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Abstract
We derive a map of protein interactions in the parasite P. falciparum from conserved interactions
in S. cerevisiae, C. elegans, D. melanogaster and E. coli and pool them with experimental
interaction data. The application of a clique-percolation algorithm allows us to find overlapping
clusters, strongly correlated with yeast specific conserved protein complexes. Such clusters
contain core activities that govern gene expression, largely dominated by components of protein
production and degradation processes as well as RNA metabolism. A critical role of protein hubs
in the interactome of P. falciparum is supported by their appearance in multiple clusters and the
tendencies of their interactions to reach into many distinct protein clusters. Parasite proteins with a
human ortholog tend to appear in single complexes. Annotating each protein with the stage where
it is maximally expressed we observe a high level of cluster integrity in the ring stage. While we
find no signal in the trophozoite phase, expression patterns are reversed in the schizont phase,
implying a preponderance of parasite specific functions in this late, invasive schizont stage. As
such, the inference of potential protein interactions and their analysis contributes to our
understanding of the parasite, indicating basic pathways and processes as unique targets for
therapeutic intervention.

Keywords
Interactome; malaria; parasite

1 Introduction
An important challenge confronting modern biology is whether the wealth of information
accruing from the study of model organisms can be transferred to pervasive, intractable
microbial diseases that plague human kind. In particular, the global burden of malaria
continues to worsen in many developing countries with a devastating impact on human
health and corresponding impediment to economic improvement [1]. Recent sequencing
efforts yielded extensive annotations of the Plasmodium falciparum genome as well as
several other malaria parasites [2,3,4,5]. Despite this abundance of primary genomic and
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proteomic information, surprisingly little is known about the web of protein interactions that
governs the unique biology of malaria parasites. Recently, the first experimentally
determined map of physical interactions between proteins of P.falciparum was released [6].
While impressive from an experimental point of view, this set is relatively small, roughly
covering 25 % of all parasite proteins. Although a considerable number of conserved
proteins exist, this map not surprisingly overlaps to only a small extent with a few existing
interactomes of model organisms [7,8,9]. In a different approach, functional links between
proteins in the parasite have been determined by investigating phylogenetic profiles and
domain fusion events [10]. Although this map allows a large-scale glimpse into the intricate
web of different relationships between proteins, this approach potentially points to but does
not explicitly identify physical protein interactions. In the work presented here, we utilize
information that has been retained by evolutionarily divergent model organisms to augment
the existing map of experimentally determined protein interactions of the malaria parasite
P.falciparum.

2 Materials and methods
Organism Specific Protein Interaction Data

As sources of reliable protein interaction information of diverse organisms, we utilized
curated protein interactions obtained from large-scale approaches for S. cerevisiae [11], D.
melanogaster [12], C. elegans [13], E. coli [13] and P. falciparum [6].

Orthologous Protein Data
Utilizing all-versus-all BLASTP searches determined by the InParanoid script [14] in
protein sets of two species, sequence pairs with mutually best scores were selected as central
orthologous pairs. Proteins of both species showing an elevated degree of homology were
clustered around these central pairs, a procedure that forms orthologous groups. The quality
of the clustering was then assessed by a standard bootstrap procedure. The central
orthologous sequence pair that provides a confidence level of 100% was considered as the
real orthologous relationship while proteins with a lower level of confidence were
considered as their in-paralogs. Specifically, we obtained orthologs of Plasmodium proteins
in S. cerevisiae, C. elegans, D. melanogaster, E.coli and H. sapiens.

Gene Expression
Utilizing data from [15] we calculated Pearson's correlation coefficient for every protein
interaction over m time points defined as

where <x> and <y> are the sample means of expression values xi and xj , and σi and σj are
their standard deviations. As for cell-cycle specific expression data, we utilized a data set of
gene transcription data [16] which captures ring, trophozoite, and schizont phase of the
erythrocytic stages and assigned each protein to one of the stages according to its maximum
expression.

Functional Similarity
We apply hypergeometric distribution to determine the probability of obtaining a number of
shared GO annotations [17] of proteins v and w at or above the observed number by chance.
As such, this value reflects the functional similarity of two proteins. Since the function of a
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considerable amount of proteins in Plasmodium is still unknown, we only account for
known GO terms in categories including biological processes, molecular function and
cellular component. Considering T different GO terms thus obtained, we define the
functional similarity of interacting proteins v, w as

where Tx represents the list GO terms of a protein x and T is the total number of GO terms.

Yeast Protein Complexes
As a compilation of experimentally obtained protein complexes in Yeast we utilized data
sets of genome-wide screens using affinity purification and mass spectrometry [18,19].

Cluster Participation Coefficient
For each protein that is part of at least one cluster or complex, we calculate the cluster
participation coefficient Pi of a protein i [20]. In particular, we define this value as

where nis is the number of links protein i has to proteins in complex s out of N total
complexes. If a protein predominantly interacts with partners that are members of the same
complex, we find that P tends to 1, while the opposite holds if the interaction partners are
distributed among many different complexes.

Kernel Density Function
A simple way to analyze a series of values x = x1 , …, xn would be a histogram. However, if
the number of observations is low the significance of a histogram is rather limited.
Therefore, we define the kernel density approximation, a smoothing operation that allows
the estimation of a putative probability density function of data points around a certain point
x as

where K(y) is the kernel function, satisfying

and h is a smoothing parameter. In particular, we chose the Gaussian as kernel function
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and set the smoothing parameter h = 0.1.

Enrichment
In order to obtain an estimate if a certain function A is overrepresented in a sample of a
larger sample space S, we calculate the corresponding fraction in the underlying sample. As
a null hypothesis, we assume that feature A has been randomly distributed among the whole
sample space S, calculate the corresponding randomized fraction fr(A, s) and define ER(A,s)
= f(A,s)/ fr (A,s) as the enrichment of feature A in space s. We average ER over 10,000
randomization, allowing us to conclude that the distribution of A was a random process if
ER = 1. In the same way, we find that feature A is enriched if ER > 1 and vice versa.

K-Clique Clustering Algorithm
In order to obtain overlapping clusters we apply the clique-percolation algorithm introduced
in [21], designed to locate the k-clique communities of unweighted, undirected networks.
This community definition is based on the observation that a typical member in a
community is linked to many other members, but not necessarily to each other node in the
community. Therefore, a community can be interpreted as a union of smaller, fully
connected subgraphs that share nodes. Such complete subgraphs in a network are called k-
cliques, where k refers to the number of nodes in the subgraph, and a k-clique-community is
defined as the union of all k cliques that can be reached from each other through a series of
adjacent k-cliques. Two k-cliques are considered adjacent if they share k - 1 nodes.

Secretome
To establish infection in the host, malaria parasites export remodeling and virulence proteins
into the erythrocyte. Recent studies independently uncovered a host cell targeting (HCT)
signal that allows proteins to cross into the human erythrocyte cell by passing several
membranes [22,23,24]. Combining these data sets, we compile a list of 525 secreted proteins
in P. falciparum.

Rich-Club Coefficient
The so-called rich-club phenomenon is quantitatively defined by the rich-club coefficient
Φ(k) [25]. Denoting by E≥kthe number of edges among the N≥k nodes which have at least k
interaction partners, the rich-club coefficient is expressed as

where N≥K(N≥k)/2 represents the maximally possible number of edges among the N≥k nodes.
An appropriate choice for normalizing the rich-club coefficient is provided by the ratio

where Φr(k) is the rich-club coefficient of a random network with the same degree
distribution P(k). The choice of pairs of links, whose end nodes are exchanged, allows us to
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obtain such a randomized network where the degree distribution is preserved [25,26]. In
order to have a reasonably large ensemble, we repeat the randomization process 10,000
times. Binning nodes according to their degrees k we obtain a degree dependent mean value
of the rich-club coefficient by averaging over all ρ's. A ratio ρ(k) > 1, is the actual evidence
for the presence of a rich-club phenomenon, an increase in the inter-connectivity of large
degree nodes compared to the random case. This process is well displayed by the presence
of an oligarchy of highly interacting nodes that are well connected among each other. A
ratio ρ(k) < 1 points to a lack of inter-connectivity among large degree nodes which are
separated in distinguishable modules.

3 Results
A significant proportion of the P. falciparum genome encodes a bundle of interactions that
can be inferred despite significant phylogenetic divergences between P. falciparum and the
model organisms for which comprehensive interaction data is available. To infer probable,
yet experimentally undetermined physical protein interactions in P. falciparum we use
interologs, protein interactions deemed evolutionarily conserved if participating proteins
have interacting orthologs in at least one other organism [27]. Utilizing the InParanoid
database [14], we find 1,872 interactions between 684 proteins in yeast that have orthologs
in Plasmodium, 299 orthologous fly proteins embedded in 258 interactions, 71 interactions
among 101 orthologous worm proteins and 32 interactions between 26 proteins in E. coli.
While we do not find any interactions of E. coli that are shared with other organisms, we
find relatively small fractions of yeast interologs significantly shared with worm and fly
(Fig. 1a). In comparison, currently available sets of experimental protein interactions of P.
falciparum [6] are small including 2,739 interactions among 1,301 proteins that overlap only
minimally, but significantly with the interolog-based sets of interactions (Fig. 1b). Pooling
all interaction sets we obtain a network consisting of 4,918 unique interactions among 1,872
proteins in Plasmodium. We determine the modular architecture of the underlying network,
leading to a higher-order network view in which the presence of modules possibly indicate
archetypical patterns of evolutionarily building blocks [28], a blueprint reinforced by the
tendency of the genes to be coexpressed in modules [29]. The clique percolation algorithm,
unlike other clustering approaches, [21] emphasizes overlapping clusters, thereby
highlighting proteins that participate in more than one cluster, a characteristic that is well
known from the analysis of experimentally obtained protein complexes [30]. To locate k-
clique based communities of unweighted, undirected networks, the algorithm utilizes a
community definition based on the observation that a typical member is linked to many
other members, but not necessarily to all other nodes in a certain community. Therefore, a
community can be interpreted as a union of smaller complete (fully connected) subgraphs
that share multiple interacting nodes. Applying this algorithm to the underlying network of
protein interactions in P. falciparum, we observe a steadily declining fraction of nodes that
appear in clusters obtained with increasing clique sizes (Fig. 2a). Although we lose proteins
as clique size increases, we improve the reliability of interactions in the underlying clusters.
In fact, we find that coefficients of all interactions in the underlying interaction network
follow a bimodal curve, when we calculate coexpression correlation coefficients and
functional similarity of interacting proteins in clusters obtained with various clique sizes
(Figure 2b). Accounting for interactions that appear in clusters of different clique sizes we
find that the peak around r ~ 0.0 strongly decays. In contrast, the rise of the peak at r ~ 0.5
strongly indicate the presence of reliable interactions in clusters obtained with higher clique
size. Another feature of protein interactions is their heightened tendency to share specific
functions. Such observations are based on the fact that biological functions are frequently
mediated by protein complexes. As such, highly clustered areas in protein interactions
networks do not only mediate higher reliability [31], but also appear to be more functionally
homogeneous [32]. Indeed, we find interactions that appear in clusters of larger cliques
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appear increasingly functionally homogeneous (Figure 2c), indicating a higher degree of
reliability.

Concluding that interactions in clusters obtained with increasing clique size are increasingly
reliable, we assume that the maximum clique size that places an interaction in a cluster is a
reasonable measure of the interactions reliability. As such, we pooled all interactions that
appear in at least one cluster presented in Figure 2d (a list of all interactions annotated with
their maximum clique size can be found in the Supplementary Table 1).

As a proxy to the real structure of protein complexes in P. falciparum we pooled all 154
clusters that have been obtained with different clique-sizes in the underlying protein
interaction network (see Supplementary Table 2 for the complete annotated list of clusters).
In order to assess the characteristics of the obtained clusters we compare them to protein
complexes of yeast proteins that have orthologs in Plasmodium. In particular, we utilized an
experimentally obtained large-scale data set of protein complexes [18, 19]. Determining all
proteins in complexes that have an ortholog in Plasmodium we obtain 564 conserved protein
complexes that have at least three proteins (see Supplementary Table 3 for the complete
annotated list of conserved complexes). Comparing clusters obtained from the underlying
interaction network with conserved protein complexes, we applied a hypergeometric
distribution. We determined overlaps with P < 10−2 and assigned a conserved protein
complex to each cluster with the largest overlap. In the Supplementary Table 2, we labeled
every protein that is shared by a cluster and its closest similar conserved complex.
Determining similarities between protein complexes and clusters we obtain similar
frequency distributions of corresponding sizes (Fig. 3a). In particular, both distributions
decay as a power-law, indicating that most complexes are small while a small minority is
large. Similarly, we observe that highly connected proteins participate in an increasing
number of clusters (inset, Figure 3a).

As another quantitative measure of the similarity of clusters and complexes we determined
the numbers of clusters and complexes each protein occurs in. Calculating Pearson's
correlation coefficient we find a strong and significant correlation between clusters and
complexes (Figure 3b, r = 0.64, P < 10−3). Although the conserved complexes of the
parasite resemble the putative complex structure at best, our clusters can serve as a proxy to
the real complex composition since they largely share similar characteristics. As such, we
continue our analysis with the clusters we obtained from the underlying network topology.
As a measure of cluster diversity, we define the cluster participation coefficient of a protein
i, Pi[20]. If a protein predominantly interacts with partners that are members of the same
cluster, Pi tends to 1, while the opposite holds if the interaction partners are distributed
among many different clusters. Accounting for all proteins in the underlying interaction
network we observe that interactions of a single protein occur in a variety of clusters, while
relatively few interactions are confined to a small number of clusters (Figure 3c). Focusing
on hubs, defined as proteins that have at least 5 interaction partners we find that the original
signal is significantly reinforced at low values of the complex participation coefficient. As
such, we conclude that hubs predominantly reach into many different clusters, securing a
large degree of diversity. As observed in Fig. 2b, we obtain a bimodal distribution of
coexpression correlation coefficients of interactions, where the hub protein in question
appears in only one cluster. Focusing on hub proteins that appear in more than one cluster
we find a pronunciation of the peak, suggesting that most promiscuous proteins (as indicated
by their occurrence in clusters) are coexpressed with their interaction partners. As such, we
conclude that hubs that are affiliated with one cluster largely share characteristics of date
hubs where coexpression partners are unevenly expressed, whereas proteins occurring in
many clusters tend to be expressed with their partners at the same time, indicative of party
hubs (Fig. 3d) [33].
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Representing the overlapping nature of clusters, we represent links between clusters if they
share proteins (Figure 4). In particular, we find groups of modules that share many proteins
and overlap with conserved protein complexes. The picture is dominated by protein
degrading and producing components, polymerase, ribosome and coatomer functions as well
as small nucleoproteins. Highly prominent in our clustering, we find a large complex (#1)
that shares many proteins with other clusters. Numerous distinct functions appear in this
cluster, suggesting the presence of a functional and central core in the interactome of P.
falciparum. Previous reports found that the parasites interactome is composed of an
oligarchy of highly interacting and intertwined nodes [8]. In general, this so-called rich-club
phenomenon is defined by the rich-club coefficient ρ(k) (see Materials and Methods for
details). ρ(k) > 1 points to the presence of a core of highly intertwined nodes with
connectivity of at least k. In the absence of this phenomenon (i.e. ρ(k) < 1) networks are
dominated by many well defined functional communities [25]. In our network, we confirm
the presence of a strong rich-club signal (i.e. ρ(k) > 1) with higher degree of proteins (Fig.
5a).

Determining the composition of the central cluster (#1) in Fig. 4, we observe that especially
such rich-club proteins are predominantly enriched (Fig. 5b), a result suggesting the
presence of a functional and topological core that largely governs the parasites interactome.

Determining the enrichment of human orthologs obtained from InParanoid [14] in bins of
proteins that appear in a certain number of clusters, we find that protein predominately have
orthologs in human (Figure 6a), corroborating an earlier observation that hubs in other
organisms predominately are conserved in evolution [34]. However, for proteins that are
important for the invasion process of the host, carrying a peptide export signal and being
exported into the lumen of a red blood cell, we find that these proteins are increasingly
diluted as involvement in multiple clusters increases (Figure 6b). In contrast to the
enrichment of evolutionary relevant proteins this result suggests that proteins most important
for the invasion process are more uniquely parasite features. Identification of this cohesion
highlights fundamental, conserved modular units that are not necessarily readily observable
from experimental studies of P. falciparum interactions, probably due to extreme AT-
richness of the coding sequence and limited accessibility of mRNA of certain developmental
stages in its complex life cycle. As a strength of our approach, the modularity of the inferred
network can be used to identify prominent network features at various stages throughout the
Plasmodium life cycle when overlaid with high-resolution Plasmodium-specific
transcriptional profiles. In general, transcriptional activity of the parasite has the superficial
appearance of a continuous cascade that masks the coordinated coexpression of functionally
linked protein interactions. However, this picture is refined if each protein is assigned to the
cell-cycle stage where its mRNA is expressed to its maximum level, indicating that the
subnet modularity is development-dependent to a certain extent. Highlighting all modules
where at least half of its proteins are expressed to their maximal extent in each stage, we
observe that nearly all highest activity of the network coincides with ring (G1 phase) and
schizont phases (M phase) while, remarkably, almost no maximum-level activity is observed
in the trophozoite phase (S/G2 phase). Such changes in the expression of interacting proteins
appear to reflect the changed course in the flow of metabolic activity expected to occur as
the parasite progresses towards completion of its intraerythrocytic growth cycle. In ring
stage parasites, the strongest expressed clusters are involved in gene expression and protein
production, while in the late stage of the life cycle, the dominant protein interaction network
highlights components of the proteasome, reflecting the requirement for total turnover as the
parasite remodels itself for a shift to a new invasion stage (Fig. 7). Together, these results
may suggest that genes (and their expression) in the trophozoite and schizont phase of the
Plasmodium life cycle have undergone adaptations. Such results might occlude observations
of an historical core, either due to extensive divergence or to unique gene origins. However,
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we have to stress that the outcome might differ, if we can extend the analysis to another
parasite.

4 Discussion
Although the determination of potential interactions by evolutionary inference is currently
an established technique, the gene/protein sequences of Plasmodium exhibit peculiarities
that hamper the detection of orthologs in different organisms. In particular, large inserts
obscure homology signals of true orthologs. However, by focusing on the most statistically
significant ortholog pairs (the core pairs) we largely mitigate these effects.

Our approach recovers evolutionarily conserved cohesive topologies that can be observed as
functional clusters in biological time by superimposing transcriptional profiles that partition
the network with respect to the complex life cycle. In particular, the application of the k-
clique clustering algorithm allows us to obtain a cluster structure that largely shares
characteristics of experimentally obtained protein complexes. In lieu of such results or the
parasite, we resorted to evolutionary portions of Yeast protein complexes, allowing us to
conclude that the computational clustering reasonably reflects the large scale properties of a
putative complex composition.

This method should provide an initial comprehensive interaction network for detailed
experimental analysis, compliment experimental data and further bioinformatics approaches.
Novelty in the parasite interactome, including absence of conserved clusters and their
interactions, can provide insight into the parasites biology. Absent clusters may represent
unique divergences that distinguish the Plasmodium network structure from other
organisms. Assuming that all orthologous relationships can be detected, protein counterparts
in other organisms with no orthologs in Plasmodium may represent either a loss of function
or acquisition of novel malaria parasite-specific clusters. While this assumption certainly
holds for the set of organisms considered, such specifics of Plasmodium might actually be
common to other parasites, a hypothesis that can be tested once interactions in other
parasites are available. In addition, such divergences may be especially interesting since it
has been shown that increased rates of evolution may be focused at the connections between
modules.

Therefore, even though the clusters themselves are highly conserved units, unique
Plasmodium-specific proteins that appear in many complexes could highlight critical
features of the parasite that can be exploited as therapeutic targets. Several extensions of our
method can be envisioned to benefit from the proliferation of whole-genome databases that
continuously enrich the power of network inference. Our initial elucidated network for
malaria parasites can be strengthened by deeper searches for orthologs using all Plasmodium
species. Similarly, a concatenated network comprising all known (and validated)
interactions across the tree of life will be an important tool to recognize distant phylogenetic
relationships with yeast and other organisms for which refined network data exist. More
functional relationships can be elucidated within the dimensions of malaria genome
expression by profiling transcription, at much higher resolution under a variety of conditions
of cellular life (e.g. perturbations, and strain-specific variants). Eventually, we expect to
construct a comprehensive phylogenetic scaffold of networks using the methods developed
in this project onto which new protein-protein interaction data can be placed. Since there is
still considerable noise in the protein interaction data available from current technologies,
such as from yeast two-hybrid determinations, a universal scaffold will be a powerful tool
for experimental investigation of proposed interactions. As such, our results further
contribute to the understanding of the lethal biology of this parasite and possibly illuminate
basic pathways and processes as unique targets for therapeutic intervention.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) The diagram shows the sizes of the different sets of interactions in P.falciparum we
inferred from well established other eukaryotic organisms. The overlaps between these sets
of interactions are small but statistically significant (P < 10−3, assuming a hypergeometric
distribution). (b) Similarly to (a), we find that the evolutionary derived set overlaps only to a
small but significant extent with the experimental set of interactions (P < 10−3).
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Figure 2.
(a) Since clique percolation algorithm does not partition the underlying network, we observe
a steadily declining fraction of nodes that appear in clusters obtained with different clique
sizes. (b) Calculating coexpression correlation coefficients r for all interactions in the
underlying network we observe a bimodal distribution. Accounting for interactions that
appear in clusters obtained with different clique sizes we find that the peak at r ~ 0.0 is
strongly decaying, while we observe a pronunciation of the other peak at r ~ 0.5. (c)
Similarly, interactions that appear in clusters of increasing clique sizes appear more
functionally homogeneous. The combination of these observations allows us to conclude
that interactions in clusters obtained with increasing clique size are more reliable. (d)
Graphical representation of all interactions that appear in at least on cluster.
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Figure 3.
(a) Pooling all clusters that have been obtained with different clique-sizes, we observe a
power-law in the frequency distribution of cluster sizes. As another benchmark of
significance, we compared our clusters obtained with our clique percolation algorithm to
protein complexes in Yeast that have orthologs in P. falciparum. We find a similar shape in
the distribution of sizes in conserved protein complexes (dotted line). Since the clique
percolation algorithm allows nodes to be affiliated with more than one cluster, we observe a
strong correlation, indicating that hubs predominately are significantly present in an
increasing numbers of clusters (inset, r = 0.57, P < 10−3). Similarly, we observe such a
correlation for conserved protein complexes (dotted line, r = 0.23, P < 10−3). (b)
Comparing the affiliation of proteins to clusters in our network and to conserved protein
complexes, we observe a strong correlation (r = 0.64, P < 10−3). (c) A low value of the
cluster participation coefficient represents the observation that the interactions of a protein
are present in many different clusters and vice versa. Considering all proteins in clusters we
obtain a maximum around low values. Focusing the analysis on hubs defined as proteins that
have at least 5 interaction partners we find that the original signal is significantly reinforced
at low values of the cluster participation coefficient. (d) Similarly to Fig. 2b, we obtain a
bimodal distribution of coexpression correlation coefficients of interactions, where the
proteins in question appear in only one cluster. Focusing on Proteins that appear in more
than one cluster we find a pronunciation of the peak at higher values, suggesting that the
majority of promiscuous proteins (as indicated by their occurrence in clusters) are
coexpressed with their interaction partners.
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Figure 4.
Representing the overlapping nature of clusters, we represent links between clusters if they
share proteins. In particular, the size of nodes and width of edges reflects the size of the
clusters and the number of shared proteins, respectively. The color of nodes indicates the
degree of overlap with conserved protein complexes in yeast, where a gradient from green to
red indicates increasing overlap. As for functional complexes, we find large groups of
overlapping complexes providing protein degrading and producing, polymerase, ribosome
and coatomer functions as well as small nucleoproteins. Numbers indicate clusters in the
Supplementary Table 2, where each cluster is annotated with its proteins.
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Figure 5.
(a) The distributions of the mean rich-club coefficient ρ(k) shows an increase with elevated
connectivity in the parasites protein interaction network, suggesting the presence of an
oligarchy of highly interacting and intertwined proteins. (b) Determining the enrichment of
proteins that appear in the central cluster 1 and other clusters in Fig. 4, we largely find that
especially proteins in rich clubs tend to appear in cluster 1.
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Figure 6.
(a) Determining the enrichment of human orthologs in bins of proteins that are involved in a
certain number of clusters, we find that proteins that appear in an increasing number of
clusters are predominately conserved in human. (b) In contrast, we find that proteins which
carry a peptide export signal for being excreted to the lumen of a human red blood cell, are
diluted with increasing involvement in multiple clusters.
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Figure 7.
Assigning each protein to the cell-cycle stage where its mRNA is expressed to its maximum
level, we highlight each cluster according to the fractions of maximally expressed proteins
in the underlying stage, where the color gradient from green to red refers to increasing
fractions. We observe that nearly all highest activity of the clusters coincides with ring and
schizont phases while, remarkably, almost no maximum-level activity is observed in the
trophozoite phase. In the ring stage the strongest expressed clusters are involved in gene
expression and protein production. In the late stage of the life cycle, the dominant protein
interaction network highlights components of the proteasome, reflecting the requirement for
total turnover as the parasite remodels itself for a shift to a new invasion stage.
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