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Abstract

The plant hormone jasmonate (JA) plays important roles in the regulation of plant defence and development.

JASMONATE ZIM-DOMAIN (JAZ) proteins inhibit transcription factors that regulate early JA-responsive genes, and

JA-induced degradation of JAZ proteins thus allows expression of these response genes. To date, MYC2 is the only

transcription factor known to interact directly with JAZ proteins and regulate early JA responses, but the phenotype
of myc2 mutants suggests that other transcription factors also activate JA responses. To identify JAZ1-interacting

proteins, a yeast two-hybrid screen of an Arabidopsis cDNA library was performed. Two basic helix-loop-helix

(bHLH) proteins, MYC3 and MYC4, were identified. MYC3 and MYC4 share high sequence similarity with MYC2,

suggesting they may have similar biological functions. MYC3 and MYC4 interact not only with JAZ1 but also with

other JAZ proteins (JAZ3 and JAZ9) in both yeast two-hybrid and pull-down assays. MYC2, MYC3, and MYC4 were

all capable of inducing expression of JAZ::GUS reporter constructs following transfection of carrot protoplasts.

Although myc3 and myc4 loss-of-function mutants showed no phenotype, transgenic plants overexpressing MYC3

and MYC4 had higher levels of anthocyanin compared to the wild-type plants. In addition, roots of MYC3
overexpression plants were hypersensitive to JA. Quantitative real-time RT-PCR expression analysis of nine JA-

responsive genes revealed that eight of them were induced in MYC3 and MYC4 overexpression plants, except for

a pathogen-responsive gene, PDF1.2. Similar to MYC2, MYC4 negatively regulates expression of PDF1.2. Together,

these results suggest that MYC3 and MYC4 are JAZ-interacting transcription factors that regulate JA responses.
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Introduction

As sessile organisms, plants utilize small molecules, phyto-
hormones, to regulate their growth in response to environ-

mental changes. Among these molecules are several forms

of jasmonate (JA), including the active form of the JA

hormone, (3R, 7S) jasmonoyl-isoleucine (JA-Ile) (Fonseca

et al., 2009). JA, a stress hormone, is involved in defence

against insects and pathogens (Kessler and Baldwin, 2002;

Turner et al., 2002; Weber, 2002; Browse and Howe, 2008),

responses to ultraviolet radiation (Conconi et al., 1996),
ozone (Rao et al., 2000), drought (Fujita et al., 2004), and

other abiotic stresses (Moons, 2005; Ma et al., 2006). JA

can also induce the production of secondary metabolites,

including alkaloids, anthocyanins, and terpenoid com-
pounds (Feys et al., 1994; Devoto et al., 2005). Moreover,

JA is an important regulator of plant growth and de-

velopment, affecting root growth (Staswick et al., 1992;

McConn and Browse, 1996; Stintzi and Browse, 2000; Xiao

et al., 2004; Yoshida et al., 2009), senescence (Xiao et al.,

2004), trichome patterning (Yoshida et al., 2009), and

reproductive development (Feys et al., 1994; McConn and

Browse, 1996; Stintzi and Browse, 2000). Arabidopsis

mutants defective in JA synthesis or perception are male

sterile (Feys et al., 1994; McConn and Browse, 1996; Thines

et al., 2007).
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Despite the diverse roles of JA, all these JA-mediated

responses are dependent on the F-box protein, COI1. The

coi1 mutants were identified by screening Arabidopsis seed-

lings for resistance to a phytotoxin, coronatine (Feys et al.,

1994), which resembles the active jasmonate, JA-Ile. In

Arabidopsis, COI1 has been shown to associate physically

with SKP1 and CULLIN to form the SCFCOI1 complex,

a class of E3 ubiquitin ligases in the ubiquitin/26S
proteasome pathway (Xie et al., 1998; Xu et al., 2002; Xiao

et al., 2004). Although the severe JA-insensitive phenotype

of coi1 mutants indicates that SCFCOI1-mediated protein

ubiquitination is pivotal for the activation of JA responses

(Xie et al., 1998), it is only recently that the substrates of

SCFCOI1, the JASMONATE ZIM-DOMAIN (JAZ) repres-

sor proteins, were discovered (Chini et al., 2007; Thines

et al., 2007; Yan et al., 2007). The emerging model for JA
perception is that, in the presence of JA-Ile, SCFCOI1 binds

JAZ proteins and catalyses the attachment of ubiquitin

moieties to them. The ubiquitinated JAZ proteins are then

degraded by the 26S proteasome so that JAZ-interacting

transcription factors are derepressed, thus allowing expres-

sion of early response genes including JA-responsive

transcription factors, and the JAZ genes themselves. The

negative feedback loop created by elevating the expression
of the repressors then attenuates the JA signal (Browse,

2009; Chini et al., 2009). Yeast two-hybrid and pull-down

assays demonstrated that JA-Ile, but not most other JA

derivatives, can promote the COI1–JAZ interaction and

that the SCFCOI1–JAZ complex is the perception site for

JA-Ile (Thines et al., 2007; Katsir et al., 2008; Melotto

et al., 2008; Yan et al., 2009). This model has received

additional confirmation from the crystal structure of
a JAZ1 peptide (amino acids 200–220) bound to COI1 in

the presence of JA-Ile (Sheard et al., 2010).

Although our understanding of the molecular mecha-

nism for JA perception has improved over recent years,

some key components are still missing. To date, there are

12 JAZ repressor proteins, but MYC2 is the only

transcription factor known to interact directly with JAZ

proteins and activate transcription of the early JA-
responsive genes that encode downstream transcription

factors and several JAZ proteins (Lorenzo et al., 2004;

Mandaokar et al., 2006; Chini et al., 2007, 2009; Melotto

et al., 2008; Chung and Howe, 2009). MYC2 was identified

as a key regulator of JA signalling through two indepen-

dent screens for JA-insensitive mutants and corresponds to

the mutant loci methyl jasmonate-insensitive1 (jin1) and

jasmonate-insensitive1 (jai1) (Berger et al., 1996; Boter
et al., 2004; Lorenzo et al., 2004). Both mutants exhibited

reduced sensitivity to JA-mediated root growth inhibition,

a typical JA-resistant phenotype. Interestingly, MYC2

differentially regulates two branches of JA-mediated

responses; it positively regulates wound-responsive genes,

including VSP2, LOX3, and TAT, but represses the

expression of pathogen-responsive genes such as PR4,

PR1, and PDF1.2 (Lorenzo et al., 2004). These complex
interactions are co-mediated by the ethylene-responsive

transcription factor ERF1 (Lorenzo et al., 2003). MYC2

has also been proposed to have a role in abscisic acid

signalling (Abe et al., 2003).

MYC2 contains a basic helix-loop-helix (bHLH) domain

which is responsible for DNA binding and the formation of

homodimers and/or heterodimers between bHLH proteins

(Ferre-D’Amare et al., 1994; Shimizu et al., 1997; Toledo-

Ortiz et al., 2003). As a MYC-related protein, MYC2 has

a partially conserved leucine zipper (ZIP) motif adjacent to
the bHLH domain, which may stabilize protein dimers

(Heim et al., 2003). In Arabidopsis, there are 133 bHLH

genes, constituting one of the largest families of transcrip-

tion factors (Heim et al., 2003). Based on the amino acid

sequence similarity both in and outside of the bHLH

domain, Arabidopsis bHLH proteins are divided into 12

major groups and a total of 25 subgroups (Heim et al.,

2003). MYC2 is a member of the subgroup IIIe, along with
MYC3 (At5g46760), MYC4 (At4g17880), and At5g46830

(bHLH28), which we have designated MYC5 (Abe et al.,

2003; Heim et al., 2003).

In contrast to severe JA-synthesis and JA-perception

mutants, myc2 plants are male-fertile, and this indicates

that there are other JAZ-interacting transcription factors

that activate the expression of primary JA-responsive genes

following JA-mediated removal of JAZ repressors. A yeast
two-hybrid screen of an Arabidopsis cDNA library that

used JAZ1 as bait and that identified MYC3 and MYC4 as

JAZ1-interacting proteins is described here. MYC3 and

MYC4 interact not only with JAZ1, but also with JAZ3

and JAZ9 proteins in both pull-down and yeast two-hybrid

assays. Although myc3 and myc4 loss-of-function mutants

did not show an evident JA-related phenotype, overexpres-

sion of cDNAs encoding MYC3 and MYC4 proteins
resulted in anthocyanin accumulation and higher transcript

levels of JA-responsive genes compared to wild-type plants.

In addition, similar to plants overexpressing MYC2, MYC3

overexpression plants were hypersensitive to JA-mediated

root growth inhibition. Based on these results, it is

concluded that MYC3 and MYC4 are JAZ-interacting

transcription factors that act together with MYC2 to

activate JA-responses.

Materials and methods

Plant material and growth conditions

Arabidopsis thaliana plants were grown in soil under a 16 h light
cycle, with a light intensity of 100 lE m�2 s�1, at 22 �C. In this
study, wild-type (WT) refers to Columbia (Col-0). In experiments
where seedlings were used, surface-sterilized seeds were grown on
agar plates containing half-strength Murashige–Skoog salts (Sigma
Co., MO) with 1% (w/v) sucrose.

Yeast two-hybrid screen and assays

HybriZAP�-2.1 Two-Hybrid System (Stratagene, CA) was used
in the study. The JAZ1 coding sequence was cloned into the
Y2H bait vector pBD-GAL4 Cam resulting in a Gal4 DBD-
JAZ1 fusion protein. This gene construct was transformed into
Saccharomyces cerevisiae strain YRG-2 using the one-step trans-
formation method (Chen et al., 1992). Transformants were selected
on SD medium with –Trp dropout supplement (Clontech, CA).
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The screening procedure for isolation of Arabidopsis proteins
interacting with JAZ1 protein was performed according to the
manufacturer’s protocol (Stratagene, La Jolla, CA). Briefly, the
yeast strain expressing JAZ1 bait protein was transformed with
a pooled Arabidopsis cDNA library (Du and Poovaiah, 2004) by
the lithium acetate method. To screen the cDNA library, positive
clones were initially selected for tryptophan, leucine, and histidine
prototrophy and then assayed for lacZ activity using a filter
b-galactosidase assay with 5-bromo-4-chloro-3-indolyl-b-D-galac-
topyranoside (X-Gal). Plasmids were isolated from positive yeast
clones and transformed into Escherichia coli DH10B for analysis
of insert and sequencing.
Yeast two-hybrid assays were performed with HybriZAP�-2.1

Two-Hybrid System (Stratagene, CA). The coding sequences of
JAZ1, JAZ3, and JAZ9 genes were cloned into the bait vector to
generate fusions with a Gal4 DNA binding domain (BD) and
cotransformed into the yeast strain YRG-2 in combination with
the prey vector containing fusions between the coding sequences of
MYC2, MYC3, MYC4, and MYC5 and the Gal4 activation
domain (AD). Interactions between these constructs were de-
termined by growth of transformants on SD medium with –Trp/–
Leu/–His dropout supplement and the LacZ filter-lift assay as
described by the manufacturer (Stratagene, CA).

In vitro transcription/translation and pull-down assays

The coding sequences of MYC2, MYC3, MYC4, and MYC5 were
cloned into the pTNT� vector (Promega, WI) and used as the
template to generate [35S]Met-labelled proteins, using TNT�

Coupled Reticulocyte Lysate System (Promega, WI) according to
the manufacturer’s instructions. Each pull-down assay contained
20 ll of in vitro translation products and 10 lg purified MBP–
JAZ–His fusion protein in a total volume of 300 ll. The fusion
protein was first immobilized on Dynabeads� TALON� super-
paramagnetic beads (Invitrogen, CA) in incubation buffer [50 mM
TRIS-Cl, pH 7.5, 150 mM NaCl, 5 mM MgCl2, 10% (v/v) glycerol,
0.05% (v/v) Tween-20, 25 mM imidazole, and the EDTA-free
protease inhibitor cocktail (Sigma Aldrich, MO)] for 1 h at 4 �C.
Following the addition of [35S]MYC protein, the reaction was
incubated for an additional 1 h at 4 �C. The beads were recovered
by magnetic force with a Dynalmagnet and then washed four times
at 4 C for 5 min each with 800 ll of incubation buffer. The beads
were eluted with 30 ll of elution buffer containing 250 mM
imidazole. Bound proteins were separated by SDS-PAGE and
visualized by PhosphorImager 445 SI system (Molecular Dynam-
ics, UK).

Transient expression and localization in onion epidermal cells

The coding sequences of MYC3 and MYC4 were cloned into the
pENTR-D/TOPO vector (Invitrogen, CA). Transient expression
vectors producing GFP-MYC3 and GFP–MYC4 fusion protein
were created by combining pENTR clones and the destination
vector p2FGW7 (Karimi et al., 2002), in which the GFP–MYC
fusions were expressed under the control of the cauliflower mosaic
virus 35S promoter. Tungsten particles of 1.1 lm in diameter were
soaked in 70% ethanol and washed in water. The particles were
then suspended in 50% glycerol with a concentration of 60 mg
ml�1. After the addition of 10 ll of 2.5 M CaCl2 and 4 ll of 0.1 M
spermidine, 1 lg of DNA was precipitated on 0.5 mg tungsten
particles at room temperature for 3 min with continuous vortexing.
The pellet was washed in 70% ethanol and then in 100% ethanol
before being resuspended in 10 ll of 100% ethanol. Aliquots of
tungsten particles coated with DNA were loaded on to macro-
carriers and used to transform onion epidermal cells. Bombard-
ments were performed using the Biolistic PDS-1000/He Particle
Delivery System (Bio-Rad, CA) at a helium pressure of 1300 psi.
Each sample was bombarded three times, then samples were
incubated at room temperature for 16–18 h. A single layer of
epidermal cells was peeled from the onion scale leaves and

examined with an Olympus IX70 microscope (Olympus, PA).
Nuclei were stained by adding 4,6-diamidino-2-phenylindole
dihydrochloride (DAPI) staining solution (Molecular Probes,
Eugene, OR) to the onion cells. Images were taken using a Coolpix
990 digital camera (Nikon, Japan).

Reporter and effector constructs

DNA fragments of 3576 bp, 2122 bp, 1663 bp, 3501 bp, 2474 bp,
and 1760 bp containing JAZ1, JAZ2, JAZ5, JAZ6, JAZ7, and
JAZ9 promoters, respectively, their 5#-UTR region and encoding
for the first three amino acids of JAZ were cloned via Gateway
reactions into a plant binary plasmid pMDC162 (Curtis and
Grossniklaus, 2003) generating the reporter construct JAZ::GUS.
The reporter plasmid was isolated from the E. coli strain ER2925
which is Dam–/Dcm– (New England Biolabs, MA). The 35S::LUC
reporter construct has been described previously (Liu et al., 1994).
The effector constructs 35S::bHLH were generated by cloning
bHLH coding region via Gateway reactions into a plant transient
expression plasmid p2GWF7 (Karimi et al., 2002).

Carrot protoplasts isolation and transfection

Isolation of protoplasts from carrot (Daucus carota) suspension
culture cells, transfections, and GUS assays have been described
previously (Liu et al., 1994; Tiwari et al., 2006). Reporter and
effector plasmids used for protoplast transfection were prepared
using Wizard Plasmid Midi kit (Promega, WI). Ten micrograms of
each effector and reporter plasmids were used in each transfection
assay. b-Glucuronidase (GUS) activities were standardized by
cotransfections with a cauliflower mosaic virus (CaMV)
35S::LUC reporter gene as described by Liu et al. (1994). GUS
and LUC activities were measured using a luminescence spectrom-
eter (Perkin Elmer LS-50B, MA). For measuring GUS activity, an
excitation wavelength of 365 nm and an emission wavelength of
455 nm were used. For measuring LUC activity, a Luciferase
Assay System (Promega, WI) and a luminometer with an emission
wavelength of 550 nm and a photomultiplier gain of 775 V was
used. Measured LUC activities were used to correct for variation
in transfection efficiency as described by Liu et al. (1994). Each
transfection assay was performed in triplicate, and two indepen-
dent transfection assays were performed for each experiment, as
has been described by Tiwari et al. (2004).

Genotyping of T-DNA mutants

The T-DNA insertion lines were obtained through the Arabidopsis
Biological Resource Center (Alonso et al., 2003) and GABI-Kat
(Rosso et al., 2003). PCR was performed by using the T-DNA left-
border primer (LBa1 for SALK lines, 5#-TGGTTCACG-
TAGTGGGCCATCG-3# and GABI_08409 for Gabi_Kat lines,
ATATTGACCATCATACTCATTGC) and genomic sequences
that correspond to the flanking DNA to identify the mutant allele
or both of the genomic primers to identify the wild-type
allele. Primers specific for the MYC3 gene were 048028-LP,
5#-AAAAATTGAACGGAAGTTGCTATG-3#; 048028-RP,
5#-AGAGAGATGAGTGGTGGTTTGTTC-3#; 012763-LP,
5#-AAAGATGATTGGAGAAAGAAAACAC-3#; 012763-RP,
5#-CGAGAGTTTAAGAAAGATTCTCCG-3#; 445B11-LP, 5#-
CCCATTTACAACCACTTATTTTCC-3#; and 445B11-RP,
5#-GTTGAATCATGTTGAAGCAGAGAG-3#. Primers specific
for the MYC4 gene were 491E10-LP, 5#-AACTTTGATGTAA-
AAGGCTCCTTG-3# and 491E10-RP, 5#-TTGTAACCCA-
TAAATCTGACCTTG-3#. Homozygous mutant plants were then
used in RT-PCR assays to test the transcript levels of the
corresponding gene. Primers used for RT-PCR were MYC3 RT-
For, 5#-ATGAACGGCACAACATCATCAAT-3#; MYC3 RT-
Rev 5#-TCAATAGTTTTCTCCGACTTTCG-3#; MYC4 RT-For,
5#-ATGTCTCCGACGAATGTTCAAGT-3#; MYC4 RT-Rev, 5#-
GCTGACTTCAATTCATGGACATTC-3#.
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Generation of overexpression plants

The coding sequences of MYC2, MYC3, and MYC4 genes were
amplified by RT-PCR with the following primers, which incorpo-
rated XmaI or ClaI restriction sites, MYC2 cDNA-Xma-F, 5#-
TCCCCCCGGGACTACGAAGACTTTCTCCTATCTC-3#;
MYC2 cDNA-Cla-R, 5#-CCATCGATCAGTAACTAACTCA-
TATTACTCAT-3#; MYC3 CDS-Xma-F, 5#-TCCCCCCGGGAT-
GAACGGCACAACATCATCAATC-3#; MYC3 CDS-Cla-R, 5#-
CCATCGATTCAATAGTTTTCTCCGACTTTCGT-3#; MYC4
cDNA-Xma-F, 5#-TCCCCCCGGGCCCGAAACAATCAAAC-
CAAACACA-3# and MYC4 cDNA-Cla-R, 5#-CCATCGA-
TAGTCCCATTTGTCTTATTTCTAAC-3#. The resulting PCR
products were cleaved with ClaI and XmaI and cloned into
pART7 vector, followed by digesting with NotI. The cassette
containing the CaMV 35S promoter, the coding sequence of the
MYC gene, and the ocs terminator was then inserted into a binary
vector pBART (Stintzi and Browse, 2000). The resulting plasmids
were introduced into Agrobacterium tumefaciens (GV3101). Wild-
type plants were transformed using the floral dip method (Clough
and Bent, 1998). Seeds from these plants were selected on soil
containing diluted Finale BASTA (120 mg l�1).

qRT-PCR analysis

Polymerase chain reactions were performed with an Mx3005P
Real-Time PCR System (Stratagene, CA), using SYBR� Green to
monitor dsDNA synthesis. Reactions contained 10 ll 23 SYBR�

Green Master Mix reagent (Invitrogen, CA), 1 ll of 1:4 diluted
reverse transcription reaction, and 150 nM of each gene-specific
primer in a final volume of 20 ll. The following standard thermal
profile was used for all PCRs: 50 �C for 2 min; 95 �C for 2 min; 40
cycles of 95 �C for 15 s, 60 �C for 30 s, and 72 �C for 30 s. Data
were analysed using Mx3005P system software (Stratagene, CA).
All amplification plots were analysed with an Rn threshold of 0.2
to obtain CT (threshold cycle) values. In order to compare data
from different PCR runs or cDNA samples, CT values for genes
were normalized to the CT value of TUB2, which was a house-
keeping gene included in each PCR run. The sequences of the
primer pairs used were JAZ1 qPCR-For, 5#-AGCTTCACTT-
CACCGGTTCTTGGA-3#; JAZ1 qPCR-Rev, 5#-TCTTGTCTT-
GAAGCAACGTCGTCA-3#; JAZ3 qPCR-For, 5#-TGTAAT-
GGCTCCAACAGTGGCATTAC-3#; JAZ3 qPCR-Rev, 5#-ATT-
CAGACATTGATCTGCGACAATCTGT-3#; JAZ6 qPCR-For,
5#-TCATCTTCCTCCCAAGCCAGAGAT-3#; JAZ6 qPCR-Rev,
5#-ACTAGAAACGTGAACTCGATCGTGCAT-3#; JAZ7
qPCR-For, 5#-TTCGGATCCTCCAACAATCCCA-3#; JAZ7
qPCR-Rev, 5#-TCAAGACAATTGGATTATTATGTTACAGT-
3#; JAZ10 qPCR-For, 5#-TCGCAAGGAGAAAGTCACTG-
CAAC-3#; JAZ10 qPCR-Rev, 5#-CGATTTAGCAACGACGAA-
GAAGGC-3#; PDF1.2 qPCR-For, 5#-TGTTCTCTTTGCTGCT-
TTCGACGC-3#; PDF1.2 qPCR-Rev, 5#-TGTGTGCTGGGAA-
GACATAGTTGC-3#; TAT3 qPCR-For, 5#-AAGCTGAAGGC-
CGAGGATGTGTAT-3#; TAT3 qPCR-Rev, 5#-TCCCGGC-
CTTGGAAGTAGAATGTT-3#; VSP2 qPCR-For, 5#-CAAAA-
TATGGATACGGGACA-3#; VSP2 qPCR-Rev, 5#- ATTGC-
CAACGATGTTGTATC-3#; LOX3 qPCR-For, 5#-CGGATAGA-
GAAAGAGATTGAGAAAAGGAAC-3#; LOX3 qPCR-Rev, 5#-
AGGTACACCTCTACACGTAACACCAGGC-3#; TUB2 qPCR-
For, 5#-ACTGTCTCCAAGGGTTCCAGGTTT-3#; TUB2
qPCR-Rev, 5#-ACCGAGAAGGTAAGCATCATGCGA-3#.

Anthocyanin quantification

Extraction of anthocyanins from 10-d-old Arabidopsis seedlings
was performed following the protocols of Mehrtens et al. (2005)
with minor modifications. One millilitre of acidic methanol (1%
HCl, w/v) was added to about 200 mg of fresh plant material.
Samples were incubated for 18 h at room temperature under
moderate shaking. Plant material was sedimented by centrifuga-

tion at 14 000 rpm for 2 min at room temperature and 400 ll of
the supernatant was added to 600 ll of acidic methanol.
Absorption of the extracts at 530 nm and 657 nm wavelength was
determined spectrophotometrically. Quantification of anthocya-
nins was performed using the following equation:
QAnthocyanins¼(A530–0.253A657)3M�1, where QAnthocyanins is the
amount of anthocyanins, A530 and A657 is the absorption at
the indicated wavelengths, and M is the fresh weight, in grams, of
the plant material used for extraction. All samples were measured
as replicates in two independent biological replicates.

Root growth assay

After incubation at 4 �C for 2–3 d, surface-sterilized seeds were
sown on agar plates containing 1% (w/v) sucrose and different
concentrations of JA (as the methyl ester) (Bedoukian, CT) as
indicated. Plates were then placed vertically in a culture chamber
and grown for 10 d at 23 �C under 16/8 h fluorescent light/dark
cycles. Root lengths were measured, and JA treatments were
expressed as percentages compared to the untreated control for
each genotype.

Results

A yeast two-hybrid screen identifies MYC3 and MYC4
as JAZ1-interacting proteins

Our yeast two-hybrid screen was conducted using the Hybri

ZAP 2.1 System. The full-length coding sequence of JAZ1

was inserted into the pBD-GAL4 Cam vector to construct

a bait plasmid encoding a fusion protein with the DNA-

binding domain of Gal4p. This bait plasmid was trans-
formed into the yeast strain YRG-2 containing both lacZ

and HIS3 reporter genes. After confirming that JAZ1 was

incapable of inducing expression of the reporters in the

absence of an interacting protein, we introduced a library of

Arabidopsis cDNAs encoding C-terminal fusion proteins

with the Gal4p activation domain into the yeast strain

containing the JAZ1 bait plasmid.

A screen of approximately 1.63105 yeast transformants
resulted in the isolation of 44 positive colonies as de-

termined by lacZ staining. Sequencing of the plasmids in

these clones indicated that 20 corresponded to At4g28910

encoding the JAZ corepressor, NINJA (Pauwels et al.,

2010), and nine to At3g02540, a member of the ubiquitin

gene family (see Supplementary Table S1 at JXB online).

Two clones encoded MYC3 (At5g46760) and two encoded

MYC4 (At4g17880). MYC3 and MYC4 belong to the
bHLH subgroup IIIe which also consists of MYC2 and

MYC5/bHLH28 (Heim et al., 2003). These four bHLH

proteins exhibit high sequence similarity (56%), especially in

the N-terminal conserved regions and the bHLH domains

that are nearly identical (Fig. 1A). Although MYC2 is

known to interact with JAZ proteins (Chini et al., 2007), it

was not identified in our screen, possibly because it was

poorly represented in the particular cDNA library that was
used.

In order to verify the specificity of interactions of MYC3

and MYC4 with JAZ1 identified from the Y2H screen, the

full-length MYC3 and MYC4 proteins (prey) were coex-

pressed with JAZ1 (bait) in yeast and the interaction
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MYC3/JAZ1 and MYC4/JAZ1 were assayed using the

reporter systems described above. These strains coexpress-

ing AD-MYC (AD: activation domain) and BD-JAZ1

(BD: GAL4 DNA binding domain) were able to grow on

medium lacking histidine and exhibited b-galactosidase
activity, whereas clones expressing AD only and the bait

BD-JAZ1 only grew on medium supplemented with

histidine (Fig. 2A). These data confirmed our screening

results.

MYC3 and MYC4 interact with multiple JAZ proteins
besides JAZ1

MYC2 has been shown to interact with most JAZ proteins

(Chini et al., 2007, 2009; Melotto et al., 2008; Chung and

Howe, 2009). To explore the possible interactions between

other members of the bHLH IIIe subfamily and JAZ proteins,

combinations of the bait (JAZ1, JAZ3, JAZ9) and prey

(MYC3, MYC4, MYC5) were tested in the yeast two-hybrid

Fig. 1. Sequence comparisons and subcellular localization of JAZ1-interacting proteins, MYC3 and MYC4. (A) Sequence alignment of

members in bHLH subgroup IIIe. Shaded letters indicate the conserved amino acid residues. The N-terminal region in MYC2 required for

the interaction with JAZ3 is identified by lines under the sequences (Chini et al., 2007). Their conserved bHLH domain is highlighted in

the red box. (B) Nuclear localization of GFP–MYC3 and GFP–MYC4 fusion proteins in onion epidermal cells. Nuclei were stained with

DAPI (4,6-diamidino-2-phenylindole dihydrochloride).
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system with the AD and AD-MYC2 as controls. Consistent

with previous results, MYC2 interacts not only with JAZ1 but

also with JAZ3 and JAZ9 (Fig. 2A). Like MYC2, MYC3 and
MYC4 also associate with each of these JAZ proteins, as

demonstrated by transcriptional activation of reporter genes,

HIS3 and lacZ, in the two-hybrid system (Fig. 2A). MYC5

did not show interaction with any of the three JAZ proteins

(Fig. 2A) even though its amino acid sequence shares high

homology with those of MYC2, MYC3, and MYC4.

To test further for possible interactions, pull-down assays

were performed with purified recombinant JAZ proteins
containing an N-terminal maltose-binding protein (MBP)

tag and C-terminal 63 His tag. [35S]-Methionine labelled

MYC proteins were synthesized by in vitro coupled

transcription/translation, and then incubated with MBP–

JAZ–His fusion proteins that were bound to superparamag-

netic beads. After extensive washing, bound, radiolabelled

proteins were detected by SDS-PAGE and phosphorimag-

ing. In accordance with the yeast two-hybrid results,

MYC2, MYC3, and MYC4 were found to bind to MBP–

JAZ1–His, MBP–JAZ3–His, and MBP–JAZ9–His, but not

to the control MBP–His (Fig. 2B). In these pull-down

assays, MYC5 also showed interactions with all of the

MBP–JAZ–His proteins, but a comparable interaction was

observed between MYC5 and the MBP–His control (Fig. 2A,

B). The choice was therefore made to conduct additional

experiments with MYC3 and MYC4.

MYC3 and MYC4 are localized to the nucleus

As MYC3 and MYC4 contain the conserved bHLH

domain, they are considered to be putative transcription

factors. Furthermore, in order to interact with JAZ proteins

in vivo, MYC3 and MYC4 are required to colocalize to the
same subcellular compartment as JAZ proteins which have

been determined to be localized to the nucleus (Chini et al.,

2007; Thines et al., 2007).

To determine their subcellular localizations, the full-

length MYC3 and MYC4 coding sequences were fused in-

frame to the C-terminus of green fluorescent protein (GFP).

Transient expression of these constructs in onion epidermal

cells indicated that, in contrast to the GFP control, which
was distributed extensively within the cells, GFP–MYC3

and GFP–MYC4 fusion proteins were localized to the

nucleus (Fig. 1B).

MYC2, MYC3, and MYC4 all transactivate JAZ
promoters

A JAZ2::GUS reporter construct expressed in carrot
protoplasts (Liu et al., 1994) was initially used to test the

ability of bHLH transcription factors to activate the JA-

responsive JAZ2 promoter. This carrot protoplast system

has previously been used to investigate auxin signalling,

which is similar to JA signalling (Tiwari et al., 2006).

Expression of the JAZ2::GUS reporter alone resulted in

a low level of GUS activity upon assay. Co-expression of

MYC2, MYC3 or MYC4 resulted in 3–4-fold higher GUS
activity demonstrating the ability of these transcription

factors to activate the JAZ2 promoter (Fig. 3). By contrast,

co-expression of bHLH proteins from subfamily IIId

(bHLH3, bHLH13 or bHLH17) did not result in any

increase in GUS activity above that of the reporter alone.

To extend this investigation of the three MYC transcrip-

tion factors, promoter–GUS reporter constructs were gener-

ated for JAZ1, JAZ5, JAZ6, JAZ7, and JAZ9, all of which
are strongly induced by JA (Thines et al., 2007). When

compared to the basal GUS activity (protoplasts expressing

the JAZ::GUS reporter alone), co-expression of MYC2,

MYC3 or MYC4 resulted in induction of the reporter and

increased GUS activity (Table 1). These results indicate that

MYC3 and MYC4 act like MYC2 (Chini et al., 2007) in

directly activating the promoters of multiple JAZ genes.

Loss-of-function mutants of MYC3 and MYC4 show no
JA-related phenotype

Since MYC3 and MYC4 share high homology with MYC2

and, more importantly, they physically associate with JAZ

Fig. 2. MYC3 and MYC4 interact with JAZ repressors. (A) MYC3

and MYC4 interact with JAZ proteins in Y2H. (1) YRG2 yeast cells

expressing both bait and prey fusions were grown on yeast synthetic

minimal SD medium with the omission of leucine and tryptophan,

and (2) on yeast SD medium with the omission of leucine, histidine,

and tryptophan for examination of HIS3 reporter gene (3) assayed

for lacZ activity. (B) Pull-down of [35S]bHLHs (MYC2, MYC3, MYC4,

and MYC5) produced by in vitro transcription/translation, using

Dynabeads� TALON� superparamagnetic beads containing

MBP–His or MBP–JAZ–His fusion proteins. The input lane shows

10% of [35S]-Met labelled products used in each pull-down assay.
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repressors, it raises the possibility that MYC3 and MYC4

are involved in the regulation of JA responses. To in-

vestigate the functions of MYC3 and MYC4, a reverse-

genetic approach was first employed by identifying T-DNA

insertion lines. Four available lines (three lines for MYC3

and one line for MYC4) were examined, but only two of
them are null based on the lack of the full-length transcripts

of the corresponding genes (Fig. 4A, B). The two null

mutants, Gabi_445B11 and Gabi_491E10, are designated as

myc3-3 and myc4, respectively. These myc3-3 and myc4 null

mutants showed no obvious phenotypic differences from

the wild-type under normal growth conditions.

To examine whether the mutants have JA-related pheno-

types, JA-mediated root growth inhibition in myc3-3 and
myc4 mutant seedlings was compared with that of myc2

(jin1-7; SALK_040500), coi1-1, and wild-type seedlings.

When grown on MS media containing various concentra-

tions of JA (5, 10, 25, and 50 lM), the myc2 mutant showed

a degree of insensitivity to JA-inhibited root growth that

was slightly less than that observed in the coi1 mutant.

However, root growth of myc3-3 and myc4 seedlings was

inhibited by JA and the root lengths of these mutants were

comparable with that of the wild-type plants (Fig. 4C). The
lack of an obvious JA-related phenotype in myc3-3 and

myc4 mutants may be due to functional redundancy among

these, and possibly other, bHLH transcription factors.

Constitutive expression of MYC genes induces
anthocyanin accumulation

Transgenic plants overexpressing the MYC3 or MYC4

cDNA under the control of the cauliflower mosaic virus

CaMV 35S promoter (35S::MYC3 and 35S::MYC4) were

then generated. MYC2-overexpression plants (35S::MYC2)

were also generated using the same vector, and these were

included as controls in our experiments. Approximately 20

independent T1 plants for each construct were analysed by

reverse transcription-PCR (RT-PCR) and ;80% showed

increased transcript accumulation of the corresponding gene
compared with wild-type plants. A single homozygous line

for each construct that provided >40-fold increase in

expression was selected for further characterization.

Compared with wild-type controls, seedlings of lines

overexpressing MYC2, MYC3, or MYC4 all accumulated

Fig. 4. T-DNA insertion lines for myc3 and myc4 genes. (A) Diagram

of the genomic sequences of MYC3 and MYC4 showing the T-DNA

insertion sites of the mutant lines. Open boxes indicate exons. (B)

RT-PCR analysis confirms myc3-3 (Gabi_445B11) and myc4

(Gabi_491E10) are null. The gene ACT2 (Actin2) was used as

the internal control. (C) Relative root growth of seedlings on

JA-containing medium compared to root growth on unsupple-

mented medium (100%) (n¼15 seedlings). myc2 represents jin1-7

(SALK_040500) (Lorenzo et al., 2004). Error bars indicate the

standard deviation for experiments performed in triplicate.

Fig. 3. MYC2, MYC3, and MYC4 induce expression of a JAZ2::

GUS reporter. Carrot protoplasts were transfected with the

JAZ2::GUS reporter alone (none) or together with one of six

35S::bHLH constructs as indicated. GUS activities were standard-

ized using a cotransfected 35S::LUC reporter. Data are mean 6SE

from three separate transfections.

Table 1. MYC transcription factors induce JAZ::GUS reporters

Reporter and effector constructs were expressed in carrot protoplast
for 18 h and GUS activity was assayed following lysis of the
protoplasts. The results show reporter induction relative to an empty
vector control. Data are mean 6SE from two independent experi-
ments.

Promoter driving GUS

Effector JAZ1 JAZ2 JAZ5 JAZ6 JAZ7 JAZ9

MYC2 3.060.1 3.460.2 2.060.2 8.260.4 20.562.4 9.861.7

MYC3 1.960.1 2.060.4 1.860.3 4.561.2 5.561.1 4.460.1

MYC4 3.060.1 2.960.4 1.660.2 16.160.4 17.160.6 8.461.6
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more purple pigmentation, when grown on agar medium,

suggesting the accumulation of anthocyanin. To determine

the anthocyanin levels, wild-type and overexpression trans-

genic seedlings were germinated on agar plates and then

harvested 10 d after germination. Figure 5A shows that in

35S::MYC2, 35S::MYC3, and 35S::MYC4 seedlings, the

anthocyanin contents were 3.4-, 15.4-, and 3.6-fold higher,

respectively, than that of the wild-type seedlings. JA signal-
ling is known to regulate anthocyanin accumulation in

Arabidopsis (Feys et al., 1994). Significantly, anthocyanin

biosynthetic genes, such as DIHYDROFLAVONOL RE-

DUCTASE (DFR), are up-regulated by JA (Devoto et al.,

2005; Chen et al., 2007). In accordance with the anthocya-

nin levels, the expression level of DFR was higher in

overexpression seedlings than in wild-type when quantified

by qRT-PCR (Fig. 5B). These results indicate that over-
expression of MYC3 and MYC4 produced a JA-related

phenotype, anthocyanin accumulation, and this accumula-

tion was correlated with increased expression of a gene

involved in the production of anthocyanin.

Overexpression of MYC3 but not MYC4 confers
hypersensitivity to JA

Overexpression plants were next tested for another JA-
related phenotype, root growth inhibition induced by JA.

As shown in Fig. 5C, consistent with the results previously

reported (Lorenzo et al., 2004), 35S::MYC2 seedlings were

more sensitive to root growth inhibition by JA than wild-

type seedlings. In contrast to 35S::MYC4 seedlings that

exhibited a similar level of root length reduction as wild-

type seedlings, 35S::MYC3 transgenic seedlings showed

enhanced inhibition in root growth when grown on MS

medium containing JA, but to a lesser extent compared with
35S::MYC2 seedlings. These results indicate that in addi-

tion to MYC2, MYC3 plays a role in JA-mediated

inhibition of root growth.

Altered transcription of JA-responsive genes in
35S::MYC transgenic plants

To explore the effects of overexpression of MYC3 and

MYC4 on JA signalling further, qRT-PCR was conducted
to determine the expression levels of JA-responsive genes in

35S::MYC2, 35S::MYC3, and 35S::MYC4 transgenic

plants. Two independent biologically replicated experiments

were set up with 10-d-old seedlings of the transgenic lines

and wild-type controls. Figure 6 depicts the results of the

qRT-PCR analysis. Some of the JAZ genes are among the

earliest genes induced by JA signalling (Thines et al., 2007;

Chung et al., 2008). Five of these were chosen for analysis,
and each of these was expressed at higher levels in all three

Fig. 5. MYC overexpression plants accumulate anthocyanin and are hypersensitive to JA. (A) Photometric determination of anthocyanin

content in methanolic extracts of 10-d-old seedlings. All samples were measured as replicates in two independent biological replicates.

Data are mean 6SE. (B) Quantitative real-time RT-PCR expression analysis of DFR gene in 10-d-old seedlings. Relative expression was

determined in replicate measurements in two independent biological replicates. Data are mean 6SE. (C) Relative root growth of wild-

type and overexpression transgenic seedlings. Seedlings were grown on normal MS plates for 4 d and transferred to new MS plates

containing 0, 5, 10, and 25 lM JA. Root length was measured 6 d after transfer. Root growth in the absence of JA was set to 100%.

Data are mean 6SE for n¼20 seedlings.
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35S::MYC transgenic lines than in the wild type (Fig. 6A),

suggesting that, besides MYC2 (Chini et al., 2007), MYC3

and MYC4 also act as transcriptional activators during

early JA signalling. In addition, overexpression of these
bHLH transcription factors caused increased transcript

levels of JA-mediated wound-response genes, LIPOXYGE-

NASE 3 (LOX3), VEGETATIVE STORAGE PROTEIN 2

(VSP2), and TYROSINE AMINOTRANSFERASE 3

(TAT3) (Fig. 6B).

Interestingly, the transcription of the pathogen-respon-

sive gene PLANT DEFENSIN1.2 (PDF1.2) was repressed

in 35S::MYC2 and 35S::MYC4 plants compared to the

wild-type plants (6-fold and 9-fold repression relative to
the wild-type, respectively), whereas in 35S::MYC3 plants

the PDF1.2 transcript level was not substantially changed

(less than 2-fold induction) (Fig. 6C). Furthermore, al-

though treatment with 10 lM JA induced expression of

PDF1.2 in all the plants tested, the repression of PDF1.2

expression was not released by JA treatment in the

35S::MYC2 and 35S::MYC4 transgenic plants. Following

JA treatment, PDF1.2 transcript levels in 35S::MYC2 and
35S::MYC4 plants were still less than 30% of those in

untreated wild-type controls (Fig. 6C). These results suggest

that MYC4 acts like MYC2 in positively regulating wound-

response genes, while repressing the expression of pathogen-

responsive genes.

Discussion

Jasmonates are oxylipin signalling molecules that contribute

to the regulation of many processes, including growth,

defence against pathogens and insects, responses to abiotic

stresses, and reproductive development. The recent discov-
ery of the JAZ repressors has greatly improved our

understanding of the mechanism of JA signalling, which is

similar in several respects, to the model for auxin signalling

(Santner and Estelle, 2009). In both systems, repressor

proteins bind to specific transcription factors and recruit

corepressor proteins such as TOPLESS (which for JA

signalling occurs indirectly through NINJA) to prevent

transcription of early-response genes (Szemenyei et al.,
2008; Pauwels et al., 2010). Increased concentrations of the

hormone (auxin or JA-Ile) enhances interaction of the

repressor proteins with an SCF ubiquitin ligase, and results

in their degradation via the ubiquitin/26S-proteasome

pathway (Chini et al., 2007; Tan et al., 2007; Thines et al.,

2007). In auxin signalling, 23 ARF transcription factors are

known or proposed targets of 29 Aux/IAA repressors, in

Arabidopsis (Santner and Estelle, 2009). For JA signalling,
there are 12 recognized JAZ repressors in Arabidopsis but,

so far, MYC2 is the only characterized JAZ-interacting

transcription factor that has been shown to activate

transcription of early JA-responsive genes. However, ge-

netic evidence indicates that additional transcription factors

are also involved in JA signalling (Browse, 2009; Chini

et al., 2007).

Using JAZ1 as the bait in a yeast two-hybrid screen, two
bHLH proteins, MYC3 and MYC4, that share high

sequence similarity with MYC2, were identified. In addition

to JAZ1, MYC3 and MYC4 directly interact with JAZ3

and JAZ9, in both yeast two-hybrid and pull-down assays.

Transient expression of GFP fusions with MYC3 and

Fig. 6. MYC3 and MYC4 regulate expression of JA-responsive

genes. (A, B) qRT-PCR expression analysis of JAZ genes and

wound-responsive genes in 10-d-old wild-type and MYC over-

expression seedlings without JA treatment. Wild-type samples

served as a calibrator for the calculation of relative expression

levels (arbitrarily set to one). (C) Relative transcript levels of the

PDF1.2 gene in 10-d-old wild-type and overexpression transgenic

seedlings with or without 10 lM JA treatment (incubated for 6 h).

Wild-type samples without JA treatment served as a calibrator,

and relative expression was determined from replicate measure-

ments in two independent biological replicates. Data are

mean 6SE.
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MYC4 indicated that they are localized to the nucleus.

Furthermore, in carrot suspension cell protoplasts, both

MYC3 and MYC4 activated transcription of GUS reporter

genes under the control of the native JAZ promoters. These

data suggest that MYC3 and MYC4 are candidates as

transcriptional activators whose activities are controlled by

JAZ proteins in JA signalling.

In order to search for a JA-related phenotype, T-DNA
knockout mutants in MYC3 and MYC4 were identified.

However, they showed no observable differences from wild-

type plants, indicating that there may be functional re-

dundancy among these, and other, MYC2-related bHLH

transcription factors. It is considered likely that additional

bHLH proteins may also be involved in mediating JA

responses. Besides MYC3 and MYC4, three other bHLH

proteins are also candidates for JAZ-interacting transcrip-
tion factors, including MYC5 (bHLH28), which is in the

same bHLH subgroup IIIe as MYC2, MYC3, and MYC4.

Although MYC5 did not interact with JAZ proteins in yeast

two-hybrid assays, it was pulled-down by MBP–JAZ–His

proteins (Fig. 2). Additional techniques (e.g. bimolecular

fluorescence complementation) could be useful to test for

the interaction between MYC5 and JAZ proteins in vivo. In

addition, bHLH13 and bHLH17 in subgroup IIId also
interacted with JAZ1 in our yeast two-hybrid assays (data

not shown). It is noteworthy that the N-terminal region of

MYC2 (Fig. 1A) that is required for the interaction with

JAZs (Chini et al., 2007) is conserved among these bHLH

proteins, supporting their possible roles as JAZ-interacting

transcription factors. Additional characterization of these

five bHLH proteins, including the production of multiple

mutant lines, should help to refine and develop the model of
JA signalling.

As an alternative approach to investigate the biological

roles of these transcription factors, transgenic plants

constitutively expressing MYC3 and MYC4 were generated.

Although the 35S::MYC3 and 35S::MYC4 overexpression

plants grew normally, they accumulated higher levels of

anthocyanin than did wild-type plants. These results are

consistent with MYC3 and MYC4 activation of JA signal-
ling because JA is known to have a role in the production of

secondary metabolites, such as anthocyanin (Feys et al.,

1994; Gundlach et al., 1992). Previous studies also showed

that JA induces the expression of some anthocyanin-related

genes (Devoto et al., 2005), and MYC2 is known to

function as a positive regulator of JA-mediated anthocyanin

biosysthesis (Dombrecht et al., 2007). Consistent with these

previous studies, MYC2 overexpression plants generated in
this study also have higher anthocyanin content compared

with the wild-type plants. The results of anthocyanin

quantification assays showed that the anthocyanin content

in 35S::MYC3 transgenic seedlings was more than 4-fold

higher than in 35S::MYC2 and 35S::MYC4 seedlings. In

addition, the relative expression level of an anthocyanin

biosynthesis gene, DFR, was also higher (more than 5-fold)

in 35S::MYC3 plants compared with 35S::MYC2 and
35S::MYC4 plants. These results demonstrate that, besides

MYC2, MYC3 and MYC4 positively regulate anthocyanin

biosynthesis and MYC3 may have a dominant role in this

process.

In addition to anthocyanin accumulation, 35S::MYC3

plants and also 35S::MYC2 plants showed hypersensitivity

to JA in terms of root growth inhibition. However, the level

of root length reduction of 35S::MYC4 plants was similar

to that of wild-type plants in the presence of JA. These

results suggest that MYC3, but not MYC4, is involved in
regulating JA-mediated inhibition of root growth.

To understand the function of MYC3 and MYC4

further, the expression of JA-regulated genes in

35S::MYC3 and 35S::MYC4 overexpression plants was

analysed. As expected, early JA-responsive genes, such as

JAZ genes, were induced in these overexpression plants

and the levels of induction were comparable with those in

35S::MYC2 plants. These results suggest that JAZ genes
are targets of MYC3 and MYC4. In addition, the

expression of genes involved in two branches of JA

responses, including wound-responsive genes, VSP2,

LOX3, and TAT3, and a pathogen-responsive gene,

PDF1.2, were examined. MYC2 differentially regulates

expression of these genes (Lorenzo et al., 2004). MYC4

induces expression of three genes involved in wounding

(Fig. 6B) and represses transcription of a pathogen de-
fence gene, PDF1.2 (Fig. 6C), indicating that similar to

MYC2, MYC4 is likely to have differential effects on

different JA responses.

In contrast, the expression levels of tested JA-responsive

genes suggest that MYC3 may only participate in the

activation of the wound response, but not regulate expres-

sion of pathogen-responsive genes. A previous study

(Smolen et al., 2002) also found that MYC3 overexpression
had no effect on transcript levels of PDF1.2. This finding

was reported as part of an investigation of a dominant,

altered-function allele of MYC3 named altered tryptophan

regulation 2 (atr2D), which does show increased PDF1.2

expression relative to the wild type. The atr2D mutation

results in an Asp94Asn change in the MYC3 protein and is

associated with a pleiotropic phenotype, particularly

in transgenic lines expressing a 35S::atr2D construct.
Although a mechanistic explanation of the atr2D phenotype

is lacking, the results of Smolen et al. (2002) and those

reported here point to a complex relationship among

the transcription factors that mediate JA signalling and

response.

Taken together, these results on MYC3 and MYC4

overexpression plants suggest that these two bHLH proteins

are transcription factors involved in JA signalling and that
they have overlapping functions with other bHLH proteins,

including MYC2.

Supplementary data

Supplementary data can be found at JXB online.

Supplementary Table S1. Summary data on clones testing

positive for interaction with JAZ1 in a yeast-two-hybrid

screen.
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Karimi M, Inzé D, Depicker A. 2002. GATEWAY vectors for

Agrobacterium-mediated plant transformation. Trends in Plant Science

7, 193–195.

Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA. 2008.

COI1 is a critical component of a receptor for jasmonate and the

bacterial virulence factor coronatine. Proceedings of the National

Academy of Sciences, USA 105, 7100–7105.

Kessler A, Baldwin IT. 2002. Plant responses to insect herbivory:

the emerging molecular analysis. Annual Review of Plant Biology

53, 299–328.

Liu ZB, Ulmasov T, Shi X, Hagen G, Guilfoyle TJ. 1994. Soybean

GH3 promoter contains multiple auxin-inducible elements. The Plant

Cell 6, 645–657.

Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R. 2004.

JASMONATE-INSENSITIVE1 encodes a MYC transcription factor

bHLH transcription factors in jasmonate signalling | 2153



essential to discriminate between different jasmonate-regulated

defence responses in Arabidopsis. The Plant Cell 16, 1938–1950.

Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R. 2003.

ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and

jasmonate pathways in plant defence. The Plant Cell 15, 165–178.

Ma S, Gong Q, Bohnert HJ. 2006. Dissecting salt stress pathways.

Journal of Experimental Botany 57, 1097–1107.

Mandaokar A, Thines B, Shin B, Lange BM, Choi G, Koo YJ,

Yoo YJ, Choi YD, Browse J. 2006. Transcriptional regulators of

stamen development in Arabidopsis identified by transcriptional

profiling. The Plant Journal 46, 984–1008.

McConn M, Browse J. 1996. The critical requirement for linolenic

acid is pollen development, not photosynthesis, in an Arabidopsis

mutant. The Plant Cell 8, 403–416.

Mehrtens F, Kranz H, Bednarek P, Weisshaar B. 2005. The

Arabidopsis transcription factor MYB12 is a flavonol-specific regulator

of phenylpropanoid biosynthesis. Plant Physiology 138, 1083–1096.

Melotto M, Mecey C, Niu Y, et al. 2008. A critical role of two

positively charged amino acids in the Jas motif of Arabidopsis JAZ

proteins in mediating coronatine- and jasmonoyl isoleucine-dependent

interactions with the COI1 F-box protein. The Plant Journal

55, 979–988.

Moons A. 2005. Regulatory and functional interactions of plant

growth regulators and plant glutathione S-transferases (GSTs).

Vitamins and Hormones 72, 155–202.

Pauwels L, Barbero GF, Geerinck J, et al. 2010. NINJA connects

the co-repressor TOPLESS to jasmonate signalling. Nature

464, 788–791.

Rao MV, Lee H, Creelman RA, Mullet JE, Davis KR. 2000.

Jasmonic acid signalling modulates ozone-induced hypersensitive cell

death. The Plant Cell 12, 1633–1646.

Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B.

2003. An Arabidopsis thaliana T-DNA mutagenized population

(GABI-Kat) for flanking sequence tag-based reverse genetics.

Plant Molecular Biology 53, 247–259.

Santner A, Estelle M. 2009. Recent advances and emerging trends

in plant hormone signalling. Nature 459, 1071–1078.

Sheard LB, Tan X, Mao H, et al. 2010. Mechanism of jasmonate

recognition by an inositol phosphate-potentiated COI1-JAZ

co-receptor. Nature (in press).

Shimizu T, Toumoto A, Ihara K, Shimizu M, Kyogoku Y,

Ogawa N, Oshima Y, Hakoshima T. 1997. Crystal structure of

PHO4 bHLH domain-DNA complex: flanking base recognition. EMBO

Journal 16, 4689–4697.

Smolen GA, Pawlowski L, Wilensky SE, Bender J. 2002.

Dominant alleles of the basic helix-loop-helix transcription factor ATR2

activate stress-responsive genes in Arabidopsis. Genetics 161,

1235–1246.

Staswick PE, Su W, Howell SH. 1992. Methyl jasmonate inhibition

of root growth and induction of a leaf protein are decreased in an

Arabidopsis thaliana mutant. Proceedings of the National Academy of

Sciences, USA 89, 6837–6840.

Stintzi A, Browse J. 2000. The Arabidopsis male-sterile mutant,

opr3, lacks the 12-oxophytodienoic acid reductase required for

jasmonate synthesis. Proceedings of the National Academy of

Sciences, USA 97, 10625–10630.

Szemenyei H, Hannon M, Long JA. 2008. TOPLESS mediates

auxin-dependent transcriptional repression during Arabidopsis

embryogenesis. Science 319, 1384–1386.

Tan X, Calderon-Villalobos LI, Sharon M, Zheng C,

Robinson CV, Estelle M, Zheng N. 2007. Mechanism of auxin

perception by the TIR1 ubiquitin ligase. Nature 446, 640–645.

Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G,

Nomura K, He SY, Howe GA, Browse J. 2007. JAZ repressor

proteins are targets of the SCF(COI1) complex during jasmonate

signalling. Nature 448, 661–665.

Tiwari SB, Hagen G, Guilfoyle TJ. 2004. Aux/IAA proteins contain

a potent transcriptional repression domain. The Plant Cell

16, 533–543.

Tiwari S, Wang S, Hagen G, Guilfoyle TJ. 2006. Transfection

assays with protoplasts containing integrated reporter genes. Methods

in Molecular Biology 323, 237–244.

Toledo-Ortiz G, Huq E, Quail PH. 2003. The Arabidopsis basic/

helix-loop-helix transcription factor family. The Plant Cell

15, 1749–1770.

Turner JG, Ellis C, Devoto A. 2002. The jasmonate signal pathway.

The Plant Cell 14, Supplement, S153–S164.

Weber H. 2002. Fatty acid-derived signals in plants. Trends in Plant

Science 7, 217–224.

Xiao S, Dai L, Liu F, Wang Z, Peng W, Xie D. 2004. COS1: an

Arabidopsis coronatine insensitive1 suppressor essential for regulation

of jasmonate-mediated plant defence and senescence. The Plant Cell

16, 1132–1142.

Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG. 1998.

COI1: an Arabidopsis gene required for jasmonate-regulated defence

and fertility. Science 280, 1091–1094.

Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W,

Huang D, Xie D. 2002. The SCF(COI1) ubiquitin–ligase complexes

are required for jasmonate response in Arabidopsis. The Plant Cell

14, 1919–1935.

Yan J, Zhang C, Gu M, et al. 2009. The Arabidopsis CORONATINE

INSENSITIVE1 protein is a jasmonate receptor. The Plant Cell

21, 2220–2236.

Yan Y, Stolz S, Chetelat A, Reymond P, Pagni M, Dubugnon L,

Farmer EE. 2007. A downstream mediator in the growth

repression limb of the jasmonate pathway. The Plant Cell

19, 2470–2483.

Yoshida Y, Sano R, Wada T, Takabayashi J, Okada K. 2009.

Jasmonic acid control of GLABRA3 links inducible defence and

trichome patterning in Arabidopsis. Development 136, 1039–1048.

2154 | Niu et al.


