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Abstract

Microarray gene-expression data of 54 paired gastric cancer and adjacent noncancerous gastric tissues were analyzed, with
the aim to establish gene signatures for cancer grades (well-, moderately-, poorly- or un-differentiated) and stages (I, II, III
and IV), which have been determined by pathologists. Our statistical analysis led to the identification of a number of gene
combinations whose expression patterns serve well as signatures of different grades and different stages of gastric cancer. A
19-gene signature was found to have discerning power between high- and low-grade gastric cancers in general, with overall
classification accuracy at 79.6%. An expanded 198-gene panel allows the stratification of cancers into four grades and
control, giving rise to an overall classification agreement of 74.2% between each grade designated by the pathologists and
our prediction. Two signatures for cancer staging, consisting of 10 genes and 9 genes, respectively, provide high
classification accuracies at 90.0% and 84.0%, among early-, advanced-stage cancer and control. Functional and pathway
analyses on these signature genes reveal the significant relevance of the derived signatures to cancer grades and
progression. To the best of our knowledge, this represents the first study on identification of genes whose expression
patterns can serve as markers for cancer grades and stages.
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Introduction

Cancer grading is a measure of a cancer’s malignancy and

aggressiveness. A popular grading system uses four levels of

malignancy (G1-G4), reflecting the combined level of cell-

appearance abnormality, deviation in growth rate from the

normal cells and the degree of invasiveness and dissemi-

nation. These pathological measures have been found to be

in general concordance with the level of cellular differen-

tiation (American Joint Commission on Cancer) [1]. Hence

{G1, G2, G3, G4} are also referred to as well-, moderately-,

poorly- and un-differentiated, respectively. As of now, there has

not been a universal grading system for all cancers. Instead,

different grading systems have been proposed for different

cancers. For example, the Gleason system [2] is probably

the most well-known for grading adenocarcinoma cells in

prostate cancer while the Bloom-Richardson system [3] is

used for breast cancer, and the Fuhrman system [4] is used for

kidney cancer.

Gastric cancer, the second leading cause for cancer-related

death worldwide, is particularly prevalent in Asian countries,

including China, Korea and Japan [5]. In the U.S., this

asymptomatic disease had ,21,500 new cases in 2008 along

with 10,800 deaths [6]. Unlike other cancers, gastric cancer does

not yet have a generally accepted grading scheme. Grading has

been mostly done based on rather general cancer-grading

guidelines from organizations like the American Joint Commis-

sion on Cancer. There are a few systems for classifying gastric

cancers into histological subtypes, including those by the Lauren

[7], the World Health Organization (WHO) [8] and Goseki,

et al. [9,10], which define subtypes according to the structural

features of the cancer, the histopathological appearances of the

cells, and the level of mucus, respectively. However, it is largely

controversial regarding whether any of these systems is really

relevant to the degree of malignance and survivability, thus

having not been widely used for grading gastric cancer [11].

The lacking of a well-established grading system for gastric

cancer remains as a major obstacle hindering the progress in

this field.

We present a computational study herein, aimed to identify a

set of genes whose expression patterns can well distinguish

among gastric cancers of different grades, like Oncotype DX, a

21-gene panel for identifying low-risk breast cancer [12]. These

genes, whose expression patterns distinguish gastric cancers of

different grades, provide useful information towards developing

a gene expression-based grading system for gastric cancer. In

addition, we also present our findings on the gene expression

patterns common to cancers at different developmental stages,

potentially serving as molecular signatures for gastric cancer

staging.
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Results

A. Identification of genes with expression changes
correlated with cancer grades

17,800 human genes were profiled in this study, using

Affymatrix Exon Arrays. Out of the 54 cancer samples, 8 are

well differentiated (WD), 9 moderately differentiated (MD), 35

poorly differentiated (PD) and 2 undifferentiated (UD). A total of

452 genes were found to be differentially expressed as determined

using the following criteria: the expression levels in cancer and the

corresponding control tissue show at least 2-fold change, and the

statistical significance, P-value, of having this level of expression

change is ,0.05 (see Material and Methods; gene names are listed

in Table S1). Among the 452 genes, 97 uniquely in UD, 62 in PD,

8 in MD and 16 uniquely in WD represent a core set of differentially

expressed genes, which are consistently identified by applying

different classification strategies using the paired-sample informa-

tion or not. This set includes genes exhibiting the most consistent

expression change (over 2-fold) in cancer versus control tissues,

which were deemed to be differentially expressed genes with high

reliability, derived through multiple statistical tests. In contrast, the

whole set of 452 genes represent an extended set. We noted that

there is a general trend that the number of the differentially

expressed genes increases as a gastric cancer, relative to normal

tissue, is more poorly differentiated, as shown in Figure 1. This

observation is in agreement with our general knowledge that less-

differentiated cancers tend to have more differentially expressed

genes and are more aggressive; the exception for WD, as shown in

Figure 1, might reflect the small sizes of the WD and the MD

groups.

We then checked if some genes may have their expression

changes correlate with the cancer grades. To do this, we have

calculated the Spearman correlation coefficient (CC) between the

average expression of each gene across all samples of each grade

and the four cancer grades. It was found that the expression

changes of 99 genes correlate perfectly with the grades WD-MD-

PD-UD (|CC| = 1, P-value,0.05) (see details in Table S2).

Among these genes are POF1B, MET, CEACAM6, ZNF367,

GKN1, LIPF, SLC5A5, MUC13, CLDN1, MMP7 and ATP4A,

which are all known to be cancer related. Figure 2 shows four

examples with either positive or negative correlations. Among

them, MUC13 has been reported as a good marker for the level of

differentiation of gastrointestinal mucosa [13]. Increased MUC13

expression has been found to induce morphological changes,

including scattering of cells through interference with the function

of cell adhesion molecules [14]; thus, an increased expression

along with differentiation may indicate enhanced cell-cell

adhesion.

We noted that genes with their expression changes correlated

with cancer grades are highly enriched among secreted or

membrane proteins (P-value ,0.05), which participate in multiple

signaling pathways such as ErbB, FAS, NOD-like receptor, PPAR

and Wnt signaling, as well as cell adhesion molecules (CAMs) and

tight junctions. This is not surprising since these pathways are

essentially involved in cell growth and cell death, as well as cancer

metastasis. Such changes in gene-expression patterns of these

pathways, involved in signal transduction and extracellular

communication, may provide clues about cancer progression.

B. Identification of gene signatures for cancer grades
We have examined the 452 differentially-expressed genes,

aiming to identify genes whose expression patterns can, with good

accuracy and reliability, distinguish gastric cancers of different

grades. The classification analysis (see Methods) was first

conducted between two cancer groups (highly and poorly

differentiated), and then extended to five groups, namely four

cancer grades and the control. A support vector machine (SVM)-

based regressive feature elimination approach was applied, using a

linear kernel for cancer classification (see Methods).

At the end, a 19-gene group was identified which can

distinguish between highly and poorly differentiated cancers with

an overall agreement at 79.2%, based on the expression fold-

change in cancer versus control tissues. Similarly, a 198-gene group

can distinguish among the four different cancer grades and the

control group according to their gene expression, giving rise to

74.2% overall classification accuracy. Both gene sets were chosen

Figure 1. Relationship between cancer grades and the number of differentially expressed genes, with fold-change (FC) . = 2 and P-
value ,0.05 by Wilcoxon signed–rank test (blue), using paired sample information, and fold-change test defined in this study (red),
without using paired-sample information. The green plot shows the overlapped identification between these two strategies.
doi:10.1371/journal.pone.0017819.g001
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based on a majority voting (at least 70% consistency) scheme from

the classification results on 500 sets randomly sampled from the 54

sample sets, along with their significance ranking (see Methods for

details).

The 19-gene signature consists of ADIPOQ, COL6A3, TNS1,

SCN7A, DES, VIL1, COL3A1, C2orf40, SMYD1, ACTG2,

MEIS1, C7, GPR174, SHCBP1, DUSP1, DNAJB5, HIATL1,

IL17RB, and FAT. A close look at the functional annotation of

these genes revealed that their protein products are involved in cell

growth and differentiation (IL17RB, SMYD1, SHCBP1), cell

motility (ACTG2), angiogenesis and tissue remodeling (ADIPOQ),

carcinogenesis (ECRG4), matrix protein synthesis (COL3A1,

COL6A3), and others like G protein-coupled receptor 174

(GPR174), brush border cytoskeleton (VIL1), membrane attack

complex (C7), and sodium channel (SCn7A).

17 out of the 19 genes, plus an additional 181 genes, form a 198-

gene group whose expression pattern can distinguish the four

cancer grades and the control. Their functions cover cell division,

immune response, signal transduction and transcription regula-

tion, in addition to the aforementioned categories. Overall, 39 out

of 99 grade-correlated genes are part of this 198-gene signature,

including CLDN1, MUC13, VIL1, HIATL1, CDCA7,

HIST1H2BM and FAT (see the full list in Table S3).

In addition to this catch-all signature for five-way classification,

we also identified and analyzed grade-specific gene signatures for

each cancer grade. For example, LAPTM4B is one such

representative. This gene gives high classification accuracy for

caner and control samples in the WD group with the AUC (area

under curve) = 0.97 (Figure 3). Using 7.04 as the expression cutoff,

this gene can well distinguish cancer from the control samples in

the WD group with sensitivity = 87.5% and specificity = 100%.

This result is not surprising since it is known that LAPTM4B is

essential for cell growth and survival, and its up-regulation has

been found to be correlated with the level of differentiation of

hepatocellular carcinoma [15]. In total, 40 such signature genes

are found specifically for the WD group; 18, 20 and 255 genes are

specific to the MD, PD and UD group, respectively (see details in

Table S4).

We have also identified single gene discriminators for each

grade group against the rest of the samples, including the control,

as summarized in Table 1. For instance, the signatures for the PD

group include the up-regulated genes, MYO1B for WD; GKN2 for

MD; CTSA for PD; and a down-regulated gene, RHOJ, for the UD

group. These single-gene discriminators show significant AUCs,

ranging from 0.76 to 0.99, while the overall classification

accuracies obtained by 5-fold cross-validation range from 70.0%

to 97.0% for different groups. A subsequent search for k-gene

combinations (k = 2, 3, 4) for each cancer group by exhaustively

going through all the combinations of k-gene groups also

identified.

C. Identification of gene signatures for pathological stage
Using similar analyses to those of the above, we have identified

gene signatures for early stage (stage I+II) and advanced stage

cancer (stage III+IV). Table 2 highlights the most discriminative

single gene markers, with the classification accuracy ranging from

75.0% to 81.4%. Multi-gene signatures were also checked for

cancer staging. For example, two signatures were found to be

particularly effective in cancer staging, namely a 10-gene group

(CPS1+ DEFA5+ DES+ DMN+ GFRA3+ MUC17+ OR9G1+
REEP3+ TMED6+ TTN) and a 9-gene group (DPT+ EIF1AX+
FAM26D+ IFITM2+ LOC401498+ OR2AE1+ PRRG1+
REEP3+ RTKN2), which can distinguish the early and the

advanced gastric cancers from the remainder of the samples

Figure 2. Correlation between gene expression levels and cancer grades of four genes. (‘‘q’’ and ‘‘Q’’ denote up- and down-regulation in
cancer versus reference tissues, respectively.)
doi:10.1371/journal.pone.0017819.g002

Figure 3. The ROC curve of LAPTM4B as a discriminator
between cancer and control samples in the WD group (with
AUC of 0.97).
doi:10.1371/journal.pone.0017819.g003
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(including control samples) with agreements of 90.0% and 84.0%,

respectively. The overall classification accuracy on the three

groups, early, advanced and control, is 71.4%.

A functional analysis on these signature genes revealed

something interesting. For example, among the protein products

of early-stage signature genes, GFRA3, MUC17, OR9G1, REEP3

and TMED6 are membrane proteins, mostly receptors that

transduce extracellular signals. DEFA5 is a microbicidal peptide

believed to be involved in host defense that is highly expressed in

the ileum [16]. CPS1, DES and TTN are involved in multiple

metabolic processes, muscle function and the M phase of the

mitotic cell cycle, respectively. We speculate that these signaling-

and immune- related genes may represent the early abnormality of

tissue cells during oncogenesis in general.

A few genes were found to be in both the cancer grading and

staging signatures, such as CPS1, DES, GFRA3, TMED6 and

DPT, indicating some biological relevance between cancer

differentiation and progression. We then examined whether the

gene expression of staging signatures are associated with

pathological stages. Among them, those highly correlated with

different pathological stages are LANCL3, MFAP2 and PPA1

(Figure 4), showing consistent up- and down-regulation, respec-

tively, along with cancer progression.

D. Identification of differentially-expressed genes
independent of cancer grades and stages

In addition to the differential expression specific to certain

subgroups of gastric cancer, we also examined if some genes are

differentially expressed in gastric cancer in general, regardless of

grades and stages. 62 such genes were found with consistent

differential expression by at least 2-fold changes in cancer versus

corresponding reference tissues. We noted that they are mostly

involved in extracellular processes such as focal adhesion, CAMs,

tight junction, cytokine-cytokine receptor interaction and ECM-

receptor interaction, the plasminogen activation cascade, as well as

signaling pathways including Wnt signaling and Integrin signaling,

which are closely relevant to cell growth and cell proliferation

control. Searching against our in-house database (http://bioin

fosrv1.bmb.uga.edu/DMarker/) which includes public microarray

datasets from GEO [17], Oncomine [18] and SMD [19], covering

over 53 human diseases including cancer, we found that the

differential expression patterns of 15 genes are highly specific to

gastric cancer, such as GKN2, CLDN7, THY1, GIF and PGA4,

while most others are general to multiple cancer types. For

example, the most general ones include a few members of the

collagen gene family (COL1A2, COL3A1 and COL1A1), the

carcinoembryonic antigen–related cell adhesion molecule (CEA-

CAM6), matrix metalloproteinases (MMP1, MMP7 and MMP12),

topoisomerase (TOP2A) and secreted phosphoprotein (SPP1).

Only three, CLDN7, CLDN1 and DPT, of these genes are

significantly differentiated in all grades or stages of gastric cancer.

Table 1. The top three discriminative genes for each grade
(against the rest), through classification analysis based on
both their expression levels (*P-value is obtained by Wilcoxon
signed–rank test; ‘‘Q’’ denotes a down-regulated gene; REL
means ‘‘raw expression level’’).

Subtype REL-based signatures

Genes AUC *P-value
Classification
Acc. (sen./spe.)%

WD MYO1B 0.85 1.07E-03 81.5(75.0/82.6)

MET 0.84 1.33E-03 80.9 (62.5/84.1)

EDARADDQ 0.83 1.70E-03 72.3(85.7/69.7)

MD GKN2 0.77 1.42E-02 74.3(77.8/74.0)

SPP1 0.83 4.94E-04 75.7(66.7/76.3)

PDIA2 0.87 7.82E-04 70.2(77.8/68.7)

PD CTSA 0.76 1.21E-06 75.8 (87.5/62.0)

ADAMTS12 0.79 6.81E-08 75.0 (75.0/75.0)

CST2 0.78 1.77E-07 74.2 (78.1/69.4)

UD COTL1 0.99 3.33E-01 96.4(100/96.4)

RHOJQ 0.99 3.33E-01 97.1(100/97.1)

TNFRSF1B 0.99 3.33E-01 97.1(100/97.1)

doi:10.1371/journal.pone.0017819.t001

Table 2. The most discriminative genes identified for staging through classification analysis based on both their expression level
and expression fold-change (*P-value is obtained by Wilcoxon signed–rank test; ‘‘Q’’ denotes a down-regulated gene. ‘‘–‘‘ is
included since the ECMs based on fold-change is applicable to both early and advanced stages; REL means ‘‘raw expression level’’
while EFC means ‘‘expression fold-change’’).

Stage REL-based signatures EFC-based signature

REMs AUC P-value
Classification
Acc.(sen./spe.)% ECMs AUC P-value

Classification
Acc.(sen./spe.)%

I+II CHRM3Q 0.83 3.36E-04 79.3(90.9/67.4) GNG5 0.86 2.06E-04 83.2(100/64.4)

PCDH7Q 0.82 3.78E-04 78.9(91.9/66.7) DKK2 0.74 1.08E-02 78.4(81.8/74.6)

TACR2 0.78 2.40E-03 78.5(100/56.6) KIF2B 0.79 2.69E-03 76.8(81.8/71.2)

SATB2 0.82 4.64E-04 77.0(81.8/72.1) C3orf20 0.77 4.99E-03 76.8(72.7/81.4)

LANCL3Q 0.78 2.28E-03 0.77(0.91/0.62)

PPA1 0.80 1.14E-03 0.75(0.82/0.69)

III+IV RTKN2 0.54 2.88E-11 81.4(71.1/88.9) – – –

PKM2 0.63 2.25E-10 79.3(69.5/86.4) – – –

B4GALNT2 0.52 5.14E-09 77.8(83.1/74.1) – – –

MFAP2 0.62 5.73E-09 77.1(66.1/85.2) – – –

doi:10.1371/journal.pone.0017819.t002
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We can see from Figure 5A and 5B that both CLDN7 and CLDN1

are highly expressed in cancer versus control samples across all

grades and stages, with a moderate increase in early cancer tissues,

while DPT was down-regulated across all these groups. The

consistent expression pattern across all the cancer subgroups may

indicate that these genes participate in many major biological

pathways involved in cancer formation and progression. As is well

known, the two claudin proteins, claudin-1 and claudin-7, are

integral membrane proteins crucial to formation of tight junctions,

maintaining cell-to-cell adhesion and regulating paracellular and

transcellular transport of solutes across human epithelia and

endothelia, which are differentially expressed in various cancers

such as cervical neoplasia [20], renal carcinoma [21] and an

intestinal type of gastric cancer [22]. Dermatopontin (DPT) is an

extracellular matrix protein serving as a communication link

between the dermal fibroblast cell surface and its extracellular

matrix. Its reduced expression has also been found in both uterine

leiomyomas and keloids [23]. The ROC shown in Figure 5C

indicates that these genes could possibly be used as effective

markers for gastric cancer diagnosis in general.

E. Verification of the identified signatures on public
datasets

The expression patterns of our identified signature genes were

checked against two public datasets, namely, the Kim and Takeno

datasets (see Materials and Methods), to determine the generality

of these gene signatures. As shown in Figure 6, the distribution of

expression differentials between our data and the Kim dataset is

significantly concordant, indicating that the general applicability

of our identified markers. Out of 19 and 12 overlapped genes from

the above-identified grades-correlated and stage-correlated gene

list, 10 and 5 show similar expression patterns across cancers of

G1-2/G3-4 grades and I-IV stages in the Kim data, respectively,

reflecting a high consistence in expression patterns of these genes

among different sample sets.

Overall, our 19-gene signature for cancer grades performed well

on the Kim data and obtained 78.0% classification accuracy on 5-

fold cross validation in terms of distinguishing poorly from highly

differentiated cancers. Similarly, the two-stage signatures (10-gene

and 9-gene groups) obtained respective accuracies of 84.0% and

76.0% on the Kim dataset. The 198-gene signature was not

checked since the Kim dataset provides only fold-change instead of

raw expression data.

Interestingly, we noted that there is moderate correlation

between the gene expression of our identified signature groups and

cancer recurrence based on the peritoneal relapse information of

Takeno’s data [24]. Specifically, the four signatures, 19-, 198-, 10-

and 9-gene groups, can predict the peritoneal relapse with an

overall accuracy of 66.0%, 87.2%, 73.0% and 55.3%, respectively,

by distinguishing between the relapse-free and peritoneal-relapse

patients in Takeno’s study [24].

Discussion

Microarray gene-expression analyses on gastric cancer have

previously identified gene expression patterns for prognosis

prediction [25,26] and general cancer diagnosis [27,28] (as

reviewed in Table S6) but none for gastric cancer subtyping or

grading. Here, we presented an analysis on 54 pairs of cancer and

adjacent reference tissues from the same number of gastric cancer

patients, and identified molecular signatures for cancer grades and

stages.

It is known that different classification and gene selection

analyses may lead to different gene signatures, posing a serious

issue about the stability and usefulness of the selected gene

signatures. To deal with this issue, we have applied exhaustive

searches for k-gene signatures (k, = 4) coupled with a robust

feature selection procedure with majority voting for k.4, which

ensures the stability of the identified signature genes. On the other

hand, due to the complex nature of cancer gene-expression data, a

general belief has been that different classification techniques may

give rise to different signatures but of equal importance as they

may correspond to different pathways associated with different

aspects of a cancer. In addition to these technical variances, the

limited sample size and the heterogeneity existing among the

cancer subgroups are noted as other major factors affecting the

selected markers.

In conclusion, we have demonstrated herein that gene

expression patterns can be used as effective signatures for gastric

cancer grading and staging, as well as prognostic prediction. Two

types of signatures were proposed to serve different diagnostic

purposes, each showing a certain relevance to cancer malignance

Figure 4. Correlation between gene expression (log transformed) and the pathological stages. (S1–S4 represents four stages from early
stage I to advanced stage IV.
doi:10.1371/journal.pone.0017819.g004
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Figure 5. Average expression of three genes (CLDN7, CLDN1 and DPT) in cancer and normal samples, respectively. (A) for each
subtype (WD, MD, PD, UD); (B) for each stage (stage I, II, III and IV); and (C) the ROC curve shows the discerning power of each gene for classification of
cancer versus normal samples (AUCs of CLDN1, CLDN6 and DPT are 0.86, 0.84 and 0.79, respectively, with a significance level of P = 0.0001).
doi:10.1371/journal.pone.0017819.g005

Figure 6. Distribution of expression differentials between out data and Kim dataset.
doi:10.1371/journal.pone.0017819.g006
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and cancer progression. Such attempts of using molecular grade-

and stage-signatures are expected to significantly benefit the

development of personalized medicine and may lead to new serum

markers.

Materials and Methods

Tissue Samples
Samples were taken from primary malignant gastric cancers

from non-treated patients during the initial surgical procedure at

three affiliated hospitals of the Jilin University College of Medicine

and Jilin Provincial Cancer Hospital, Changchun, China. For

each cancer tissue sample, a matching reference tissue sample was

collected from the adjacent noncancerous region that the surgeon

resected in order to ensure positive margins. All samples were

snap-frozen in liquid nitrogen within 10 minutes after excision and

stored at -196C until RNA extraction. For RNA isolation, 100 mm

sections of each sample were used.

All medical records and cancer sections were examined by a

surgical pathologist, and the histological diagnosis and TNM

classification were made according to Worldwide Health Organi-

zation (WHO) criteria and the classification system of the

International Union against Cancer. The reference samples were

subjected to a meticulous histologic analysis to guarantee the

complete absence of cancer cells. Written informed consent was

obtained from all patients, which was approved by the Institutional

Review Board at the University of Georgia, Athens, Georgia, USA

and by the Chinese IRB overseeing human subjects at Jilin

University College of Medicine and the Jilin Provincial Cancer

Hospital, Changchun, China.

Detailed patient information such as age, gender, histological

type, differential grade, pathologic stage and history of using

alcohol/smoking is listed in Table S5.

Microarray experiments
The RNA samples were analyzed using the GeneChip Human

Exon 1.0 ST (Affymetrix), following the protocol detailed in the

Genechip Expression Analysis Technical Manual (P/N 900223)

for the array experiment and an earlier report [29]. The

microarrays were scanned using the GeneChipH Scanner 3000

with GeneChipH Operating Software (GCOS). All data is MIAME

compliant and the raw data has been deposited in GEO database

(ID: GSE27342).

Microarray Data Analysis
Gene expression results were summarized based on raw probe

intensities using the Robust Multichip Average [30] and the APT

package (http://www.affymetrix.com/partnerSupplementarypro

grams/programs/developer/tools/powertools.affx), following three

main steps including background correction, quantile normalization

and log2-transformation. Genes having very low expression in both

cancer and reference samples were removed; specifically, a gene was

removed if its maximum(Expr.cancer, Expr.normal) was below 4

(normalized signal intensity).

Two different strategies were applied for assessing gene

significance, depending upon what conditions were compared

and whether paired or unpaired samples should be used. For

comparison of cancers against control sample groups, unpaired

tests were conducted to investigate if two groups of expression are

different, while paired tests were applied to examine the

consistency of expression changes across all pairs. In addition to

the Wilcoxon signed–rank test, we also applied another simple

statistical test to detect genes with consistent differential expression

in cancer versus reference tissues, as follows. For each gene, Kexp, the

number of pairs of cancer/reference tissues whose expression fold-

change (FC) is larger than k (e.g. k = 2) was examined; if the P-

value for the observed Kexp was less than 0.05, the gene was

considered to be differentially expressed in the majority of the

cancer and reference tissue pairs (see the supporting information).

Our calculated P-value was not adjusted on the multiple

hypotheses testing in order to avoid any loss of genes that may

be potentially effective in the subsequent classification step.

Gene selection and classification
For k-gene signatures (k, = 4), we conducted an exhaustive

search for all the k-gene combinations among the differentially

expressed genes, identified from the previous step, using a linear

SVM-based classification approach, and the overall accuracy was

evaluated using 5-fold cross-validation. For k.4, a different

approach using a heuristic search was applied since the exhaustive

search is too time-consuming to be practical for our problem. The

details are as follows.

The whole expression data set was randomly split into training

and test sets, each containing half of the samples. This was

repeated for 500 times to generate 500 sets of training/test data for

classification. A linear SVM was used for training a classifier

[31,32]. It constructs a hyper-plane that separates two different

classes of feature vectors with a maximum margin. This hyper-

plane is constructed by finding a vector w and a variable b that

minimize wk k2
, which satisfies the following conditions:

w:xizbwz1, foryi~z1(cancer samples) and w:xizbv{1,

yi~{1(normal samples). Here, xiis a feature vector, yiis the

group index, w is a vector normal to the hyper-plane, bj j= wk kis
the distance from the hyper-plane to the origin and wk k is the

Euclidean norm of w. After the determination of w and b values, a

given vector x can be classified by using sign(wxzb); a positive or

negative value indicates that the vector x belongs to the positive or

negative class, respectively. Gene signatures of each training set

were selected by using the recursive feature elimination procedure

(RFE), which is a wrapper that selects predictor genes by

eliminating non-predictor genes according to a gene-ranking

function generated from the classification system [33]. The

ranking criterion is based on the change in the objective function

upon removing each gene. To improve the efficiency of training,

this objective function is represented as a cost function J for the i-

th feature, computed by using the training set only. When a gene is

removed or its weight wi is reduced to zero, the change in the cost

function J(i) is given by DJ(i)~
1

2

L2J

Lw2
i

(Dwi)
2. The case of

Dwi~wi{0 corresponds to the removal of the i-th gene. The

change in the cost function indicates the contribution of the gene

to the decision function and serves as an indicator of gene ranking.

The 500 training/test sets were randomly divided into 10

sample groups. Every sample group was then used to derive a

signature, based on majority voting and evaluation of gene-

ranking consistency across the 50 training and test sets. The 10

different signatures derived from the 10 groups were compared to

assess the level of consistency among the selected genes. In each

group, subsets of genes were selected by RFE-SVM from each

training set, and the performance on the subsets was evaluated

from the associated test set. To derive a gene ranking criterion

consistent for all iterations, a RFE ranking function at every

iteration step was derived from an SVM classifier that gave the

best average classification accuracy over the 50 test sets.

Public microarray data of gastric cancer
Two public microarray datasets were downloaded from the

GEO database for comparative studies, the Kim (GSE3438) and
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the Takeno (GSE15081) datasets. The first one [34] includes gene

expression of 50 gastric cancer patients (from Korea) at different

stages and level of differentiation, which was used to check the

consistency of our identified signatures. The Takeno data [24]

includes 141 primary gastric cancer tissues after curative surgery,

with follow-up peritoneal relapse information. These datasets

provide the normalized log2 ratio of tumor and normal expression.

Supporting Information

Table S1 Statistics of 452 genes that are differentially expressed

in any of the four grades group, determined using the following
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samples collected in our study (N.B.: information on age, smoking,
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