;20:983-97.

Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, et al.
FoxO3 coordinately activates protein degradation by the autophagic/
lysosomal and proteasomal pathways in atrophying muscle cells.
Cell Metab. 2007,6:472-83.

Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et
al. Foxo transcription factors induce the atrophy-related ubiquitin

@ Springer



156

J Cachexia Sarcopenia Muscle (2010) 1:147-157

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

ligase atrogin-1 and cause skeletal muscle atrophy. Cell.
2004;117:399-412.

Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke
BA, et al. Identification of ubiquitin ligases required for skeletal
muscle atrophy. Science. 2001;294:1704-8.

Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL.
Atrogin-1, a muscle-specific F-box protein highly expressed during
muscle atrophy. Proc Natl Acad Sci USA. 2001;98:14440-5.
Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA,
Burova E, et al. The E3 Ligase MuRF1 degrades myosin heavy
chain protein in dexamethasone-treated skeletal muscle. Cell
Metab. 2007;6:376-85.

Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner
C, et al. During muscle atrophy, thick, but not thin, filament
components are degraded by MuRF1-dependent ubiquitylation. J
Cell Biol. 2009;185:1083-95.

Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP,
Leibovitch SA. Degradation of MyoD mediated by the SCF
(MAFbx) ubiquitin ligase. J Biol Chem. 2005;280:2847-56.
Lagirand-Cantaloube J, Offner N, Csibi A, Leibovitch MP,
Batonnet-Pichon S, Tintignac LA, et al. The initiation factor
elF3-f is a major target for atroginl/ MAFbx function in skeletal
muscle atrophy. EMBO J. 2008;27:1266-76.

Attaix D, Baracos VE. MAFbx/Atrogin-1 expression is a poor index
of muscle proteolysis. Curr Opin Clin Nutr Metab. 2010;13:223-4.
Vincent J, Norrenberg M. Intensive care unit-acquired weakness:
framing the topic. Crit Care Med. 2009;37:S296-8.

Spitzer AR, Giancarlo T, Maher L, Awerbuch G, Bowles A.
Neuromuscular causes of prolonged ventilator dependency.
Muscle Nerve. 1992;15:682-6.

Latronico N, Fenzi F, Recupero D, Guarneri B, Tomelleri G,
Tonin P, et al. Critical illness myopathy and neuropathy. Lancet.
1996;347:1579-82.

Garnacho-Montero J, Madrazo-Osuna J, Garcia-Garmendia JL,
Ortiz-Leyba C, Jiménez-Jiménez FJ, Barrero-Almodévar A, et
al. Critical illness polyneuropathy: risk factors and clinical
consequences. A cohort study in septic patients. Intensive Care
Med. 2001;27:1288-96.

Stevens RD, Dowdy DW, Michaels RK, Mendez-Tellez PA,
Pronovost PJ, Needham DM. Neuromuscular dysfunction ac-
quired in critical illness: a systematic review. Intensive Care
Med. 2007;33:1876-91.

De Jonghe B, Bastuji-Garin S, Sharshar T, Outin H, Brochard L.
Does ICU-acquired paresis lengthen weaning from mechanical
ventilation? Intensive Care Med. 2004;30:1117-21.

De Jonghe B, Lacherade J, Durand M, Sharshar T. Critical illness
neuromuscular syndromes. Crit Care Clin. 2007;23:55-69.

De Jonghe B, Bastuji-Garin S, Durand M, Malissin I, Rodrigues
P, Cerf C, et al. Respiratory weakness is associated with limb
weakness and delayed weaning in critical illness. Crit Care Med.
2007;35:2007-15.

Herridge MS. Long-term outcomes after critical illness. Curr
Opin Crit Care. 2002;8:331-6.

Herridge MS. Legacy of intensive care unit-acquired weakness.
Crit Care Med. 2009;37:S457-61.

Kleyweg RP, van der Meché FG, Schmitz PI. Interobserver agreement
in the assessment of muscle strength and functional abilities in
Guillain-Barré syndrome. Muscle Nerve. 1991;14:1103-9.
Latronico N, Rasulo FA. Presentation and management of ICU
myopathy and neuropathy. Curr Opin Crit Care [Internet]. 2010
Jan 13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/
20075723. Accessed 4 Feb 2010

Weber-Carstens S, Koch S, Spuler S, Spies CD, Bubser F,
Wernecke KD, et al. Nonexcitable muscle membrane predicts
intensive care unit-acquired paresis in mechanically ventilated,
sedated patients. Crit Care Med. 2009;37:2632-7.

@ Springer

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

Cruz DN, Antonelli M, Fumagalli R, Foltran F, Brienza N,
Donati A, et al. Early use of polymyxin B hemoperfusion in
abdominal septic shock: the EUPHAS randomized controlled
trial. JAMA. 2009;301:2445-52.

Cruz DN, Perazella MA, Bellomo R, de Cal M, Polanco N, Corradi
V, et al. Effectiveness of polymyxin B-immobilized fiber column in
sepsis: a systematic review. Crit Care. 2007;11:R47.

Schefold JC, Hasper D, Jorres A. Organ crosstalk in critically ill
patients: hemofiltration and immunomodulation in sepsis. Blood
Purif. 2009;28:116-23.

Stegmayr B. Apheresis in patients with severe sepsis and multi
organ dysfunction syndrome. Transfus Apher Sci. 2008;38:203—
8.

Haase M, Bellomo R, Morgera S, Morger S, Baldwin I, Boyce
N. High cut-off point membranes in septic acute renal failure: a
systematic review. Int J Artif Organs. 2007;30:1031-41.
Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik
AlJ, Esbrook CL, et al. Early physical and occupational therapy
in mechanically ventilated, critically ill patients: a randomised
controlled trial. Lancet. 2009;373:1874-82.

Gerovasili V, Stefanidis K, Vitzilaios K, Karatzanos E, Politis P,
Koroneos A, et al. Electrical muscle stimulation preserves the
muscle mass of critically ill patients: a randomized study. Crit
Care. 2009;13:R161.

Strasser EM, Stittner S, Karner J, Klimpfinger M, Freynhofer M,
Zaller V, et al. Neuromuscular electrical stimulation reduces
skeletal muscle protein degradation and stimulates insulin-like
growth factors in an age- and current-dependent manner: a
randomized, controlled clinical trial in major abdominal surgical
patients. Ann Surg. 2009;249:738-43.

Van den Berghe G, Schoonheydt K, Becx P, Bruyninckx F,
Wouters PJ. Insulin therapy protects the central and peripheral
nervous system of intensive care patients. Neurology.
2005;64:1348-53.

Hermans G, Wilmer A, Meersseman W, Milants I, Wouters PJ,
Bobbaers H, et al. Impact of intensive insulin therapy on
neuromuscular complications and ventilator dependency in the
medical intensive care unit. Am J Respir Crit Care Med.
2007;175:480-9.

De Jonghe B, Sharshar T, Lefaucheur J, Authier F, Durand-Zaleski
1, Boussarsar M, et al. Paresis acquired in the intensive care unit: a
prospective multicenter study. JAMA. 2002;288:2859-67.

Sander HW, Golden M, Danon MJ. Quadriplegic areflexic ICU
illness: selective thick filament loss and normal nerve histology.
Muscle Nerve. 2002;26:499-505.

Amaya-Villar R, Garnacho-Montero J, Garcia-Garmendia JL,
Madrazo-Osuna J, Garnacho-Montero MC, Luque R, et al.
Steroid-induced myopathy in patients intubated due to exacerbation
of chronic obstructive pulmonary disease. Intensive Care Med.
2005;31:157-61.

Weber-Carstens S, Deja M, Koch S, Spranger J, Bubser F,
Wernecke K, et al. Risk factors in Critical illness myopathy
(CIM) during the early course of critical illness: a prospective
observational study. Crit Care. 2010;14:R119.

Segredo V, Caldwell JE, Matthay MA, Sharma ML, Gruenke
LD, Miller RD. Persistent paralysis in critically ill patients after
long-term administration of vecuronium. N Engl J Med.
1992;327:524-8.

Koch S, Spuler S, Deja M, Bierbrauer J, Dimroth A, Behse F, et al.
Critical illness myopathy is frequent—accompanying neuropathy
protracts ICU discharge. JNNP. 2010 (in press).

Larsson L, Li X, Edstrom L, Eriksson LI, Zackrisson H,
Argentini C, et al. Acute quadriplegia and loss of muscle myosin
in patients treated with nondepolarizing neuromuscular blocking
agents and corticosteroids: mechanisms at the cellular and
molecular levels. Crit Care Med. 2000;28:34-45.


http://www.ncbi.nlm.nih.gov/pubmed/20075723
http://www.ncbi.nlm.nih.gov/pubmed/20075723

J Cachexia Sarcopenia Muscle (2010) 1:147-157

157

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

Lacomis D, Giuliani MJ, Van Cott A, Kramer DJ. Acute
myopathy of intensive care: clinical, electromyographic, and
pathological aspects. Ann Neurol. 1996;40:645-54.

Rich MM, Teener JW, Raps EC, Schotland DL, Bird SJ. Muscle
is electrically inexcitable in acute quadriplegic myopathy.
Neurology. 1996;46:731-6.

Rich MM, Bird SJ, Raps EC, McCluskey LF, Teener JW. Direct
muscle stimulation in acute quadriplegic myopathy. Muscle
Nerve. 1997;20:665-73.

Hirano M, Ott BR, Raps EC, Minetti C, Lennihan L, Libbey NP,
et al. Acute quadriplegic myopathy: a complication of treatment
with steroids, nondepolarizing blocking agents, or both. Neurology.
1992;42:2082-7.

Ramsay DA, Zochodne DW, Robertson DM, Nag S, Ludwin SK.
A syndrome of acute severe muscle necrosis in intensive care
unit patients. J Neuropathol Exp Neurol. 1993;52:387-98.
Showalter CJ, Engel AG. Acute quadriplegic myopathy: analysis
of myosin isoforms and evidence for calpain-mediated proteolysis.
Muscle Nerve. 1997;20:316-22.

Sher JH, Shafiq SA, Schutta HS. Acute myopathy with selective
lysis of myosin filaments. Neurology. 1979;29:100-6.

Lin MC, Ebihara S, El Dwairi Q, Hussain SN, Yang L, Gottfried
SB, et al. Diaphragm sarcolemmal injury is induced by sepsis
and alleviated by nitric oxide synthase inhibition. Am J Respir
Crit Care Med. 1998;158:1656-63.

Comtois AS, Barreiro E, Huang PL, Marette A, Perrault M,
Hussain SN. Lipopolysaccharide-induced diaphragmatic contractile
dysfunction and sarcolemmal injury in mice lacking the neuronal
nitric oxide synthase. Am J Respir Crit Care Med. 2001;163:977—
82.

Ebihara S, Hussain SNA, Danialou G, Cho W, Gottfried SB,
Petrof BJ. Mechanical ventilation protects against diaphragm

117.

118.

119.

120.

121.

122.

123.

124.

injury in sepsis: interaction of oxidative and mechanical stresses.
Am J Respir Crit Care Med. 2002;165:221-8.

Supinski G, Stofan D, Callahan LA, Nethery D, Nosek TM,
DiMarco A. Peroxynitrite induces contractile dysfunction and lipid
peroxidation in the diaphragm. J Appl Physiol. 1999;87:783-91.
Supinski G, Nethery D, Nosek TM, Callahan LA, Stofan D,
DiMarco A. Endotoxin administration alters the force vs. pCa
relationship of skeletal muscle fibers. Am J Physiol Regul Integr
Comp Physiol. 2000;278:R891-6.

Callahan LA, She ZW, Nosek TM. Superoxide, hydroxyl radical,
and hydrogen peroxide effects on single-diaphragm fiber
contractile apparatus. J Appl Physiol. 2001;90:45-54.

Callahan LA, Nethery D, Stofan D, DiMarco A, Supinski G. Free
radical-induced contractile protein dysfunction in endotoxin-
induced sepsis. Am J Respir Cell Mol Biol. 2001;24:210-7.

Reid MB, Lannergren J, Westerblad H. Respiratory and limb
muscle weakness induced by tumor necrosis factor-alpha:
involvement of muscle myofilaments. Am J Respir Crit Care
Med. 2002;166:479-84.

Hardin BJ, Campbell KS, Smith JD, Arbogast S, Smith J,
Moylan JS, et al. TNF-alpha acts via TNFR1 and muscle-derived
oxidants to depress myofibrillar force in murine skeletal muscle.
J Appl Physiol. 2008;104:694-9.

Fredriksson K, Hammarqvist F, Strigard K, Hultenby K,
Ljungqvist O, Wernerman J, et al. Derangements in mitochondrial
metabolism in intercostal and leg muscle of critically ill patients
with sepsis-induced multiple organ failure. Am J Physiol Endocrinol
Metab. 2006;291:E1044-50.

von Haehling S, Morley JE, Coats AJ, Anker SD. Ethical
guidelines for authorship and publishing in the Journal of
Cachexia, Sarcopenia and Muscle. J Cachexia Sarcopenia
Muscle 2010;1:7-8.

@ Springer



	Intensive care unit—acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock
	Abstract
	Sepsis
	Epidemiology and definition of sepsis
	Fundamental clinical and pathophysiological considerations in sepsis

	Sepsis-induced muscle wasting and ICUAW: an imbalance in protein metabolism
	Sepsis-associated muscle wasting
	Decreased muscle protein synthesis during sepsis
	Increased muscle protein degradation during sepsis

	ICUAW: clinical presentation, relevance, risk factors, treatment options and subclassifications
	General considerations on ICUAW
	Clinical presentation and diagnostic limitations of ICUAW
	Risk factors involved in ICUAW
	Implications for minimising risk factor exposure and treatment options
	Sepsis
	Immobilisation
	Intensive insulin therapy
	Glucocorticoid exposure
	Neuromuscular blockers

	Subclassification of ICUAW
	Sepsis-induced myopathy: CIM and CIMN
	Suggested subcellular abnormalities in sepsis-induced myopathy

	Conclusions and outlook
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


