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Abstract
The Notch signaling plays a key role in cell differentiation, survival, and proliferation through
diverse mechanisms. Notch signaling is also involved in vasculogenesis and angiogenesis.
Moreover, Notch expression is regulated by hypoxia and inflammatory cytokines (IL-1, IL-6 and
leptin). Entangled crosstalk between Notch and other developmental signaling (Hedgehog and
Wnt), and signaling triggered by growth factors, estrogens and oncogenic kinases, could impact on
Notch targeted genes. Thus, alterations of the Notch signaling can lead to a variety of disorders,
including human malignancies. Notch signaling is activated by ligand binding, followed by
ADAM/Tumor necrosis factor-α-converting enzyme (TACE) metalloprotease and γ-secretase
cleavages that produce the Notch intracellular domain (NICD). Translocation of NICD into the
nucleus induces the transcriptional activation of Notch target genes. The relationships between
Notch deregulated signaling, cancer stem cells and the carcinogenesis process reinforced by Notch
crosstalk with many oncogenic signaling pathways suggest that Notch signaling may be a critical
drug target for breast and other cancers. Since current status of knowledge in this field changes
quickly, our insight should be continuously revised. In this review, we will focus on recent
advancements in identification of aberrant Notch signaling in breast cancer and the possible
underlying mechanisms, including potential role of Notch in breast cancer stem cells, tumor
angiogenesis, as well as its crosstalk with other oncogenic signaling pathways in breast cancer. We
will also discuss the prognostic value of Notch proteins and therapeutic potential of targeting
Notch signaling for cancer treatment.
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1. Introduction
Breast cancer is a major cancer leading in both incidence and mortality in women. The
American Cancer Society estimated that in the United States approximately 192,370 new
cases of invasive breast cancer, 62,280 in situ cases, and 40,170 deaths were occured among
US women in 2009 [1]. Even though breast cancer recurrence rates have been significantly
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reduced by adjuvant therapies such as chemotherapy, hormonal and biological therapies,
recurrence still occurs in a substantial proportion of breast cancer patients after these
treatments. Recently, Notch has been described as a major culprit (one of the three members
of the so-called axis of evil) in breast cancer; the other two being HER2 and cancer stem
cells [2]. This is probably true since Notch was involved in a number of drug resistance
incidents, including anti-tamoxifen and anti-trastuzumab resistance in breast cancer [3].

Although several valuable reviews have been focused on the role of Notch signaling in
several types of cancer, including breast cancer [4–7] in this review we will focus on recent
advancements in identification of aberrant Notch signaling in breast cancer. Further, we will
review the possible underlying mechanisms of Notch in breast cancer, including its potential
role in breast cancer stem cells and tumor angiogenesis as well as its crosstalk with other
oncogenic signaling pathways.

2. Notch signaling--an overview
Notch genes encode transmembrane receptors that are highly conserved from invertebrates
to mammals. Notch-mediated signals regulate cell-fate decisions in a large number of
developmental systems [8–9]. Such signals are mainly transmitted through direct contact
between adjacent cells expressing Notch receptors and their ligands. Notch receptors act in
response to the ligands expressed by adjacent cells to regulate cell fate specification,
differentiation, proliferation, and survival [10].

Notch signaling pathway is frequently deregulated in several human malignancies. Up-
regulated expression of Notch receptors and their ligands have been found in cervical, colon,
head and neck, lung, renal carcinoma, pancreatic cancer, acute myeloid, Hodgkin and Large-
cell lymphomas, as well as breast cancer [11–13]. Activation of Notch has been shown to
cause mammary carcinomas in mice [14–16]. Notch is suggested to transform MCF-10 cells
and to protect transformed cells from p53 mediated induction of pre-apoptotic protein
NOXA [17]. Furthermore, Notch signaling inhibitors, NUMB and NUMB-like (NUMBL)
were found to be lost in approximately 50% of human mammary carcinomas due to specific
Numb ubiquitination and proteasomal degradation [18]. Low expression of NUMB and
higher levels of Notch1 and BIRC5 (encoding survivin) have been linked to basal-like
phenotype and cancer stem cell markers in primary breast cancer [19]. NUMB and NUMBL
display a complex pattern of functions such as the control of asymmetric cell division and
cell fate choice, endocytosis, cell adhesion, cell migration, ubiquitination of specific
substrates and a number of signaling pathways [20–21].

Signals exchanged between neighboring cells through the Notch receptor can amplify and
consolidate molecular differences, which eventually dictate cell fates. Thus, Notch signals
control how cells respond to intrinsic or extrinsic developmental cues that are necessary to
unfold specific developmental programs [22]. This concept is also applicable to activities
elicited by Notch signals in breast and other cancer types. Indeed, Notch signaling has the
potential to affect the path of differentiation, proliferation, and apoptosis in both normal
developmental and abnormal cellular growth programs. Remarkably, the same signaling
pathways within different contexts can trigger a variety of cellular activities. Therefore,
cancer progression activities triggered by Notch and its crosstalks are context dependent.
This represents an important point in understanding the variety of outcomes associated with
Notch signaling.

3. Structure, activation and function of Notch receptors and ligands
The Notch system in vertebrates comprises four receptors (Notch1 – Notch4) and at least
five ligands from the families Delta and JAG/Serrate (DSL): JAG1, JAG2, Delta-like
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(Dll)-1, Dll-3, and Dll-4 [12–13,22]. Ligands of Notch receptors can be divided into several
groups based on their domain composition. Canonical DSL ligands (JAG1, JAG2 and Dll-1)
are type I cell surface proteins, consisting of the Delta/Serrate/LAG-2 (DSL), Delta and
OSM-11-like proteins [DOS, which is composed by specialized tandem EGF repeats] and
EGF motifs. The other subtypes of DSL canonical ligands include Dll-3 and Dll-4 that lack
DOS motif [23–25]. Both the DSL and DOS domains are crucial for physical binding with
Notch receptor [11]. However some membrane-tethered and secreted noncanonical ligands
lacking DSL and DOS domains have also been documented to activate Notch signaling both
in vitro and in vivo studies [24,26–31], which may be an explanation for the odd issues of
the diverse and frequent effects of Notch signaling with the small number of canonical DSL
ligands and receptors in vertebrate genomes [24].

Notch receptors belong to a large single-pass type 1 transmembrane protein. Notch
extracellular domain consists of 29–36 tandem array of EGF (epidermal growth factor)-like
repeats, followed by a conserved negative regulatory region (NRR or LNR) consisting of
three cystein-rich Notch Lin12 repeats (N/Lin 12) and a heterodimerization (HD) domain
[32]. Notch family members differ in the number of EGF-like repeats; however, they share
many similarities in structure [11,33]. EGF-like repeats mediate ligand binding, whereas
NRR functions to prevent both ligand-dependent and -independent signaling [33]. The
cytoplasmic portion of Notch is composed of a DNA binding protein (RBP-Jk associated
molecule or RAM) domain and six ankyrin (ANK) repeats, which are flanked by two
nuclear localization signals (NLS), followed by a transactivation domain (TAD) and a
domain rich in proline, glutamine, serine and threonine residues (PEST) that controls
receptor half life [11,34–35] (Figure 1).

S1 cleavage of precursor of the Notch receptor occurs constitutively in the Golgi network by
a furin-like convertase and the two fragments are re-assembled as a non-covalently linked
heterodimeric receptor at the cell surface [10]. Mature Notch receptors are heterodimers
made up of an extracellular subunit, a transmembrane subunit (N™) and a cytoplasmatic
subunit. Binding of Notch heterodimer to ligand triggers S2 cleavage. This process takes
places at the cell surface. N™ subunit is cleaved by ADAM/Tumor necrosis factor-α-
converting enzyme (TACE) metalloprotease family at Site 2 (located ~12 amino acids
before the transmembrane domain) and then by γ-secretase_t Site 3 and 4 (S3 cleavage)
[36]. S2 cleavage releases the Notch extracelluar domain (NECD) from the heterodimer and
creates a membrane-tethered Notch extracellular truncation (NEXT), which becomes a
substrate for γ-secretase. γ-secretase mediated S3 cleavage occurs on the plasma membrane
and/or in endosome. The new mobile cytoplasmic subunit [Notch intracellular domain
(NICD or NIC)] is translocated to the nucleus where it interacts with members of the DNA-
binding protein, recombination signal binding protein for immunoglobulin kappa J (RBP-Jk)
or CBF1/Su(H)/Lag-1 (CSL) family of transcription factors [10]. Activated NICD-RBP-Jk
complex displaces co-repressors and recruits coactivator (co-A) mediating the transcription
of target genes such as Hes-1 (hairy enhancer of split), cyclin D, Hey-1 (hairy/enhancer-of-
split related with YRPW motif) and others [12–13]. In the absence of NICD, CSL may
interplay with ubiquitous corepressor (Co-R) proteins and histone deacetylases (HDACs) to
repress transcription of some target genes [37–38].

4. Notch signaling target gene
The best-characterized Notch targets are transcriptional repressors of the Hes (Hes1–7) and
Hey subfamilies (Hey1, Hey2, HeyL, HesL/HelT, Dec1/BHLHB2, Dec2/BHLHB3) [39–
41]. Both Hes and Hey proteins contain a basic domain, which determines DNA binding
specificity, and a helix-loop-helix domain, which allows the proteins to form homo- or
heterodimers. Their biological function in breast cancer remains relatively unclear and may
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be totally different. Hes1 is a tumor suppressor in epithelial cells and acts as a mediator of
17β-estradiol (E2) proliferative effects on breast cancer cells [42–43]. In contrast, Hes6 is a
novel estrogen-regulated gene and a potential oncogene overexpressed in breast cancer with
tumor-promoting and proliferative functions [44]. Other Notch target genes include proteins
and factors involved in the control of the cell cycle and survival processes like: p21WAF1/
Cip1 (a cyclin-dependent kinase inhibitor that acts as both a sensor and an effector of
multiple anti-proliferative signals), Deltex (a positive regulator of Notch activity), nuclear
factor-kappa B (NF-κB) (a transcriptional factor), cyclin D1 (a mitogenic sensor and
allosteric activator of cyclin dependent kinase CDK4/6) and c-myc (an oncogene and cell
cycle regulator). c-myc deregulation is one of the hallmarks of many cancers [12–13,22,45–
46].

Notch signaling was earlier identified as a modulator of apoptosis. NICD interacts and
mediates p53 inactivation through phosphorylation [47]. Recently, survivin, a member of the
inhibitor of apoptosis (IAP) family of proteins and an inducer of cell proliferation, was
identified as a novel Notch target gene [48–49]. Notch stimulation resulted in direct
activation of survivin gene transcription through at least one RPB-Jκ site in the survivin
promoter [50]. Dr. Altieri’s group uncovered a novel Notch-survivin signaling axis. They
found that activation of Notch resulted in direct transcriptional up-regulation of survivin in
ER∓breast cancer cells [51–52]. This Notch-survivin signaling axis may contribute to worse
clinical outcome of basal breast cancer (triple negative) patients and may open new
prospects for individualized therapy of these recurrence-prone patients.

5. Notch signaling in normal breast development
Mammary gland development is governed by a variety of signaling pathways involved in
cell fate and cell differentiation decisions. The Notch4 gene has been shown to be involved
in normal mammary development [53–54]. In vitro, overexpression of the constitutively
active form of Notch4 (MW: 250kDa and NICD MW: 80kDa) inhibits differentiation of
normal breast epithelial cells [54]. In vivo, transgenic mice expressing a constitutively active
form of Notch4 in the mammary gland fail to develop secretory lobules during gestation,
and subsequently develop mammary tumors [53]. This supports a role for Notch in normal
breast development, and suggests that alterations in Notch4 might play a significant role in
breast-cancer development. Indeed, Notch family members have been detected in
mammospheres and Notch ligands may affect the self-renewal and differentiation of normal
mammary epithelial cells [55–56].

Notch3 may also play a role in normal breast development [57–58]. Notch3 signaling was
blocked in bipotent colony forming cells (CFCs). It promoted a substantial decrease in
formation of luminal-type colonies and an increase in myoepithelial-type colonies. These
data suggest Notch3 is one of the key genes for the luminal cell commitment. It seems likely
that the bipotent CFCs correspond to stem and/or multilineage progenitor cells whereas the
luminal CFCs correspond to a lineage-restricted progenitor population. The role of other
Notch signaling members in normal breast development are not clear and need further
studies [58].

6. Activation of Notch signaling in breast cancer
Among Notch receptors with potential roles in breast carcinogenesis, Notch1 (MW: 272kDa
and NICD MW: 110–120kDa) is relatively the best studied [15–17]. The importance of
Notch1 in carcinogenesis was first seen in transgenic mice generated by the mouse
mammary tumor virus (MMTVD)/myc which can spontaneously develop oligoclonal
CD4+CD8+ T-cell tumors [59]. Notch1, a putative novel collaborator of c-myc, was mutated
in a high proportion (52%) of these tumors [59]. These mutations led to high expression of
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truncated Notch1 proteins. The role of Notch1 in the development of mouse mammary
tumors was further established by using MMTV/neu Tg mice infected with the MMTV. The
Notch1 gene was identified as a novel target for MMTV provirus insertional activation.
MMTV insertion in the Notch1 gene induced the overexpression of 5' truncated ~7 kb RNA
(coding a 280 kDa mutant protein: Notch1 ectodomain) and truncated 3' Notch1 transcripts
(3.5–4.5 kb) and proteins (86–110 kDa) that can transform HC11 mouse mammary
epithelial cells in vitro [15]. Notch1 was further found to be a mediator of oncogenic Ras
(retrovirus-associated DNA sequence kinase, small cytoplasmic GTP-binding proteins) [60].
Mutated Ras occurs in early breast cancer and plays a central role in breast carcinogenesis
[60]. Moreover, Notch1 and JAG1 were co-upregulated upon estrogen treatment not only in
breast cancer MCF-7 cells, but also in endothelial cells, suggesting a role of Notch1-JAG1
in angiogenesis [61]. A synergistic effect of high levels of co-expression of Notch1 and
JAG1 on overall survival of breast cancer patients has also been shown [62].

Activated Notch2 (MW: 205 and NICD MW: 110kDa) in normal mammary epithelial cells
in vivo has not been reported. However, unlike other Notch members, Notch2 expression
was demonstrated to be related with better survival in patients with breast cancer with high
expression associated with well-differentiated tumors [63]. These data support the intriguing
model that Notch2 activation corresponds to decreased tumor aggressiveness. O'Neill et al
[64] found that constitutively activated Notch2 NICD in the human adenocarcinoma line
MDA-MB-231 increased apoptosis in vitro. Notch2 NICD suppressed tumor take and
growth, leading to 60% decrease in number of tumors that were significantly smaller and
necrotic. These results demonstrated that Notch2 signaling is a potent inhibitory signal in
human breast cancer carcinogenesis.

Upregulation of Notch3 NICD (MW: 244 and NICD MW: 86kDa) in mammary glands led
to the development of mammary tumor, suggesting Notch3 has transforming potentials in
vivo [65]. Yamaguchi et al [66] further found Notch1 and Notch3 NICD proteins in most
breast cancer cell lines. Notch3 signaling activated CSL-mediated transcription in these
cells. In a recent report [67], stable short hairpin RNA interference of Notch3 knockdown in
breast cancer cells decreased osteoblast- and transforming growth factor (TGF)-β1-
stimulated colony formations. Moreover, osteolytic lesions were significantly reduced
following inoculation of cells with constitutively reduced Notch3 expression. These results
suggest Notch3 knockdown may stand as a novel mechanism for decreasing breast cancer
derived bone metastasis.

Genetic alterations of Notch4 that lead to deregulated levels of the Notch4 NICD represent
gain-of-function mutations associated with mammary carcinogenesis [68–69]. Transgenic
expression of the 1.8 Kb Notch4 RNA species in non-malignant human mammary epithelial
cell line MCF-10A enabled these cells to grow in soft agar suggested Notch4 can transform
MCF-10A cells [70]. Notch4 was also found to subvert normal epithelial morphogenesis and
to promote invasion of the extracellular matrix. Moreover, Notch4 significantly increased
the tumorigenic potential in vitro of mammary epithelial cells by changing the
morphogenetic properties [14,53].

7. Notch signaling and breast cancer stem cells
A new theory about the initiation and progression of solid tumors, including breast cancer, is
emerging from the idea that tumors, like normal adult tissues, contain stem cells (called
cancer stem cells, CSC) and thus, what could arise from them [71]. Genetic mutations in
genes encoding proteins involved in critical signaling pathways for stem cells such as BMP
(bone morphogenetic protein), Notch, Hedgehog and Wnt would allow cells to undergo
uncontrolled proliferation and form tumors. In particular, Notch activity is increasingly
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investigated in breast CSC (BCSC) subpopulation [55–56,72], since Notch signaling
pathway has key functions in normal breast development as well as in the development and
progression of breast cancer as was shown in section 6. The data from Farnie et al
consistently show that up-regulated Notch expression is found in BSCS and initiating cell
populations identified by phenotypic markers CD44+/CD24− [4]. CD44+/CD24− phenotype
in breast cancer cells have been linked to CSC-like cells showing tumor-initiating properties
and invasive features. However, it is unclear whether their presence within a tumor has
clinical implications [4].

Jolicoeur’s group studied the function of Notch1 in mammary tumor development using
transgenic mice expressing Notch1 NICD [73]. Their data suggest that Notch1 NICD
impairs mammary stem cell (CD24+CD29high) self-renewal and facilitates their
transformation through a cyclin D1- dependent pathway [73]. Moreover, Notch1 is related to
BCSC self-renewal. ErbB2 (HER2) promoter contains Notch-RBPJκ binding sequences [74]
that can be activated by Notch1 signaling to increase HER2 transcription in both mammary
stem/progenitor cells [5,55] and BCSC. These Notch1 effects could affect self-renewal
properties of BCSC [75]. Moreover, Notch1 interacts with erythropoietin (Epo) to maintain
the self-renewing capacity of BCSC. Expression of erythropoietin receptor (EpoR) was
found on the surface of BCSC [76]. In addition, Recombinant human Epo (rhEpo) increased
the numbers of BCSC and self-renewing activity in a Notch-dependent manner through
induction of JAG1 [76]. These observations may explain the negative impact of recombinant
Epo on survival and/or tumor control of breast cancer patients with EpoR-positive tumors
[76].

Notch1 mRNA is primarily expressed in luminal cells of normal breast epithelium [77]. In
contrast, Notch4 is mainly present in the basal cell population and in the BCSC-enriched
population [72]. These data suggest that Notch1 and Notch4 may impact on different
subpopulation cells and have different roles in BCSC. Harrison et al found that secretase
inhibitors, DAPT and DBZ, which preferentially affect Notch1 activity, only partially
abrogated mammosphere-forming units (MFUs) and tumor formation, whereas Notch4
knockdown caused a significantly greater inhibition in MFUs than Notch1 [72]. Based on
these observations, they proposed that Notch4 signaling regulates the route from BCSC into
progenitor populations. In contrast, Notch1 activity regulates the progenitor proliferation
and luminal differentiation. Therefore, the single activation of Notch1 receptor gene is not
sufficient to generate mammary carcinogenesis in mice. Conversely, activation of the
Notch4 receptor inhibits mammary epithelial cell differentiation and is sufficient to generate
mammary carcinogenesis in mice [78].

Notch2 and Notch3 have been also linked to BCSC. Recently, a single nucleotide
polymorphism (SNP) rs11249433 in the 1p11.2 region has been identified as a novel risk
factor for breast cancer and strongly associated with ER+ versus ER− cancer [79]. Notch2
expression was particularly enhanced in carriers of the risk genotypes (AG/GG) of
rs11249433 that may favor development of ER+ luminal tumors and affects tumor-initiating
cells [79]. Notch3 is a poor activator of Hes-1 and Hes-5 in contrast to that of Notch1 [80].
The Notch3 intracellular domain represses notch 1-mediated activation through Hairy/
Enhancer of split (HES) promoters. Notch3 is critical for the differentiation of human
progenitor cells to luminal lineage in vitro [77]. Notch activation leads to the formation of
dimers of Hes and/or Hey proteins that repress the transcription of a variety of genes by
interacting with co-repressors or sequestering transcriptional activators. Moreover,
activation of canonical Notch signaling induces the maintenance of stem or progenitor cells
through the inhibition of differentiation [22,81–82].
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In recent years, several oncogenes, such as HER2 [2,83], Akt [84] as well as transcriptional
factors, such as signal transducer and activator of transcription 3 (STAT3) [85], NF-κB [86]
were associated with BCSC. Since Notch signaling crosstalk with these oncogenic pathways
(will be discussed below) it could impact on BCSC and breast cancer development.

8. Crosstalk among Notch signaling and other oncogenic pathways in
breast cancer

In human cancers, activation of Notch signaling can upregulate several factors that in turn
transmit bidirectional signals among cancer cells expressing both ligands and receptors.
Notch could also transmit signals among cancer, stroma and endothelium cells [12,87].
Therefore, it is not surprising that Notch signaling crosstalks with many oncogenic signaling
pathways, such as developmental signals, i.e., Wnt and Hegdehog signaling, growth factors,
cytokines, oncogenic kinases as well as transcriptional factors, etc.

8.1. Developmental signaling
8.1.1 Hedgehog signaling—Hedgehog is a developmental signaling pathway that plays
key roles in a variety of processes, such as embryogenesis, maintenance of adult tissue
homeostasis, tissue repair during chronic persistent inflammation, and carcinogenesis [88–
90]. Hedgehog family ligands, Sonic hedgehog (Shh), Indian hedgehog (Ihh) and Desert
hedgehog (Dhh), undergo autoprocessing and lipid modification to generate mature peptides
[91–93]. Genetic evidence in mice as well as molecular biological studies in human cells
clearly indicate that deregulated Hedgehog signaling can lead to mammary hyperplasia and
tumor formation [94]. Notch ligand, JAG2 is induced by Hedgehog signaling during
carcinogenesis [95]. However, the exact role(s) activated Hedgehog signaling plays in the
development or progression of breast cancer remain unclear.

Notch-Hedgehog crosstalk induces the expression of Hes3 and Shh through rapid activation
of cytoplasmic signals, including Akt, STAT3 and the mammalian target of rapamycin
(mTOR), promoting the survival of neural stem cells [96]. Hedgehog signals could induce
Hes1 in both C3H/10T1/2 mesodermal and MNS70 neural cells [97]. In human breast
cancer, deregulated Hedgehog, together with Notch, Wnt signals, could also regulate self-
renewal and differentiation ability of BCSC [98].

8.1.2 Wnt signaling—Wnt signaling is a developmental signaling pathway that plays a
critical role in regulating the normal development of the mammary gland. Remarkably,
deregulation of Wnt signaling causes breast cancer [99–100]. Wnt and Notch signaling are
well established oncogenic factors in the mouse mammary gland. Wnt1 expression led to
subsequent activation of Notch signaling in human mammary epithelial cells (HMEC) [101].
Concomitant upregulation of the Wnt target genes Lef1 and Axin2 along with with Notch
ligand Dll-3 and Dll-4 was found in a panel of 34 breast carcinomas, suggesting that the
same process takes place in tumors [101]. Moreover, the blockade of expression Notch
ligands abrogated HMEC transformation by Wnt1, demonstrating that there is a need for
Notch-Wnt crosstalk during mammary tumorigenesis [101]. However, Wnt and Notch
signals do not always cooperate in tumor initiation and progression. Both pathways are
involved in skin stem cell regulation and differentiation. However, Notch1 is a tumor
suppressor in the epidermis [102], whereas Wnt signaling is oncogenic [103–104].
Moreover, Wnt and Notch signals have opposing effects on the fate of stem cells, with
Notch promoting differentiation and Wnt promoting stem cell self renewal and proliferation
[105].
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8.2. Growth factors
8.2.1. HER/ErbB—HER/ErbB genes (HER1/EGFR, HER3 and HER4) encode for receptor
tyrosine kinase (RTK)-transmembrane proteins that induce signaling upon the binding of
several ligands (epidermal growth factor, EGF; amphiregulin; heregulin or neu-mouse and
transforming growth factor alpha, TGF-α) and are involved in the regulation of cell
proliferation, differentiation and survival [106–107]. Deregulation of EGF receptor (EGFR)
by over-expression or constitutive activation can promote tumor processes including
angiogenesis and metastasis. Moreover, EGFR over-expression is associated with poor
prognosis in many human malignancies including breast cancer [108–109].

ERbB2 or HER2/neu (HER2 in humans and neu in mice) is an orphan receptor without
known ligands. The HER2/neu gene has been implicated in cancer with special emphasis in
breast cancer [107,110]. Amplification of HER2 occurs in 20%–25% of breast cancers and
is associated with an aggressive tumor phenotype and poor prognosis [111].

Notch signaling could regulate HER2 activity since the HER2 promoter contains Notch-
binding sequences [74]. Yamaguchi et al [66] observed that down-regulation of Notch1 by
RNA interference had little or no suppressive effects on the proliferation of either ErbB2-
positive or ErbB2-negative cell lines. In contrast, down-regulation of Notch3 significantly
suppressed proliferation and promoted apoptosis of the ErbB2-negative tumor cell lines.
Their findings indicate that Notch3 rather than Notch1-mediated signaling plays an
important role in the proliferation of ErbB2-negative breast tumor cells. Furthermore,
targeted suppression of Notch3 signaling pathway may be a promising strategy for the
treatment of ErbB2-negative breast cancer [66]. Magnifico, et al demonstrated that HER2-
overexpressing cells display activated Notch1 signaling [75]. Their results show that the
inhibition of Notch1 signaling by small interfering RNA or γ-secretase inhibitor resulted in
down-regulation of HER2 expression and decrease of sphere formation [75]. These studies
show important interactions between the Notch1 and HER2 pathways, both of which are
involved in the progression of breast cancer and regulation of cancer stem cells. However,
these authors did not investigate the effects of Notch3 silencing.

In contrast to HER2, the long-standing relationships between the EGFR and Notch signaling
pathways, and the opposing effects exerted by these signal transduction cascades, have been
well documented in various developmental settings and organisms [112–113]. A crosstalk
between EGFR and Notch pathways occurs in gliomas [114], lung [115], skin cancers [116]
and breast cancers [117–118]. Dai et al found that forced overexpression of Notch1 by
transfection increased EGFR expression in human breast cancer cells [117]. Moreover,
overexpression of Notch1 reversed EGFR inhibitor–induced cell toxicity, suggesting that
Notch and EGFR signaling may be positively cross-linked in human breast cancer. Dong et
al [118] further observed that inhibition of either EGFR or Notch signaling alone was
insufficient to suppress basal-like breast tumor cell (defined by its specific pattern of gene
expression that is similar to normal breast basal cells) survival and proliferation. However,
simultaneous inhibition of EGFR and Notch signaling uncovered a lethal relationship
between these two oncogenic pathways. These results show that Notch pathway activation
could contribute to the resistance to EGFR inhibition in triple negative cancer cells, and
might provide a novel treatment strategy for basal-like breast tumor.

8.2.2. PDGF/PDGFR signaling—Platelet-derived growth factor (PDGF) is a potent
angiogenic family of molecules comprised of four polypeptide chains encoded by different
genes. Two of them have already been identified: PDGF-A and PDGF-B, while PDGF-C
and PDGF-D were recently discovered [119–121]. The PDGF isoforms exert their cellular
effects by specific binding to two structurally-related tyrosine kinase receptors (α and β
PDGFR). PDGF is a potent mitogen and chemoattractant for mesenchymal cells, neutrophils
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and monocytes [122]. Therefore, the expression of PDGF correlates with advanced tumor
stages and unfavorable prognosis in human breast carcinomas [123]. PDGF produced in
carcinomas is generally thought to act on the non-epithelial tumor stroma promoting
angiogenesis [124].

The growing body of literature strongly suggests that a crosstalk between PDGF-D and
Notch signaling occurs in cancer [125]. Dr. Sarkar’s group demonstrated that down-
regulation of PDGF-D leads to the inactivation of Notch1 and NF-κB DNA-binding activity
as well as down-regulation of its target genes, such as VEGF and MMP-9 in pancreatic
cancer cells [126]. Therefore, the inactivation of PDGF-D-mediated cell invasion and
angiogenesis could in part be due to inactivation of Notch1 [126]. Additionally, down-
regulation of PDGF-D also inhibited the Notch1 expression in breast cancer cells [127].
Interestingly, mRNA and protein expression of Notch1~4, Dll-1, Dll-3, Dll-4, JAG2 as well
as Notch downstream targets, such as Hes and Hey were significantly higher in a prostate
cancer PC3 expressing PDGF-D cells, indicating PDGF-D was correlated to Notch signaling
[125].

8.2.3. TGF-β signaling—Genes encoding components of TGF-β signaling pathway,
including ligands TGF-β1 and TGF-β2 as well as receptor TGFBRI, are functionally
polymorphic in humans [128–130]. TGF-β can regulate such diverse processes as cell
proliferation, differentiation, motility, adhesion, organization, and programmed cell death.
Both in vitro and in vivo experiments suggest that TGF-β can utilize these diverse programs
to promote cancer metastasis through its effects on the tumor microenvironment, enhanced
invasive properties, and inhibition of immune cell function [131–132].

TGF-β signaling is linked to Notch in many processes. First, TGF-β can upregulate Notch
ligands. JAG1 has been shown to be a TGF-β target gene in multiple types of mammalian
cells. JAG1 and Hey1 are critical for TGF-β-induced epithelial-mesenchymal transformation
(EMT) in cells derived from several organs [133]. In addition, JAG1 upregulation also
contributes to TGF-β effects on cell cycle by stimulating p21 expression and cytostasis in
epithelial cells [134]. Second, TGF-β and Notch can synergistically regulate same target
genes in many cell types, for example, Smad3, a downstream transcription factor of TGF-β
and Notch1 NICD can directly interact and form a complex with CSL that binds to specific
DNA sequences as those found in the promoter of Hes-1 [135]. Notch1 NICD not only
interacts with activated Smad3 and facilitates its nuclear translocation [136], but also
remains bound with pSmad3 in the nucleus where they jointly upregulate the transcription
factor forkhead box P3 (Foxp3) that is involved in immune processes [137].

8.2.4. VEGF/VEGFR-2 signaling—Vascular endothelial growth factor (VEGF) is the
major angiogenic factor in physiological and pathological angiogenesis [138–139]. The
expression of the VEGF gene is enhanced in a variety of angiogenic tumors including breast
cancer [138–139]. VEGFR-2, receptor type 2 (KDR or flk-1) is generally recognized to have
a principal role in mediating VEGF-induced responses and is considered as the earliest
marker for endothelial cell development (Review see [140]). Moreover, VEGFR-2 directly
regulates tumor angiogenesis [139–141]. In addition to its angiogenic actions in endothelial
cells the VEGF/VEGFR-2 signaling paracrine-autocrine loop functions as an important
survival process in cancer cells [140].

VEGF was first shown to act upstream of Notch in determining arterial cell fate in vascular
development [142]. VEGF was demonstrated to increase Dll-4 and Notch expression, in turn
leading to the activation of Notch signaling and arterial specification (expression of a set of
arterial genes). Further studies in several systems, established that VEGF regulates the
expression of Notch signaling components [143–145]. Blocking VEGF, by intravitreal
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injection of soluble VEGF receptors, results in decreased sprouting and reduced expression
of Dll-4 in retinal vessels [146]. Similar interactions among VEGF signaling, growing
vessels and Notch components expression were found in tumor vessels [144,147–149].

Providing a feedback mechanism, Notch signaling in turn can alter expression levels of all
three VEGF receptors. For example, VEGFR-2 was downregulated by either Notch1,4 or
Hey1 in endothelial cells [150]. Reciprocally, VEGFR-2 expression increased in vessels of
Dll-4 heterozygous mice or as a result of Dll-4 blockade [146]. Thus, Notch signaling can
provide negative feedback to reduce the activity of the VEGF/VEGFR-2 axis in endothelial
cells. A similar scenario might occur in breast cancer where VEGF/VEGFR-2 and Notch
play prominent roles. However, this needs to be investigated.

The emerging picture is that VEGF pathway acts as a potent upstream activating stimulus
for angiogenesis, whereas Notch pathway helps to shape that action appropriately [151–
152]. Thus, an important feature of angiogenesis is the manifold ways in which the VEGF
and Notch pathways interact [152].

8.3. Inflammatory cytokines
8.3.1. IL-6—IL-6, a multifunctional cytokine, is an important factor for immune responses,
cell survival, apoptosis, angiogenesis and proliferation [153]. IL-6 signals via a
heterodimeric IL-6R/gp130 receptor complex, whose engagement triggers the activation of
Janus (JAK) kinases, and the downstream effectors STAT proteins [153]. A number of
studies implicated IL-6 and STAT3 as pro-tumorigenic agents in many cancers, including
breast cancer. IL-6 levels are significantly elevated in breast cancer patients, associated with
poor prognosis [154–155].

Sansone et al first determined that Notch pathway is a critical downstream target of IL-6
[156]. IL-6 treatment triggered Notch3–dependent upregulation of the Notch ligand JAG1
and promotion of primary human mammospheres and MCF-7–derived spheroid growth.
Moreover, autocrine IL-6 signaling relied upon Notch3 activity to sustain the aggressive
features of MCF-7–derived hypoxia-selected cells. Thus, these data support the hypothesis
that IL-6 induces malignant features in Notch3–expressing stem/progenitor cells from
human ductal breast carcinoma and normal mammary gland. These authors also pointed out
that the hypoxia resistance gene carbonic anhydrase (CA-IX) is activated in breast cancer
cells by IL-6/Notch/JAG action and provides survival advantages under hypoxic conditions.

Lee et al established HeLa/rtTAA/TRE-N1-IC cell line which was capable of doxycycline-
induced expression of human Notch1 NICD [157]. They found that the induction of Notch
signaling activates hypoxia inducible factor-1 alpha (HIF-1α) and its target gene expression
in the above cells. Interestingly, Notch signaling enhanced STAT3 phosphorylation required
for HIF-1α expression under hypoxia conditions. Furthermore, Src (a proto-oncogenic
tyrosine kinase) was required for the enhanced STAT3 phosphorylation in response to Notch
signaling. Notch signaling activated Src/STAT3 pathway was dependent on the Notch
effector Hes1 transcription factor. However, the treatment of Trichostatin A (TSA) that
interferes with Hes1 transcriptional regulation did not affect STAT3 phosphorylation, and
dominant negative Hes1 failed to interfere with Hes1-dependent Src/STAT3 pathway and
induction of HIF-1α. These observations indicate that Hes1-dependent activation of Src/
STAT3 pathway is independent of Hes1 transcription regulation. Therefore, Hes1-dependent
Src/STAT3 pathway provides a functional link between Notch signaling and hypoxia
pathway.

8.3.2. IL-1 signaling—IL-1 family belongs to pro-inflammatory/-angiogenesis cytokines
and is represented by two ligands: IL-1α, IL-1β, an antagonist: interleukin-1 receptor
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antagonist (IL-1Ra) and two receptors: IL-1R tI (type I receptor) and IL-1R tII (type II
receptor) [158]. IL-1 plays a key role in the onset and development of the host reaction to
invasion, being an important factor in the initiation of the inflammatory response and
immune functions. IL-1 is also abundant at tumor sites, where it may affect the process of
carcinogenesis, tumor growth and invasiveness, the patterns of tumor-host interactions and
tumor angiogenesis [159]. There is also convincing evidence that IL-1 family and leptin (the
major adipocytokine) crosstalk represents a major link among obesity, inflammation,
angiogenesis and breast cancer progression ([160–161] and unpublished data).

IL-1 activates Notch signaling pathway probably through NF-κB pathway [162–164]. NF-
κB is present as a latent, inactive, light polypeptide gene enhancer (I-κB, inhibitor of NF-
κB)-bound complex in the cytoplasm in majority of cells. IL-1 activates NF-κB via IL-1
receptor-associated kinase (IRAK) and mitogen-activated protein kinase (MAPK) dependent
inhibition of I-κB [165–166]. c-Rel (a NF-κB subunit) can trigger Notch1 signaling pathway
by inducing expression of JAG1 [167–168]. Results from our laboratory suggest that leptin
is an important inducer of IL-1 system in breast cancer cells [161]. Moreover, IL-1, Notch
and leptin-induced upregulation of their gene components and NF-κB, HIF-1α and VEGF/
VEGFR-2 are interconnected [140,169].

8.3.3. Leptin signaling—Leptin, a pluripotent cytokine, secreted primarily by adipocytes
but also by breast cancer cells, plays key roles in regulating energy intake and energy
expenditure, including appetite and metabolism [170]. In the past decade, accumulating
evidence indicates that leptin actions are not only related to energy metabolism, but also
related to reproduction, angiogenesis, proliferation and inflammation [171–172]. Moreover,
elevated levels of leptin and its deregulated signals have been strongly associated to obesity-
related cancers including breast cancer [173]. Breast cancer cells express higher levels of
leptin and leptin receptor, OB-R, than normal mammary cells. More importantly, higher
levels of leptin/OB-R levels correlated with metastasis and lower survival of breast cancer
patients [174–176]. In vitro, leptin was demonstrated to stimulate the proliferation of breast
cancer cell lines [174,177–178]. In vivo studies clearly demonstrated a role for leptin in
mammary tumor initiation and development as evidenced by the fact that mutant mice
deficient in leptin (LepobLepob), or with non-functioning leptin receptors (LeprdbLeprdb) do
not develop transgene-induced mammary tumors [179–180]. In our previous reports, the
disruption of leptin signaling using pegylated leptin peptide receptor antagonist (PEG-
LPrA2) markedly reduced the growth of tumors in mouse models of syngeneic and human
breast cancer xenografts [181–182]. These effects were accompanied by a significant
decrease in VEGF/VEGFR-2, IL-1 R tI, cyclin D1 and PCNA levels. Moreover, tumor
angiogenesis was also impaired [181–182].

Leptin and IL-1 have been shown to be associated in several pathological situations [183–
184], suggesting an interplay between them. Indeed, leptin regulates IL-1 family members in
a diabetic context [185] and in endometrial cancer cells [186]. We also found that leptin
increased protein and mRNA levels of all components of the IL-1 system in a mouse
mammary cancer cell line. Leptin-induced canonical signaling pathways (JAK2/STAT3,
MAPK/ERK 1/2 and PI-3K/Akt1) were mainly involved in IL-1 up-regulation. In addition,
leptin upregulation of IL-1α promoter involved the activation of SP1 and NF-κB
transcription factors [161].

Little information on leptin-Notch interactions is available. An earlier report shows that
leptin regulates the expression of JAG1 and Notch4 in human cord blood CD34+ cells and
early differentiated endothelial cells (HUVEC) and also promotes cell differentiation [187].
We recently observed that leptin was able to activate Notch signaling pathway (Notch1,3,4
NICD and CSL) in mouse (4T1, EMT6 and MMT) and human breast cancer cell lines
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(MCF-7 and MDA-MB-231) under normoxic conditions. Moreover, leptin increased the
expression of both Notch receptors and ligands. In these cells leptin also up-regulated
Notch-target genes Hey2 and surviving ([140] and unpublished data). Leptin-induced non-
canonical signaling pathways (PKC, p38 and JNK) differentially impacted on CSL promoter
activity and on the expression of IL-1 system [161]. Interestingly, leptin upregulatory effects
on pro-angiogenic factors IL-1, VEGF/VEGFR-2 and Notch were significantly abrogated by
a γ-secretase inhibitor, DAPT as well as siRNA against CSL (unpublished data).

We speculate that complex molecular mechanisms are involved in leptin interactions with
Notch and IL-1 in breast cancer cells. Notch, IL-1 and leptin outcome crosstalk (NILCO) is
required for leptin regulation of VEGF/VEGFR-2. As discussed above, Notch could
crosstalk and also be regulated by STAT3, NF-κB, HIF-1α and HER2. These factors are also
regulated/activated by leptin and IL-1. Then NILCO could impact on Notch signaling
regulation as follows: (1) STAT3 activation: leptin binding to OB-Rb (long and full-
functional isoform) activates JAK2 that is recruited/autophosphorylated- and phosphorylates
OB-R and STAT3 [188–189]. Leptin–induced activation of STAT3 was required for the
induction of CSL, IL-1 (unpublished data) and VEGF [169]. (2) Leptin activation of NF-κB
is involved in the upregulation of IL-1 [161]. NF-κB and HIF-1α are essential factors for
leptin regulation of VEGF in breast cancer cells [169]. Moreover, the blockade of leptin
signaling markedly reduced the growth of tumors and the expression of VEGF in mouse
models of syngeneic and human breast cancer xenografts [181–182]. Leptin increased
VEGF/VEGFR-2 expression in endometrial cancer cells in vitro [186] and in breast cancer
cells in vitro and in vivo [181–182]. (3) Leptin/HER2 crosstalk: Leptin treatment activates
HER2 through trans-phosphorylation on Tyr-1248 in the HER2 intracytoplasmatic tail
[190]. HER2 physically interacts with OB-R and, thus the leptin/OB-R signaling might
contribute to enhanced HER2 activity in MCF-7 cells [191]. (4) Leptin increases estrogen
levels and ERα activity: ERα and Notch have an active crosstalk (see section 8.5.1)
[61,192]. Aromatase, a product of the CYP19 gene and a member of the cytochrome P450
(CYP) enzyme family, catalyzes a rate-limiting step for the conversion of androstenedione
to estrone and testosterone to E2 [193]. Leptin can enhance aromatase activity and
expression either in stromal cells or breast cancer cell lines, thus it can increase estrogen
production [194–195]. In addition, leptin transactivates ERα in MCF-7 cells [196]. Obesity
has become a pandemic particularly in western countries. Increased leptin signaling is
associated with obesity and breast cancer incidence. Combinatory therapy targeting NILCO
would enhance the disruption of specific signaling pathways involved in breast cancer
progression. This might help to design new strategies aimed at controlling growth,
angiogenesis and metastasis in breast cancer.

8.4. Oncogenic kinases and Transcription factors
8.4.1. Ras signaling pathway—Ras signaling plays an important role transmitting
signaling from RTKs to ser/threo kinases. Among the effector molecules connected with the
group of cell surface receptors, Ras has an essential role in transducing extracellular signals
to diverse intracellular events by controlling the activities of multiple signaling pathways
[197]. Ras oncogene is mutated in a large number of cancers including breast cancer.
Deregulated Ras signaling impacts on many cellular functions, including cell cycle
regulation, apoptosis and cell survival, therefore, Ras is a major target for the development
of novel cancer treatments [198]. The signaling networks Ras regulates are very complex
due to their multiple functions and crosstalk [199].

Crosstalk between Ras and Notch pathways has been described in pancreatic ductal
adenocarcinoma [200], colorectal tumors [201], astrocytic gliomas [202], leukemia [203–
204], as well as breast cancer [205–206]. In an early report [60], Weijzen et al demonstrated
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that oncogenic Ras activates Notch signaling. Notch1 was necessary to maintain the
neoplastic phenotype in Ras-transformed human cells in vitro and in vivo [60]. Oncogenic
Ras increased levels and activity of Notch1 NICD and upregulated Notch ligand Dll-1 and
also presenilin-1, a protein involved in Notch processing, through p38-mediated pathway
[60]. These observations established that Notch signals are among the key downstream
effectors of oncogenic Ras. Gustafson et al [205] observed that transformation of MCF-10A
cells by Harvey-Ras (Ha-Ras) induces CCAAT/enhance binding protein beta (C/EBPβ), a
transcriptional factor, and activates the Notch signaling pathway to block SIM2s (a
transcriptional factor) gene expression. High level expression of Notch receptors, ligands
and its cooperation with the Ras/MAPK pathway in several breast cancers and early
precursors places Notch signaling as a key player in breast cancer pathogenesis. This offers
combined inhibition of the two pathways as a new modality for breast cancer treatment
[206].

8.4. 2. PI-3K/Akt signaling pathway—The phosphatidylinositol 3-kinase (PI-3K/Akt)
pathway plays a central role in a variety of cellular processes, including cell growth,
proliferation, motility, survival and angiogenesis in tumor cells including breast cancer
[207–208]. The PI-3K/Akt pathway is also instrumental in EMT during carcinogenesis
[209]. Many of the transforming events in breast cancer are a result of enhanced signaling of
the PI3-K/Akt pathway [208,210].

Notch has been shown to regulate the Akt (ser/threo) or Protein kinase B (PKB) pathway.
Liu et al. [211] reported that Notch1 activation enhanced melanoma cell survival and the
effects of Notch signaling were mediated via activation of the Akt pathway. Palomero et al
[212] found that Notch1 induced up-regulation of the PI-3K/Akt pathway via Hes1, which
negatively controlled the expression of phosphatase and tensin homolog on chromosome 10
(PTEN) in T-cell acute Lymphoblastic Leukemia (T-ALL). Additional reports also
demonstrated that Notch1 crosstalks with Akt pathway in T-ALL, melanoma as well as
breast epithelial cells [213–215]. On the one hand, activation of Akt was necessary for
Notch-induced protection against apoptosis in MCF-10A. On the other hand, inhibiting
Notch signaling in breast cancer cells induced a decrease in Akt activity and an increase in
apoptotic sensitivity [215]. Down-regulation of Notch1 or JAG1 mediated the inhibition of
cell growth, migration and invasion, and the induction of apoptosis in prostate cancer. These
effects were in part due to inactivation of Akt, mTOR, and NF-κB signaling pathways [216].

In an early report [217], activated Notch1 synergizes with papillomavirus oncogenes in
transformation of immortalized epithelial cells and leads to the generation of resistance to
anoikis, an apoptotic response induced by matrix withdrawal. This resistance to anoikis by
activated Notch1 is mediated through the activation of PKB/Akt. The cellular
responsiveness to Notch signals depending PI-3K/Akt pathway also occurs in other types of
cells, such as Chinese hamster ovary (CHO) cells, primary T-cells and hippocampal neurons
[218].

Akt is also a regulator of Notch signaling. Hyperactivated PI3-K/Akt signaling led to
upregulation of Notch1 through NF-κB activity, while the low oxygen content normally
found in skin increased mRNA and protein levels of Notch1 via stabilization of HIF-1α
[213]. Taken together, these findings demonstrate that Notch1 is a key effector of both Akt
and hypoxia in melanoma development. To the best of our knowledge, there no reports
about whether Akt is also a regulator of Notch signaling in breast cancer.

8.4.3. mTOR Signaling—mTOR, a key protein kinase, controls signal transduction from
various growth factors and upstream proteins to the level of mRNA translation and ribosome
biogenesis. mTOR is a ser/threo kinase that is often a downstream effector of PI-3K/Akt
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signaling pathway in breasts and many types of cancer cells. However, MAPK pathway was
identified as the preferential upstream regulator of mTOR in the induction of inflammatory/
pro-angiogenic molecules in endometrial cancer cells [186]. mTOR can also phosphorylate
Akt [219]. mTOR has been intensely studied for over a decade as a central regulator of cell
growth, proliferation, differentiation, autophagy, angiogenesis and survival [220–222].
mTOR functions as two distinct multiprotein complexes, mTORC1 and mTORC2
[219,223]. mTORC1 phosphorylates p70 S6 kinase (S6K1), eukaryotic initiation factor 4E
(eIF4E) binding protein 1 (4E-BP1) and integrates hormones, growth factors, nutrients,
stressors and energy signals. In contrast, mTORC2 is insensitive to nutrients or energy
conditions. However, in response to hormones or growth factors, mTORC2 phosphorylates
Akt, and regulates actin cytoskeleton and cell survival [219]. Aberrant activation of mTOR
pathway is found in many types of cancer and thus plays a major role in breast cancer cell
proliferation and anti-cancer drug resistance [224–226]. mTOR signaling has been reported
to crosstalk with the Notch signaling pathway in several malignant cells [96,227–229].

Inhibition of p53 by Notch1 NICD mainly occurs through mTOR linked to PI-3K/Akt
pathway. Moreover, rapamycin treatment abrogated NICD inhibition of p53 and reversed
the chemoresistance [229]. Chemoresistant MCF-7 and MOLT4 (T-cell acute lymphoblastic
leukemia) cells have aberrant Notch1 that can be reversed by using both PI-3K and mTOR
inhibitors [229]. Efferson et al [228] used an ERbB2-transgenic mouse model of breast
cancer (neuT) to show that Notch signaling plays a critical role in tumor maintenance.
Inhibition of the Notch pathway with a γ-secretase inhibitor (GSI) decreased both the Notch
and mTOR/Akt pathways. Antitumor activity resulting from GSI treatment was associated
with decreased cell proliferation [229].

8.4.4. NF-κB signaling pathway—The family of NF-κB transcription factors is involved
in expression of genes involved in key genes for innate and adaptive immunity, cell
proliferation and survival, lymphoid organ development. NF-κB is activated in a variety of
cancers, including breast cancer [230–231] also linked to tumor angiogenesis [169]. NF-κB
family, RelA (p65), RelB, c-Rel, p105/p50 and p100/p52 are evolutionarily conserved
molecules that form hetero- or homodimers. The p65/p50 heterodimer, the most abundant
form of NF-κB is regulated by the so-called canonical pathway [230,232].

Numerous reports have described the bidirectional regulation of Notch and NF-κB through
different context-dependent mechanisms. First, Oswald et al. [233] clearly demonstrated that
Notch is able to transcriptionally regulate NF-κB members. RBP-Jk is a strong
transcriptional repressor of p100/p52 whose effects can be overcome by activated Notch1,
suggesting that p100/p52 is a Notch target gene. Cheng et al [234] further observed that
Notch1 upregulates the expression of p65, p50, RelB, and c-Rel subunits in hemopoietic
progenitor cells using Notch1 antisense transgenic (Notch-AS-Tg) mice. Additionally,
Notch1 regulated NF-κB in cervical cancer cells in part via cytoplasmic and nuclear IKK-
mediated pathways [235]. Second, NF-κB subunits are also able to transcriptionally regulate
Notch family members. This is supported by the findings of Bash J, et al. [167] that
demonstrated c-Rel can activate Notch signaling pathway by up-regulating JAG1 gene
expression in lymphocytes. A role for JAG1 in B-cell activation, differentiation or function
was also suggested [167]. Lastly, members from Notch and NF-κB family could physically
interact with each other. Wang J, et al. [236] demonstrated that N-terminal portion of
Notch1 NICD interacted specifically with p50 subunit and inhibited p50 DNA binding in
human NTera-2 embryonal carcinoma cells. In contrast, in T-cells Notch1 NICD was found
to activate NF-κB by directly interacting with NF-κB and competing with IκBα. These
processes lead to the retention of NF-κB in the nucleus. It seems that in T-cells there are two
'waves' of NF-κB activation: an initial, Notch-independent phase, and a later sustained
activation of NF-κB, which is Notch dependent [237]. In breast cancer, both Notch and NF-
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κB are prominent therapeutic targets. If murine and in vitro data are confirmed in human
cancer, the treatment of cancers dependent on Notch activity may benefit from combinations
of agents targeting both pathways [168].

8.4.5. HIF signaling pathway—A critical aspect of tumor biology is the sensation of
oxygen in the microenvironment. In response to hypoxia, a hallmark of most solid tumors,
cells try to adapt by regulating metabolism, erythropoiesis, and angiogenesis and by
modulating pathways that result in survival or cell death. HIF is a key molecule unregulated
in response to oxygen deficiency, as it acts as a master regulator of genes involved in tissue
reoxygenation [238]. Additionally, HIF has been known to facilitate cancer progression by
promoting tumor neoangiogenesis, cell motility, and invasion [239]. HIF is a heterodimer
consisting of a constitutively expressed HIF-1β subunit and an oxygen-regulated, unstable
HIF-1α subunit. HIF interactions with DNA are mediated through Hypoxia-Responsive
Elements (HRE) [238]. Several studies have demonstrated that HIF-1 plays important roles
in the development and progression of cancer through activation of various genes involved
in crucial aspects of cancer biology, including angiogenesis, energy metabolism, vasomotor
function, erythropoiesis, and cell survival [240].

Gustafsson et al. [241] showed evidence that hypoxia promotes the undifferentiated cell
state in various stem and precursor cell populations. In this process, hypoxia blocks neuronal
and myogenic differentiation in a Notch-dependent manner. Upon Notch activation under
hypoxic conditions, Notch1 NICD can interact with HIF-1α, and then the complex is
recruited to Notch1-responsive promoters. Sahlgren et al [242] further demonstrated that a
hypoxia/Notch/EMT axis exists in tumor cells, where Notch serves as a critical intermediate
in conveying the hypoxic response into EMT. Hypoxia-induced increased motility and
invasiveness of the tumor cells require Notch signaling, and activated Notch mimicked
hypoxia in the induction of EMT. In this process, Notch signaling acts in synergy to control
the expression of Snail-1, a zinc-finger transcriptional factor repressor of E-cadherin and a
critical regulator of EMT. First, NICD could interact with the Snail-1 promoter, and second,
Notch potentiated HIF-1α recruitment to the lysyl oxidase (LOX; a copper-dependent amine
oxidase) promoter and elevated the hypoxia-induced up-regulation of LOX, which stabilizes
the Snail-1 protein [242]. Hypoxia increased Notch1 mRNA and protein as well as Notch
activity, measured as Hes1 and Hey1 expression and Hes1 promoter activity. This effect was
dependent on HIF-1α [213]. These results suggest that Notch1 is under the control of
oncogenes and the tissue microenvironment. Therefore, HIF-1α and Notch signaling
pathways play a critical role in regulation of EMT and open up perspectives for
pharmacological intervention within hypoxia-induced EMT and cell invasiveness in tumors.

8.5. Other crosstalk signaling
8.5.1. ER signaling—Estrogens are important regulators of growth and differentiation in
normal breast tissue, and they also play an important role in the development and
progression of ER positive breast carcinoma [243–244]. The recognized risk factors for
breast cancer are age at: menarche, first pregnancy, and menopause. This suggests
endogenous ovarian steroids may profoundly affect initiation, promotion, and progression of
carcinogenesis through a cascade reaction initiated by activation of the ER [243,245]. ERs
are known to regulate a huge number of genes affecting cancer proliferation and vascular
function [246–247].

Soares et al [61] first demonstrated that a crosstalk between estrogen and Notch signaling
occurs in breast cancer and endothelial cells (EC). The authors observed that E2 promoted 8-
fold and 6-fold increase in Notch1 and JAG1 expression, respectively, in breast cancer
MCF-7 cells. A similar up-regulation of both Notch1 receptor and JAG1 ligand was also
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found in EC. Notch gene expression was required for tubule-like structure formation in EC.
Moreover, Notch gene expression, together with HIF-1α, was upregulated by E2. In another
report, E2 and parathion (an organophosphate compound and potent insecticide) alone and
in combination also led to an activation of Notch signaling in MCF-I0F, in the process of
malignant transformation, indicated by anchorage independency and in vitro invasive of
capabilities [248]. Notch and ERα crosstalk in breast cancer suggest that combinations of
antiestrogens and Notch inhibitors may be more effective in ERα (+) breast cancers [192].
Overall, the crosstalk between Notch and estrogen signaling pathway has a significant role
in human breast carcinogenesis and angiogenesis.

8.5.2. miRNA actions—MicroRNAs (miRNAs) are short non-coding RNAs that bind to
the 3' untranslated region (UTR) of cognate messenger RNAs (mRNAs) through fully
complementary or imperfect base-pairing repressing the translation or decreasing the
stability of the bound mRNAs [249]. miRNA are involved in biological and pathologic
processes, including cell differentiation, proliferation, apoptosis and metabolism, and are
emerging as highly tissue-specific biomarkers with potential clinical applicability for
defining cancer types and origins [250–251]. These RNAs can function as oncogenes or
tumor suppressors depending upon the cell type in which they are expressed [252–253].

There are several reports on the crosstalk between miRNA and Notch signaling pathway
[254–256]. Voo et al first reported that Notch activation leads to miR-61 mediated down-
regulation of Vav, proto-oncogene in C. elegans [256]. Interestingly, miR-61, could control
the expression of oncogene orthologues Ras and Vav indicating miRNA capacity to act as
tumor suppressors [257]. Therapeutic potential of let-7s in cancer (initially identified as a
timing developmental regulator in C. elegans) was recently reviewed [258]. In various
human cell lines, Notch activation up-regulates miRNA let-7 [255]. Let-7 regulates self
renewal and tumorigenicity of breast cancer cells [259] as well as ERα signaling in ER
positive breast cancer [260].

On the other hand, miRNAs can regulate Notch pathways. miR-34a down-regulated the
expression of Notch1 and Notch2 protein in glioma cells [254]. miR-34 down-regulated
JAG1 and Notch1 in cervical carcinoma and choriocarcinoma cells [261]. miR-34 was
required for a normal cellular response to DNA damage in vivo. Therefore, a potential
therapeutic use for anti-miR-34 as a radiosensitizing agent in p53-mutant breast cancer is
predicted [262]. In addition, altered miRNA signatures including miR-34 may be associated
to breast carcinogenesis and metastasis [263].

9. Clinical Significance of Notch signaling in human breast cancer
9.1. Tumor marker and prognostic value of Notch signaling in breast cancer

Farr et al earlier observed that high levels of Notch1 may be associated with a poorer
prognosis in breast cancer patients, while high levels of Notch2 correlated to a higher chance
of survival [63]. Therefore, Notch1 may possess tumor-promoting functions, while Notch2
could play a tumor-suppressive role in human breast cancer. Further data confirmed that
Notch1 might be a novel prognostic marker for breast cancer [62].

Dickson et al [264] examined JAG1 protein expression in breast cancer using the Allred
score (percent staining score + intensity score). Their data suggest that patients with high
levels of JAG1 protein had a worse outcome than those with tumors expressing low levels.
Patients with tumors expressing either high levels of JAG1 protein, mRNA or both had
reduced 10-year survival as well as median survival. These results show that the Allred
score for JAG1 mRNA and protein levels can be used to rapidly identify patients with
significant survival disadvantage, which may benefit from anti-Notch therapies (such as
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GSI). Another study examined 887 samples from a prospectively accrued lymph node-
negative breast cancer cohort with a median follow-up greater than 8 years. In these patients,
JAG1 protein and mRNA expression was associated with basal phenotype (triple negative
cancer: ER−, PR− and HER2−) and higher recurrence, as well as reduced disease free
survival [265]. Overall, these data suggest JAG1 might be a good prognostic marker for
human breast cancer patients.

9.2. Notch signaling as therapeutic drug target
The prevailing new strategy for rationally targeted cancer treatment is aimed at the
development of target-selective "smart" drugs on the basis of characterized mechanisms of
action. The connection between Notch signaling and carcinogenesis, as well as its crosstalk
with many oncogenic signaling pathways suggest that Notch signaling may be such a
candidate for multi-target drugs’ candidate. The major therapeutic targets in the Notch
pathway are the Notch receptors, in which GSIs prevent the generation of the oncogenic
NICD and suppress the Notch activity [266–267].

Gamma-secretase is a large membrane-integral multisubunit protease complex, which is
essential for Notch receptor activation [268]. Effects of GSI treatments in solid tumors are
shown in Table 1. Rasul et al [269] tested the effects of three different GSIs in breast cancer
cells. One inhibitor (GSI1) was lethal to breast cancer cell lines, but had a minimal effect on
the non-malignant breast lines. GSI1 treatment resulted in a marked decrease in γ-secretase
activity and downregulation of the Notch signaling pathway with no effects on expression of
the γ-secretase components or ligands. In a recent report [228], the authors observed that
inhibition of the Notch pathway with a GSI decreased both the Notch and mTOR/Akt
pathways. Antitumor activity resulting from GSI treatment was associated with decreased
cell proliferation as measured by Ki67 and decreased expression of glucose transporter
Glut1 [228]. GSI effects are much higher in HER2/neu-positive cell lines where HER2 is
amplified and/or overexpressed (ZR-75-1 and MDA-MB-453) compared with HER2-
negative cells (MCF-7 and MDA-MB-231) that lack ERbB2 amplification and show low
HER2 expression [51,192,269]. Since HER2 can influence the activity of Notch [74] and
inhibition of HER2 via trastuzumab can activate Notch signaling [270], it will be important
in considering GSI as a monotherapy or in combination with trastuzumab or lapatinib in
HER2 breast cancer patients.

Although several GSIs have already developed into the clinic trial [267], GSIs fail to
distinguish individual Notch receptors, inhibit other signaling pathways [271] and cause
intestinal toxicity [272], probably attributed to dual inhibition between Notch1 and Notch2
[273]. Very recently, Wu et al [274] utilized phage display technology to generate highly
specialized antibodies that specifically antagonize each receptor paralogue, enabling the
discrimination of Notch1 versus Notch2 function in human patients and rodent models.
Their results showed that inhibition of either receptor alone reduces or avoids toxicity,
demonstrating a clear advantage over pan-Notch inhibitors.

10. Conclusion and overall perspectives
Notch signaling and its crosstalks with many signaling pathways play an important role in
breast cancer cell growth, migration, invasion, angiogenesis and metastasis (see Fig2).
Therefore, significant attention has been paid in recent years toward the development of
clinically useful antagonists of Notch signaling.

There are still many gaps to uncover in the field of Notch signaling in breast cancer. There is
an urgent need to build up studies to better understand the heterogeneity and complexity in
the molecular biology of breast cancers and to develop tools to more accurately predict their
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prognosis and design their customized treatment strategies. Better understanding of the
structure, function and regulation of Notch intracellular signaling pathways as well as its
complex crosstalk with other oncogenic signals in breast cancer cells will be essential to
ensuring rational use of treatment and development of new combinatory therapeutic
possibilities. Emerging novel opportunities arise from the discovery of Notch crosstalk with
inflammatory and angiogenic cytokines (i.e., NILCO) and their links to obesity-related
cancers. Combinatory treatments with drugs designed to prevent Notch oncogenic signal
crosstalk may be advantageous over GSIs alone.
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Glossary

4T1 cells mouse mammary cancer cell line

ADAM a disintegrin and metalloprotease

Akt protein kinase B

ALDH aldehyde dehydrogenase

ANK ankyrin

Axin2 the Axin-related protein

BALB/c an albino, laboratory-bred strain of the house mouse

Bcl-2 B-cell lymphoma 2

Bcl-xl B-cell lymphoma-extra large

BCSC breast cancer stem cells

BMP bone morphogenetic protein

Br4 brain metastatic cell line

CaSki cervical carcinoma cell

CBF1 Centromere-Binding Factor 1

CD4 cluster of differentiation 4

CD8 cluster of differentiation 8

C/EBPβ CCAAT/enhance binding protein β

CFCs bipotent colony forming cells

c-myc Myc proto-oncogene protein

Co-A recruites coactivator

Co-R co-repressor

CpdE compound E

CSC cancer stem cell

CSL CBF1/Su(H)/Lag-1

Cyclin D1 kinase and regulator of cell cycle D1
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DAPT N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester

DBZ dibenzazipene

DDP cisplatin

DLL-1 Delta-like 1

DOS Delta and OSM-11-like proteins

DSL Delta/Serrate/LAG-2

E2 17β-estradiol

EC endothelial cells

EGF epidermal growth factor

EGFR epidermal growth factor receptor

EMD company name

EMT epithelial-mesenchymal transformation

EMT6 a mouse mammary adenocarcinoma cell line

ER estrogen receptor

ERK 1/2 extracellular regulated kinase 1 and 2

GBM Glioblastoma

GSI a γ-secretase inhibitor

HD heterodimerization

HDAC histone deacetylases

HIF-1α hypoxia regulated factor-1 α

HT-29 colon cancer cell line

HUVECs human umbilical vein endothelial cells

ICN intracellular region of Notch

IGF-1 insulin like growth factor-1

IL-1 interleukin-1

IL-1R tI interleukin-1 type I receptor

IL-6 interleukin-6

IL-6R interleukin-6 receptor

JAK2 Janus kinase 2

MAPK mitogen activated protein kinase

MCF-7 ER positive human breast cancer cell line

MDA-MB231 ER negative human breast cancer cell line

MFE Mammosphere-forming efficiency

miRNA MicroRNA

mTOR mammalian target of rapamycin

NECD Notch extracelluare domain
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NEXT Notch extracelluar truncation

NF-κB eukaryotic nuclear transcription factor kappa B

NICD Notch intracellular domain

NRR negative regulatory region

OB-R leptin receptor

PDAC pancreatic ductal adenocarcinoma

PDGF platelet-derived growth factor

PEST proline, glutamine, serine and threonine residue

PI-3K phosphoinositide 3-kinase

RhoC Ras homolog gene family, member C

Src a proto-oncogenic tyrosine kinase

SiHa human cervical tumor cell

STAT3 signal transducer and activator of transcription 3

TACE tumor necrosis factor-α-converting enzyme

TAD transactivation domain

TAM tamoxifen

T-ALL T-cell acute Lymphoblastic Leukemia

TGF-β transforming growth factor beta

TNF-α tumor necrosis factor alpha

TSA Trichostatin A

U87MG a glioma cell line

VEGF Vascular endothelial growth factor

VEGFR-2 Vascular endothelial growth factor receptor 2 or KDR or Flk-1
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Fig. 1.
Notch signaling and its possible downstream targets in breast cancer. Mammalian ligands of
Notch are membrane-bound proteins containing an extracellular NH2-terminal Delta/
Serrate/LAG2 (DSL) motif followed by epidermal growth factor (EGF)-like repeats. Notch
receptors are broadly expressed on the cell surface as heterodimers containing a Notch
extracellular domain (NECD) composed by multiple extracellular EGF-like repeats, three
Lin12/Notch repeats (LNR or NRR) and a heterodimerization (HD) domain followed by a
transmembrane subunit (N™). Notch receptor cytoplasmatic region or Notch intracellular
domain (NICD) contains one nuclear localization signals (NLS) linking RAM domain to six
ankyrin (ANK) repeats (ANK domain) followed by an additional bipartite NLS, a loosely
defined transactivation domain (TAD), and a conserved proline/glutamic acid/ser/threo-rich
domain (PEST domain). In the absence of activated Notch signaling, the DNA binding
protein RBP-Jk (CSL/CBF1/Su (H)/Lag1, a transcription factor) forms a complex with
corepressor molecules that represses transcription of target genes. Ligand binding to NECD
triggers successive proteolytic cleavages of Notch cytoplasmatic region; S2: by TACE
(ADAM) and S3/S4: by γ-secretase, proteases resulting in the release of NICD, which
translocates into nucleus and removes corepressors from RBP-Jk. This allows RBP-Jk to
recruit a coactivator complex composed of Mastermind (MAM) and several transcription
factors to transcriptionally activate Notch target genes.
Activation of Notch could impact on the following processes in breast cancer: 1) inhibition
of apoptosis through upregulation of survivin [51–52] and Bcl-2 protein family [294]; 2)
activation of the cell cycle through upregulation of Cyclin D1 [73]; 3) promotion of cell
proliferation/survival through upregulation of PI-3K/Akt [211], TGF-β [134], c-Myc [46],
NF-κB [86], EGFR [117] and IL-6 [154] pathways; 4) stimulation of angiogenesis and
VEGF/VEGFR-2 autocrine/paracrine loop by upregulation of IL-1 system and VEGF/
VEGFR-2 ([140,161] and unpublished results); 5) suppression of cancer growth in some
cellular situations. For example, Notch2 signaling may function as a tumor suppressor
through upregulation of PTEN or downregulation of PI-3K/Akt/mTOR [295]. Note: (*):
TAD is not present in Notch3 and 4.
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Fig. 2.
Potential Notch signaling crosstalk with other pathways in breast cancer. OB-R: leptin
receptor ; IL-1: pro-inflammatory/-angiogenic cytokine interleukin-1; NILCO: Notch-IL-1-
Leptin crosstalk outcome; E2: 17β-estradiol; HER/ErbB: HER1/EGFR, HER2, HER3 and
HER4, encode for RTK-transmembrane proteins; NF-κB: a transcription factor family,
nuclear factor kappa-light-chain-enhancer of activated B cells; IL-6: pro-inflammatory/-
angiogenic cytokine, interleukin-6; STAT3: Signal transducer and activator of transcription
3; PDGF-D: Platelet-derived growth factor D; TGF-β: transforming growth factor β;
miRNA: MicroRNA; PI-3K: phosphatidylinositol 3-kinase; mTOR: mammalian target of
rapamycin; HIF-1: hypoxia-inducible transcription factor 1; VEGF: vascular endothelial
growth factor; VEGFR-2: vascular endothelial growth factor receptor-2.
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Table 1

Gamma-secretase inhibitors effects in cancer.

Compound Type of cancer cells tested Type of studies Biological effect reported Reference

Experimental models

GSI-I(Z-LLNle,Calbiochem) ER− Breast cancer cell lines In vitro Apoptosis; growth suppression Suppressed
proliferation and metastasis,

[51]

Xenograft In vivo

Breast cancer cell lines In vitro GSI1 induces a G2/M arrest resulting in
apoptosis through downregulation of Bcl-2,
Bcl-XL

[269]

ER+ Breast cancer cell lines In vitro Inhibition of the transcription of ERα-target
genes via IKKα-dependent

[275]

GSIs IX (DAPT)
CalBiochem, EMD
Biosciences, Sigma)

Neuroblastoma cell lines. In vitro Induced complete cell growth arrest,
promoted neuronal differentiation, and
significantly reduced cell motility.

[276]

U87MG human
glioblastoma Human lung
adenocarcinoma cell line
A549

Tumor
xenografts in
nude mice

Inhibited the growth of tumor xenografts in
nude mice [277]

Breast cancer In vitro
In vitro

Reversal of breast cancer-induced
osteoclastogenesis and enhancement of
cancer cell attachment

[278]

Breast cancer stem cells in vitro culture
and in vivo
transplant
models

Reduce ductal carcinoma in situ (DCIS)
mammosphere formation

[4]

Mouse breast cancer cells
4T1

In vitro Inhibition of leptin-induced VEGF/VEGF-
R2 and IL-1/IL-1R tI

[279]

Ovarian cancer cells A2780 In vitro Inhibit cell growth, induce G1 cell cycle
arrest and induce apoptosis

[280]

CaSki and SiHa cells
(cervical carcinoma cells
lines

In vitro Decreased RhoC activity and metastasis [281]

Br4 brain metastatic cells In vitro Inhibit the migration and invasion of Br4
cells

[282]

Colon cancer cell lines
HT-29

In vitro Inhibition of proliferation and apoptosis [283]

Glioblastoma (GBM) stem
cells

In vitro Dispersion of the neurospheres leading to
cell death

[284]

Normal breast tissue, pure
DCIS tissue of varying
grades, and DCIS tissue
surrounding an invasive
cancer

In vitro Reduce mammosphere-forming efficiency
(MFE)

[285]

GSIs XXI (compound E
[CpdE]) CalBiochem, EMD

Breast cancer In vitro
In vivo

Reversal of breast cancer-induced
osteoclastogenesis and enhancement of
cancer cell attachment

[278]

Neuroblastoma cell lines. In vitro Induced complete cell growth arrest,
promoted neuronal differentiation, and
significantly reduced cell motility.

[276]

GSI18 Human pancreatic cancer
cell lines

In vitro Depletion in the proportion of tumor-
initiating aldehyde dehydrogenase
(ALDH)-expressing subpopulation

[286]

MRK-003(Merck) BALB/c- ERBB2-transgenic
mouse model of breast
cancer (neuT) mice.

In vivo Inhibition of tumor growth progression and
increase of overall survival of transgenic
mice (ERBB2- breast cancer ; neuT)

[228]
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Compound Type of cancer cells tested Type of studies Biological effect reported Reference

Experimental models

Inducible Her2-driven
invasive mammary
adenocarcinoma models

In vivo Inhibition of cell growth [287]

pancreatic ductal
adenocarcinoma (PDAC)

In vivo Inhibits PDAC cell growth [288]

Human lung cancers In vivo xenograft
model

Reduced tumor cell proliferation, inhibited
serum independence and induced apoptosis [289]

In vitro

Clinical trials

    PF-03084014(Pfizer) Advanced cancer and
leukemia

Phase I clinical
trials

Cell growth inhibition via cell cycle arrest
and induction of apoptosis

[290]

      DAPT (Sigma) Head and neck squamous
cell carcinoma

Phase I clinical
trails

Enhances cisplatin (DDP)-sensitivity [291]

    MK-0752 (Merck) T-cell acute lymphoblastic
leukemia/lymphoma

Phase I clinical
trials

All doses were sufficient to inhibit gamma
secretase

[292]

Advanced or Metastatic
Breast Cancer

Phase I/II study Can target stem cells and prevent tumor
recurrences

*

    RO4929097 (Roche) Advanced solid tumors Phase I study Antitumor activity and prolonged stable
disease

[293]

*
http://clinicaltrials.gov/ct2/show/NCT00645333
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