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Abstract
The greatest risk from live-attenuated vaccines is reversion to virulence. Particular concerns arise
for RNA viruses, which exhibit high mutation frequencies. We examined the stability of 3
attenuation strategies for the alphavirus, Venezuelan equine encephalitis virus (VEEV): a
traditional, point mutation-dependent attenuation approach exemplified by TC-83; a rationally
designed, targeted-mutation approach represented by V3526; and a chimeric vaccine, SIN/TC/
ZPC. Our findings suggest that the chimeric strain combines the initial attenuation of TC-83 with
the greater phenotypic stability of V3526, highlighting the importance of the both initial
attenuation and stability for live-attenuated vaccines.
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Introduction
Despite their dramatic impact on the reduction of infectious diseases, vaccines are viewed
skeptically by some, and modern vaccines are subject to ever-tightening safety requirements.
Many successful vaccines are attenuated strains that undergo limited replication in the
vaccinee. These live-attenuated vaccines offer advantages over inactivated agents, subunit or
virus-like particles that do not replicate in the host, including a typically low cost of
manufacture and the induction of rapid and long-lived humoral and cell-mediated immunity
after a single dose. Vaccines for polio, smallpox, and yellow fever are a few examples of
highly successful, live-attenuated viral vaccines. However, these vaccines have a low but
significant risk for reactogenicity and can sometimes produce life-threatening disease [1–5].
Because of their reactogenicity, current regulatory standards would probably prevent their
licensure today.

Today, successful live-attenuated vaccines must carefully balance robust immunogenicity
and safety. In many cases, the more immunogenic a vaccine, the more likely it will result in
adverse effects. A major challenge to the generation of safe, live-attenuated vaccines to
protect against RNA viral diseases is the inherent instability of the RNA genome as a result
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of the high error rate of RNA-dependent RNA polymerases [6]. In general, RNA viruses
have mutation rates ranging from 10−3 to 10−5 substitutions per nucleotide copied [7–9].
This allows rapid adaptation and evolution when RNA viruses are subjected to changing
selective pressures. These high mutation frequencies result in heterogenous mutant
populations of viral genomes, even from clonal sources such as plaque harvests or cDNA
[10]. This presents a major challenge for the generation of safe, live-attenuated vaccines.
RNA viral vaccine genetic instability is underscored by studies of type 3 oral polio
vaccinees (OPV), which commonly reveal the presence of virulent mutants [11–13]. It is
therefore essential to evaluate the genomic stability of a new vaccine to ensure the genomic
heterogeneity generated by replication does not impact the stable attenuation of the
population.

Traditional approaches for generating live-attenuated RNA viral vaccines have relied
principally on serial passage through cell cultures or animals. Examples include the yellow
fever 17D, OPV, and the TC-83 Venezuelan equine encephalitis (VEE) vaccine. Genetic
characterizations have revealed that attenuation of these vaccine strains results from only a
few point mutations. Because of the inherent instability of the RNA genome, attenuating
point mutations are likely to revert in vivo, or the virus may acquire a compensatory point
mutation(s) that restores virulence (pseudoreversion). An example is TC-83, produced via
83 passages of the virulent Trinidad donkey strain (TrD) of VEEV in guinea pig heart cells
(4). TC-83 attenuation is attributed to only two mutations: position three of the 5′UTR and a
nonsynonymous mutation that changes amino acid 120 of the E2 glycoprotein. [14]. This
small number of attenuating mutations may contribute to the high rates of reactogenicity
seen in human vaccinees [15–17]. Attenuation of TC-83 has also been shown experimentally
to be unstable; as few as three serial intracranial (i.c.) passages in infant mice result in
reversion to a neurovirulent phenotype characteristic of the parent TrD strain [18,19]. Of
even more significance are rodent-virulent isolates made from human TC-83 vaccinees,
indicating that reversion can occur in humans [20].

To overcome the instability and reactogenicity of TC-83, a new VEEV attenuation approach
was developed for the V3526 vaccine. A full-length cDNA cloned derived from the Trinidad
donkey (TrD) strain was modified to contain two independently attenuating mutations: 1) a
deletion of the four amino acid furin cleavage recognition site between envelope proteins E3
and E2; and 2) a nonsynonymous mutation encoding a Phe-to-Ser residue change at position
253 (F253S) of the E1 envelope glycoprotein [21]. The latter mutation is required to rescue
viability of the cleavage site mutant, so its reversion should be prevented as long as the E3–
E2 cleavage site deletion cannot be restored. Thus, this attenuation design of V3526 should
be inherently more stable than that of TC-83. Previous studies examining neurovirulence of
this vaccine candidate indicated it does not gain virulence following five serial intracerebral
(i.c.) passages in adult mice or five cell culture passages. Also, V3526 replicates poorly in
adult mouse brains and causes less pathology when compared to TC-83 [20].

Another approach to alphavirus attenuation is to generate chimeric strains in which
nonstructural genes and cis-acting RNA elements are derived from a relatively benign virus
[e.g., Sindbis (SINV)], while the structural proteins are derived from the vaccine target
virus. Multiple chimeric alphavirus vaccine candidates have been developed and shown to
be safe, immunogenic, and protective in rodent models [22–25]. For one SIN/VEEV
chimera, the capsid is derived from the TC-83 VEEV strain to enhance viral packaging and
the remaining structural protein genes and cis-acting RNA elements are derived from
enzootic VEEV strain ZPC738 (subtype ID) [26]. This strain, SIN/TC/ZPC (previously
referred to as SIN/ZPC) is highly attenuated, immunogenic, protects against VEEV
challenge, and generates no detectable viremia in mice or hamsters (Fig. 1)[27].
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In this study we tested the hypothesis that the traditional, point mutation-dependent
attenuation approach exemplified by TC-83 is less stable than the attenuation strategies
represented by V3526 and SIN/TC/ZPC. To assess attenuation stability, we selected for
reversion to virulence and compared the phenotypic and genetic stability of each attenuation
approach.

Methods
2.1 Viruses

Each of the three viruses used in this study was derived from a cDNA clone and transcribed
RNA was electroporated into BHK cells to generate infectious virus. The TC-83 [28], SIN/
TC/ZPC [27], and V3526 clones were described previously. The V3526 mutations were
introduced into a V3000 clone of a VEEV TrD isolate that had previously been passed once
in guinea pig brain and 14 times in embryonated eggs [21,29].

2.2 Selection for virulence
We subjected each VEEV strain to 10 serial, i.c. inoculations in 6-day-old outbred NIH
Swiss mice (Harlan Laboratories, Indianapolis, IN). For each passage, approximately 50 μl
of a 6 log10 plaque forming unit (pfu)/ml stock of virus was inoculated into five mice per
replicate. Two parallel replicate passage series (A and B) of each strain were performed to
assess variation in the results and to detect convergent mutations that might indicate positive
selection. Following ca. 48 h of incubation, after which the mice were euthanized, their
brains were harvested, triturated, and titrated by plaque assay on Vero cells. Virus isolated
from one brain sample from each replicate was used as the inoculum for the next passage.
During the passage series, we observed that mice in both the V3526 and TC-83 series began
dying less than 48 h after infection. Therefore, during later passages we harvested at earlier
time points to retrieve brains prior to death. Following 10 passages, the brain isolates were
plaqued on Vero cell monolayers to isolate clonal populations for further study. A single
clonal population for each replicate was randomly selected and subjected to further analysis.
While there was some plaque size variation observed in some replicates of passages 2–5 for
V3526 and SIN/TC/ZPC, no major plaque phenotype differences were observed in p10 of
any of the strains. Thus, the plaque clonal isolates were derived from average size plaques
for each p10 replicate.

2.3 Phenotypic virulence
The virulence of the parental strains, consensus viruses isolated from passages 5 (p5) and 10
(p10), and plaque clonal isolates was evaluated by inoculating 6-day-old mice NIH Swiss
mice subcutaneously (s.c.) with 50 μl of a 6 log10 pfu/ml stock and assessing survival over
14 days. Subcutaneous infection was selected because intracranial infection results in rapid
death with little opportunity to observe increased virulence.

2.4 Genomic sequencing
To investigate potential determinants of increased virulence, the complete genomes of 5th
and 10th passage populations as well as the p10 plaque clone isolate populations were
analyzed. RNA was extracted using the QIAamp Viral RNA Mini kits (Qiagen, Valencia,
CA) and amplified using the Titan One Tube RT-PCR kit (Roche, Germany). RT-PCR
products were visualized on a 1% agarose gel and bands were gel extracted. Sequencing was
performed using an ABI 3100 Genetic Analyzer (Applied Biosystems, Carlsbad, CA) and
alignments and analysis were performed in Sequencher 4.9 (Ann Arbor, MI). The 5′
untranslated region (UTR) of each strain was amplified using the RLM-RACE kit (Ambion,
Austin, TX).
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Results
3.1 Virulence

As expected, each vaccine strain showed an overall increase in virulence following serial
passages (Figure 1). The TC-83 parent caused no mortality over 14 days, but the p5 TC-83
replicates both caused 100% mortality by 8 days post-inoculation, and the p10 replicates
caused 100% mortality by day 6 (Fig. 1A). TC-83 plaque isolates from replicates A and B
caused 100% mortality by day 7 and 6, respectively (Fig. 1A). A log rank test on the
survival curves indicated that this increase in TC-83 virulence was significant (p < .0001).

Strain V3526 exhibited the highest parental virulence (100% mortality by day 7), but
passaging had little effect (100% mortality by days 6 and 5 for p5 and p10, respectively).
Interestingly, the p10 plaque isolate from replicate A appeared to be no more virulent than
the parental strain, (causing 100% mortality by day 7), whereas the replicate B plaque
isolate was highly virulent, causing 100% mortality by day 5 (Fig. 1B). No changes in the
virulence of any V3526 passages were significant.

Like TC-83, the SIN/TC/ZPC parental strain induced no mortality and remained the most
attenuated after selection for increased neurovirulence, with 11–44% mortality rates for p5
and p10 isolates. Specifically, replicate p5A killed 33% of mice by day 10, whereas replicate
p5B killed 40% by day 12. Even more pronounced, passage p10A produced 44% mortality
by day 9, while p10B only produced 11% mortality by day 10. Both plaque isolates showed
an increase in virulence compared to the populations from which they were derived, causing
100% mortality by day 7 (Fig. 1C). A log rank analysis indicated that the virulence changes
exhibited by both passaged populations and plaque isolates were highly significant (p < .
0001). Comparison of the plaque isolate replicates alone indicated a significant difference in
virulence between the replicates (p <0.01).

3.2 Genetic stability
Full genome sequencing of each p10 strain was performed to correlate genetic changes with
changes in virulence. As seen in Table 1, TC-83 consensus replicate A had an insertion in
the 3′ UTR and a mutation in E1. TC-83 consensus replicate B had an amino acid change in
nsP2, synonymous mutations in nsP2 and E1, and a deletion in the 3′ UTR. The plaque
isolate from TC-83 replicate A had a nonsynonymous mutation in the E1 gene, while the
replicate B plaque had a mutation at position 3 of the 5′UTR. Both p10 replicates of V3526
accumulated 4 nonsynonomous changes, all of which occurred in either the E2 or E1 genes.
The sequence of V3526 plaque clonal replicate A had a previously unseen nonsynonymous
mutation in the E1 gene, and clonal replicate B had an additional nonsynonymous nsP2
mutation at position 129. In both passage replicates, SIN/TC/ZPC had a consensus mutation
at nucleotide 5 in the 5′ UTR, and replicate B had two adjacent mutations in the nsP3 gene.
SIN/TC/ZPC plaque isolate A had two unique nucleotide changes at position 130 in the
nsP1 gene and at position 32 of the nsP3 gene. Replicate B had a T45C mutation in the
5′UTR.

Discussion
In this study we evaluated the genetic and phenotypic stability of three attenuation methods
for alphavirus vaccine development. We subjected each strain to selection for adaptation to
virulence by sequentially passaging them through infant mouse brains. We observed
significant increases in lethality of both TC-83 and SIN/TC/ZPC, and an increasing trend for
virulence in V3526. However, while we observed an increase in virulence for each strain,
only modest changes occurred in the consensus sequences. The lack of a clear correlation
between genetic and phenotypic changes was surprising, but not unprecedented.
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Quasispecies analyses of multiple RNA viruses have shown that selection can act on viral
populations as a whole rather than the individual representative genomes [30–32]. Similarly,
virulence can be determined by the proportion of and interaction between attenuated and
virulent genomes [33–36]. Therefore, the observed phenotype may not correlate with
consensus mutations because the virulence determinants operate at a population level. This
is exemplified by foot-and-mouth disease (FMDV) and mumps viruses, in which significant
changes in virulence are not reflected in the observed genetic heterogeneity [37,38]. Similar
findings have been demonstrated previously for other arboviruses [39–41].

By examining plaque clones from each passage replicate we were able to identify some
virulent variants that differed from the consensus sequence. The plaque isolate from TC-83
replicate B had a mutation in the 5′UTR that is known to be one of two sites responsible for
attenuation of this strain [14]. However, this mutation did not appear to afford the variant
full wild-type virulence, as the parental Trinidad Donkey strain caused 100% lethality within
three days when inoculated subcutaenously into infant mice (data not shown). We also
observed a higher virulence of plaque clonal isolates of both replicates of SIN/TC/ZPC, as
compared to the uncloned populations, without any genetic change in regions known to be
important for virulence. These clonal isolates may represent subpopulations of genomes that
are masked, and suggest that more intensive viral population analysis may reveal details
about the range and frequency of individual variants. As discussed above, RNA virus
populations are expected to exhibit genetic instability as a result of their error-prone
polymerases.

While all three attenuation methods showed some evidence of instability, the only direct
genetic reversion was observed for TC-83, which is known to revert to virulence in both
animal models and human vaccinees [18–20]. While V3526 had the least overall change in
virulence, it showed the greatest genomic instability with 8 total mutations, 6 of which were
nonsynonymous. SIN/TC/ZPC had a high degree of initial attenuation and strong genomic
stability in the VEEV-derived structural protein genes, with consensus mutations observed
only in the nonstructural SINV-derived genome regions. Plaque clones exhibited higher
virulence than either of the passaged populations or the parental strain, suggesting that these
clonal isolates are examples of variants masked by more attenuated variants in the
population. It is not surprising to observe a subpopulation of variants differing in virulence
within an RNA viral population [34,37]. However, we were encouraged to observe that,
even when subjected to strong serial selective pressures, higher virulence variants did not
emerge as consensus sequences within the SIN/TC/ZPC populations. While this level of
stability is clearly enhanced over that of TC-83, it remains to be determined if it is
acceptable for vaccine development. As greater scrutiny is placed on vaccine safety, further
characterization of the quasispecies found within vaccine products may become common,
and next generation deep sequencing may play a greater role in characterization of master
seeds. Our results underscore the current gap between characterizing genomic variants
within an RNA virus population and understanding and ultimately predicting their effect on
virulence. This topic clearly deserves further attention.

Our results suggest that SIN/TC/ZPC combines the initially high degree of attenuation
exhibited by TC-83 with the greater phenotypic stability of V3526, and thus is highly
promising as a relatively stably attenuated vaccine candidate. Both the chimeric SIN/TC/
ZPC and the V3526 attenuation methods have clear advantages to historical methods of
serial cell culture passage represented by TC-83. However, additional studies are needed to
evaluate the significance of the clonal variants within vaccine populations that vary in
virulence, and to determine whether those variants have potential consequences for vaccine
safety. Finally, our study highlights the need for the development of a standardized method
and guidelines for evaluating acceptable RNA viral vaccine stability.
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FIG 1.
Kaplan-Meier survival curves of consensus and plaque isolates from each attenuation
approach. (A) TC-83; (B) V3526; (C) SIN/TC/ZPC.
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