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Abstract

Disruption of cerebellar granular neuronal precursor (GNP) maturation can result in defects in motor coordination and
learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh) pathway is
important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP
differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the
activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in
GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2
(Mdm2puro), which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We
report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia,
reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with
decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2
accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding.
Significantly, loss of MDM2 in Ptch1+/2 mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar
tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs,
with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis.
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Introduction

The cerebellum is a highly organized structure that coordinates

motor, linguistic and cognitive functions [1]. The internal granular

layer (IGL) of the cerebellum contains the majority of the neurons

of the brain, and its proper organization requires precise control of

both the extent and timing of a number of intricate processes,

including the migration, proliferation, and differentiation of

granular neuronal precursors (GNPs) [2]. In mice, GNPs are

derived from the rhombic lip region of the fourth ventricle prior to

embryonic day 14.5 and migrate dorsally over the cerebellar

primordium to form the nascent external granular layer (EGL) [3].

The development of the cerebellum continues during the first

weeks (mice) or months (humans) after birth, during which time

GNPs continue to proliferate prior to their differentiation into

mature granule cell (GC) neurons [4,5]. Improper GNP

maturation can result in defective foliation, which is associated

with defects in motor coordination [6,7], or in medulloblastoma,

the most common childhood brain tumor [8].

Mitogenic signaling by the Sonic Hedgehog (Shh) pathway is

critical for GNP proliferation and expansion of the EGL in the

post-natal period of cerebellar development [9,10,11]. During this

time, Shh is secreted by Purkinje cells and binds to its receptor,

Patched (Ptch), which is expressed on GNPs [12]. In the absence of

Shh, Ptch inhibits the signaling activity of Smoothened (Smo).

Binding of Shh to Ptch alleviates Smo repression, thereby

triggering activation of the Gli (Gli1, 2, and 3) family of

transcription factors [13,14]. The proliferative effects of Shh are

likely mediated through the transcriptional regulation of Shh

target genes that include several transcription factors (e.g. NMyc)

[15] and downstream cell cycle regulatory proteins (e.g. CyclinD1)

[16]. Shh signaling is down-regulated in GNPs at the later stages of

cerebellar development through a mechanism which is not well

understood, and this failure of GNPs to respond to Shh correlates

with their cell cycle exit and subsequent differentiation into mature

GC neurons that migrate inward to form the IGL [4,5].

Aberrantly constitutive Shh signaling has been implicated in the

etiology of several cancers, including medulloblastoma (MB)

[17,18,19,20,21]. One subtype of MB is presumed to arise

following the dysregulation of the normal developmental program

of a GNP [22]. In agreement with this view, Shh signaling is

aberrantly activated in .60% of MB tumors [23]. Ptch1, an

inhibitory component of Shh signaling, acts as a tumor suppressor

[24] and germ-line mutations in Ptch1 promote MB formation in

PLoS ONE | www.plosone.org 1 March 2011 | Volume 6 | Issue 3 | e17884



both humans and mice [17,18]. In MB tumors that form in Ptch1+/

2 mice, Shh signaling is constitutively active and blocking this

signal with a Shh-antagonist promotes tumor regression [25,26],

highlighting the importance of Shh signaling in the initiation and

maintenance of this tumor type. Despite the prevalence of Shh

dysregulation in MB, mutations in known components of the Shh

signaling pathway have been identified in only ,10–25% of

sporadic human MB [27], leaving the genetic basis for most MB

tumors unexplained. This gap in knowledge may be filled through

the identification of other genes and pathways that collaborate

with Shh signaling in GNP maturation.

The p53 pathway is a leading candidate collaborator with Shh

in both cerebellar development and MB. A role for p53

inactivation in MB pathogenesis is suggested by the increased

incidence of MB in people with Li Fraumeni syndrome, which is

caused by germ-line mutation in p53 [28,29], as well as in rodent

models in which p53 is co-deleted with genes such as Ptch1 [30,31].

P53 induces multiple anti-proliferative processes, including cell

cycle arrest [32] and apoptosis [33], thereby effectively limiting the

survival of potentially pre-neoplastic cells. Under physiological

conditions, the level and activity of p53 is kept under strict

negative control by the ubiquitin ligase, MDM2. Mice lacking

Mdm2 die in utero due to massive, p53-dependent apoptosis and this

phenotype is fully rescued by deletion of p53 [34,35]. In contrast,

expression of a p53 mutant, p53R172P, that can stimulate growth

arrest but not apoptosis, only partially rescues the Mdm2 null

phenotype, such that a subset of pups survives to postnatal day 12–

15 [36,37]. These mice exhibit a severe impairment in the

proliferation of GNPs, resulting in shortened folia and diminished

IGL cell numbers, strongly implicating MDM2 and p53 in

cerebellar development. However, this study did not assess the

influence of MDM2 on either p53-mediated apoptosis or Shh

signaling during cerebellar development. Furthermore, the early

death of these mice precluded an assessment of the consequences

of MDM2 loss in tumorigenesis or behavior [36,37].

Here, we took advantage of a unique hypomorphic Mdm2 allele

(Mdm2puro) to examine the contribution of this ubiquitin ligase to

cerebellar development in the presence of its target, wild-type p53

[38]. This study reveals a threshold amount of MDM2 is required

to inhibit the apoptotic function of p53 and facilitate Shh signaling

in GNPs. Moreover, Shh signaling regulates the level of MDM2 in

GNPs, suggesting a complex interplay between the p53 and Shh

pathways in these important neuronal precursor cells. Together,

these findings place MDM2 at a critical node between the p53 and

Shh pathways in cerebellar development and tumorigenesis.

Materials and Methods

Ethics Statement
Mouse experiments were approved in advance by either the

Purdue University Animal Care and Use Committee (protocol

number 08-065; S.M.M.) or the NCI Frederick Animal Science

Program (protocol number 08-006; M.E.P.) and performed in

compliance with national regulatory standards.

Mouse breeding and genotyping
Mouse strains used in this study have been described previously.

Mdm2+/puro and Mdm2+/D7-9 mice were maintained on a 129/Sv

and C57BL/6 background, respectively, and interbred to obtain

experimental, F1 hybrid Mdm2puro/D7-9 and wild-type mice [38].

P53+/2 heterozygotes on both 129/Sv and C57BL/6 backgrounds

were obtained from Karlyne Reilly of NCI-Frederick [39].

B6;129-Ptch1tm1Mps/J (referred to as Ptch1+/2) mice were purchased

from The Jackson Laboratory (Bar Harbor, Maine) [18]. For

analysis of pre-neoplastic lesions (PNLs), Ptch1+/2;Mdm2+/puro and

Ptch1+/2;Mdm2+/D7-9 mice were bred to obtain mice that express

one of four levels of MDM2. Mice used for the PNL study were

maintained on a mixed 129/Sv6C57BL/6 background. p53, Ptch1

and Mdm2 alleles were genotyped as described previously

[38,39,40].

Behavioral analysis
Eighteen wild-type and 17 mutant 4-month-old mice were

assessed for gross neurological function, motor control, and

balance using a series of well established behavioral tests [41].

To evaluate motor coordination and balance, mice were tested for

the ability to stay on a cylindrical drum (Rotarod) that was either

rotating at a constant speed (7 rpm) or accelerating (from 3.5 rpm

to 35 rpm). In addition, 16 wild-type and 15 mutant 4-week-old

mice were assessed on a subset of the tests and 8 wild-type and 5

mutant pups were assessed daily for the ability to right themselves

immediately, starting at P7.

Morphometic analysis
To determine the relative sizes of the white matter and IGL

in adult cerebella, midsagittal sections from wild-type and

Mdm2puro/D7-9 mice were assessed. The areas of both layers were

estimated using Image-Pro Plus v6.2 software (Media Cybernetics,

Bethesda, MD). Images were acquired using a ScanScope CS

(Aperio, Vista, CA) slide scanner at 406. Areas of interest within

the digital slides were extracted as TIFs at 100% resolution using

ImageScope (Aperio, Vista, CA). The areas of the white matter

and of the IGL were each determined by user-assisted region-of-

interest selection and thresholding.

Analysis of proliferation and apoptosis
For BrdU analysis of P0 pups, 95 mg BrdU/kg body weight was

injected intraperitoneally one hour prior to necropsy. Brains were

fixed for 24 hours in 10% neutral buffered formalin and

embedded with paraffin and 5 micron sections were prepared.

BrdU was detected immunohistochemically using antibody

A21301MP (Invitrogen, Carlsbad, CA). TUNEL assay was

performed using ApoTag Kit #S7100 (Millipore, Billerica, MA).

To determine the percentage of BrdU-positive and TUNEL-

positive EGL cells, the area of the EGL was estimated as described

under morphometric analysis. The EGL was outlined manually

using ImageScope software and the number of pixels representing

hematoxylin-positive nuclei within that outline was determined

using ImagePro software. The number of BrdU-positive EGL cells

was estimated by automated determination of the number of pixels

representing diaminobenzidine-positive nuclei as measured by

signals equal to or greater than the average threshold range for the

BrdU signal measured across several samples. Data were extracted

as pixel area for both the EGL and BrdU signals. The percentage

of BrdU-positive cells within the isolated EGL layer segmentation

was determined by dividing the number of pixels representing

BrdU-positive nuclei by the number of pixels representing EGL

nuclei and multiplying by 100 for each sample. TUNEL-positive

cells were counted under a microscope at 406power. To calculate

the percentage of EGL cells that was apoptotic, the EGL area was

converted to cell number using the average EGL cell area (in

pixels).

Immunohistochemistry
Sagittal sections were stained with hematoxylin and eosin

(H&E). Immunohistochemical detection of p53, Calbindin-D-

28K, and CyclinD1 was performed using primary rabbit

MDM2 and Shh in the Cerebellum
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antibodies NCL-p53-CM5p, (Vector Laboratories, Burlingame,

CA), KD-15 (Chemicon, Carpinteria, CA), and RB-212-P1 (Lab

Vision/Thermo Fisher Scientific, Fremont, CA), respectively.

Pre-neoplastic lesion (PNL) analysis
Ptch1+/2 mice expressing one of four levels of MDM2 were

euthanized at 3 weeks of age and cerebella were removed and

fixed overnight in 4% paraformaldehyde and embedded in

paraffin. The entire cerebellum of each animal was sagitally

sectioned at 200 mm intervals. PNLs were identified morpholog-

ically in H&E stained sections as areas of focal or diffuse

hyperplasia. Sections were analyzed and PNLs scored blindly

and independently by 2–3 observers.

Granular neuronal precursor (GNP) cell isolation
GNP cultures were prepared from pooled P5 cerebella of mice

and stimulated with either 3 mg/ml recombinant Shh (20 kD

amino-terminal signaling peptide; R&D Systems, Minneapolis,

MN) or vehicle control as described by [15]. Shh stimulation of

GNP proliferation was confirmed by adding 10 mM BrdU to the

GNP culture media for 2 h followed by fixation in 70% ethanol.

Proliferating cells that incorporated BrdU during the labeling

period were identified using an anti-BrdU antibody and detected

by immunofluorescent microscopy. The fold change in cell

proliferation was calculated as the ratio of the percent BrdU-

positive cells in cultures treated with Shh compared to vehicle only

controls. At times post-Shh stimulation GNPs were washed twice

in cold PBS and snap frozen in liquid nitrogen for subsequent

RNA and protein analyses.

For the analysis of Shh and p53 target gene expression in GNPs

that differ in the level of MDM2 expression, GNPs were isolated

from individual cerebella and enriched by pre-plating on poly-D-

lysine twice for 30-minutes. GNPs were subsequently quantified

manually with a hemacytometer and snap frozen in liquid

nitrogen. Significance between the number of GNPs isolated from

mice differing in Mdm2 genotype was determined using a two-

tailed t-test.

Western analyses
Immunoprecipitation-Western analyses of MDM2 in whole

brain tissue was performed exactly as described in [38]. For

Western analysis of proteins from GNPs, cell were washed twice in

cold PBS and lysed in radioimmunoprecipitation assay (RIPA)

buffer [42] supplemented with a protease inhibitor cocktail

(Roche, Indianapolis, IN). Protein concentrations were determined

using the DC Protein Assay (Bio-Rad, Hercules, CA). The primary

antibodies for Western analyses were: anti-MDM2 (2A10;

ab16895), anti-Gli (ab7523), anti-Gli2 (ab26056) (all from Abcam,

Cambridge, MA) and anti-Actin (clone AC-15; Sigma, St. Louis,

MO). Primary antibodies were revealed using the appropriate

sheep anti-mouse or anti-rabbit secondary antibodies conjugated

to peroxidase and enhanced chemiluminescence (ECL) (GE

Healthcare, Piscataway, NJ).

Real-time and RT-PCR
Total RNA isolated from cerebellar tissue was analyzed by

reverse transcription (RT)- and real-time PCR. Whole cerebella

were homogenized in Trizol (Invitrogen, Carlsbad, CA) and total

RNA isolated per the manufacturer’s instructions. Total RNA

(2 mg) was used to generate cDNA using Transcriptor Reverse

Transcriptase (Roche, Indianapolis, IN) and random hexamers.

The following primers for mouse Gli1, NMyc, CyclinD1, p21, DAPK,

CyclinG, Mdm2, and Tubb5 control were designed to amplify

products spanning gene introns with assistance of the Primer3

website: Gli1, 59 GTG TAC CAC ATG ACT CTA CTC GGG 39

and 59 TCA TAC ACA GAC TCA GGC TCA GG 39; NMyc, 59

AGC ACC TCC GGA GAG GAT AC 39 and 59 AAG TGG

TTA CCG CCT TGT TG 39; CyclinD1, 59 TCA AGA CGG

AGG AGA CCT GT 39 and 59 CTC CTC TTC GCA CTT

CTG CT 39; p21, 59 TTG TCG CTG TCT TGC ACT CT 39

and 59 TGC CAT CTG CGT CTA CCA GAC 39; DAPK, 59

TTG CAC AAC AGC TAC ACA GC 39 and 59 ATA GTC CCA

CTA CTC AGG TC 39; CyclinG, 59 GCA TGG CAG CAC ATC

CCT TTA 39 and 59 TGT AGA CCA GCC TGG CTT TGA

AT 39; Mdm2, 59 AGC AGC GAG TCC ACA GAG A 39 and 59

ATC CTG ATC CAG GCA ATC AC 39; and Tubb5, 59 TGG

GAC TAT GGA CTC CGT TC 39and 59 AAA GCC TTG CAG

GCA ATC A 39. Real-time and endpoint PCR were conducted to

confirm amplification of a single product of the expected size.

Real-time PCR reactions were set up using ABI SYBR green PCR

Master Mix (ABI, Foster City, CA) and run on an ABI 7000

Sequence Detection System. Data were analyzed using ABI

GeneAmp SDS software. Relative gene expression levels were

calculated using the formula 22DDCT with Tubb5 as a loading

control and wild-type expression values as the calibrator. Analyses

were performed in triplicate for three mice per Mdm2 genotype.

One-way analysis of variance (ANOVA) test was done using SPSS

16.0 (SPSS Inc., Chicago, IL) with P-value,0.05 considered

significant.

Results

The Mdm2puroallele is globally hypomorphic in
expression

During the production of a conditional Mdm2 allele, we

fortuitously generated a novel hypomorphic allele, Mdm2puro

(Fig. 1A) [38]. Northern blot analyses of RNA derived from

various tissues obtained from mice carrying one Mdm2puro allele

and one null Mdm2 allele (Mdm2D7-12 [34] or Mdm2D7-9 [38];

collectively referred to as Mdm2null) revealed that expression of full-

length Mdm2 mRNA was significantly reduced in all tissues

examined including spleen, thymus, kidney, liver, and brain

[38]. Western blot analysis of protein extracts prepared from

Mdm2puro/null tissues confirmed reduced expression of full-length

MDM2 protein in testes [38], thymus [43], and brain (Fig. 1).

Consistent with the previously reported decrease in Mdm2 mRNA

in brain tissue, MDM2 protein levels are reduced three-fold in

whole brain and four-fold in isolated cerebellar granular neuronal

precursors (GNPs) (Fig. 1B,C). No aberrant Mdm2 mRNAs or

truncated MDM2 proteins have been identified from the Mdm2puro

allele. The diminished expression of MDM2 from the Mdm2puro

allele is dependent upon insertion of the Puro gene into the non-

coding intron 6 of the Mdm2 gene [38]. The mechanism by which

the Puro gene diminishes Mdm2 expression is not fully understood

but may involve transcriptional interference as has been observed

for other targeted alleles [44]. Together, these data establish that

the Mdm2puro allele is globally hypomorphic for full-length wild-

type MDM2 expression.

By combining wild-type, null, and hypomorphic alleles of Mdm2

we are able to generate mice that differ in the level of MDM2

expression (Fig. 1). Importantly, a 70% decrease in the level of

MDM2 is sufficient for survival but results in multiple overt p53-

dependent phenotypes in Mdm2puro/null mice, including reduced

body size and lymphopenia that are not manifest in mice with a

more modest decrease in MDM2 [38]. Mdm2puro/D7-9 mice thus

provide a unique model for perturbing MDM2 and p53 function

MDM2 and Shh in the Cerebellum
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in the developing cerebellum in order to assess their impact on Shh

signaling.

Hypoplasia and aberrant foliation in adult Mdm2puro/D7-9

cerebella
Macroscopic examination of brains from adult Mdm2puro/D7-9

mice revealed cerebella that were strikingly reduced in size. At 4

months of age, both male and female Mdm2puro/D7-9 mice showed a

greater than two-fold reduction in cerebellar mass (Fig. 2A). This

decrease was more profound than the decrease in overall brain

weight (33% for males and 35% for females; Fig. 2B) or body

weight (16% for males and 23% for females; Fig. 2C), indicating

that the cerebellum is especially sensitive to a decrease in the level

of MDM2. Gross inspection of adult brains suggested a marked

agenesis of the cerebellar vermis (Fig. 2D,E), which was

corroborated by histological analysis (Fig. 2F,G). Midsagittal

sections of 4-month old Mdm2puro/D7-9 mice showed reduced

foliation associated with an IGL that was thin or absent,

particularly at the base of the fissures, suggesting a reduction in

the number of mature neurons. Morphometric analysis revealed

that the total area of the cerebella of Mdm2puro/D7-9 mice was

reduced by 69% while the area of the IGL was reduced by 76%

and the area of the white matter was reduced by 56% (n = 8–9,

P,1026 for all three parameters). Importantly, sparseness of the

IGL is most apparent in the most anterior and posterior cerebellar

lobes, corresponding to regions of the highest Shh signaling [45].

However, abnormalities in foliation are not restricted to any one

area, as all four principal fissures (preculminate, primary,

secondary and posterolateral) are shallow. In addition to the

principal fissures, only three of several other shallow fissures are

present, similar to the phenotype of mice in which the Shh effector

Gli2 has been deleted either in the germ line or conditionally in

the embryo [45]. Foliation is markedly sensitive to the level of

MDM2 as we found no overt abnormalities in Mdm2+/D7-9

cerebella in which the level of MDM2 is ,50% of wild-type (data

not shown).

In light of the observed cerebellar hypoplasia of Mdm2puro/D7-9

mice, a number of tests were performed to assess gross neurological

function, motor coordination, and behavior (see Table S1 for

details). Despite the severe structural defects of the cerebellum,

Mdm2puro/D7-9 mice were, for the most part, functionally indistin-

guishable from wild-type mice. Only one significant difference was

noted: Mdm2puro/D7-9 mice remained 1.5 times longer on an

accelerating, rotating drum (Rotarod; n = 17–18, P,0.001). This

difference in behavior is consistent with a lack of profound defects in

motor coordination, suggesting that Mdm2puro/D7-9 mice are able to

compensate for the severe structural changes in their cerebella.

Delayed formation of fissures in Mdm2puro/D7-9 cerebella
Post-natal expansion of the EGL continues for approximately

three weeks, and is necessary for proper foliation. Previous studies

have shown the cerebellar surface of outbred Swiss Webster

embryos is smooth at E16.5, but develops four principal fissures

and five cardinal lobes by E18.5 [6]. Two additional fissures form

by P3, subdividing both the anterobasal lobe and lobule VI.

Foliation appears to occur slightly earlier in wild-type F1 hybrid

129Sv/C57BL6 mice as by P0, the four principal fissures have

formed, as have two additional fissures separating the anterobasal

lobe and lobe VI (Fig. 3A). In contrast, P0 Mdm2puro/D7-9 mice have

only two primary fissures (Fig. 3B). Although preculminate and

primary fissures were apparent in all Mdm2puro/D7-9 mice at P0, the

secondary and posterolateral fissures were not often visible.

Moreover, all fissures were shallow in newborn Mdm2puro/D7-9

mice. Foliation depends on thickening of the EGL layer at specific

anchor points [6], one or more of which appears to be missing in

P0 Mdm2puro/D7-9 mice. Indeed, the number of EGL cells was

reduced three-fold in P0 Mdm2puro/D7-9 mice (P,0.001), indicating

that an insufficient number of GNPs may be available to form the

anchor points and to extend the lobules. Superimposition of traces

of mid-sagittal sections from P0, P7, and adult mice revealed that

the appearance of the secondary and posterolateral fissures was

delayed in Mdm2puro/D7-9 mice and that all fissures remained

shallow throughout development (Fig. 3C,D). The shallow

principal fissures at birth (P0) and delayed lobularization of

Mdm2puro/D7-9 mice are reminiscent of the foliation defects

observed in mice with decreased Shh signaling [45].

Figure 1. Generation and characterization of the hypomorphic Mdm2puro/D7-9 allele. (A) Schematic illustrating partial structure of the Mdm2
gene surrounding the site of gene targeting, the resulting Mdm2puro hypomorphic allele, and the Mdm2D7-9 null allele generated following Cre-
mediated recombination. (B) Immunoprecipitation followed by Western blot (WB) analysis of MDM2 in brains from mice of the indicated Mdm2
genotype. (C) WB analysis of MDM2 in GNPs isolated from P5 mice of the indicated Mdm2 genotype. WB for actin controls for loading.
doi:10.1371/journal.pone.0017884.g001
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Impaired expansion of the EGL in Mdm2puro/D7-9 mice
By P7, the EGL of wild-type mice has reached its maximal

thickness and the IGL has begun to form as GNPs differentiate and

migrate inward past the Purkinje cells. Cerebella from Mdm2puro/D7-9

mice had a thinner EGL than that of wild-type mice, which had

expanded to an 8–10 cell thick layer (Fig. 4A,B,D,E). Mdm2puro/D7-9

EGL cells appeared capable of differentiating, as the inner EGL of

both wild-type and Mdm2puro/D7-9 mice was negative for CyclinD1, a

marker of undifferentiated GNPs (Fig. 4G,H). Immunostaining for

Calbindin-D-28K revealed that, by P7, the Purkinje cells in wild-

type mice had adopted a uniform monolayer with dense dendritic

arborization (Fig. 4J). However, in Mdm2puro/D7-9 cerebella, the

Purkinje cells remained multi-layered and disorganized with stunted

dendritic arborization (Fig. 4K). As the position of Purkinje cells

within the cerebellum is informed by the expanding folia, these

results provide additional support for a diminished EGL cell

number as the underlying basis for the observed defects in foliation

in Mdm2puro/D7-9 cerebella.

P53-dependence of cerebellar defects of Mdm2puro/D7-9

mice
Consistent with the reduction in the level of the MDM2 ubiquitin

ligase in Mdm2puro/D7-9 cerebella, the level of p53 protein was

elevated, as revealed by the increased percentage of EGL cells

immunoreactive for p53 (Fig. 4N). To establish whether increased

p53 activity was responsible for the diminished granular layer cell

numbers and foliation defects of Mdm2puro/D7-9 mice, cerebella from

Mdm2puro/D7-9 mice lacking p53 were assessed. Mdm2puro/D7-9;p532/2

and wild-type cerebella were indistinguishable in size and morphol-

ogy (Fig. 4A,C). Histological analysis showed that in Mdm2puro/D7-9;

p532/2 mice, foliation was normal, as was the thickness of both the

EGL and IGL (Fig.4,C,D,F). Morphometric analysis of the EGL

revealed that Mdm2puro/D7-9 mice had a 73% decrease in the number

of EGL cells (P,1025) whereas Mdm2puro/D7-9;p532/2 mice had an

insignificant (3%) increase when compared to wild-type mice

(P = 0.40). Similarly, the number and organization of the Purkinje

cells was rescued in Mdm2puro/D7-9;p532/2 mice (Fig. 4K,L). Whereas

the number of Purkinje cells was reduced 33% in Mdm2puro/D7-9 mice

(P = 0.00014), it was insignificantly reduced in Mdm2puro/D7-9;p532/2

mice (11%; P = 0.14 compared to wild-type). Together, these results

indicate that MDM2 protects the processes of GNP expansion and

cerebellar foliation by inhibiting p53.

Decreased survival of Mdm2puro/D7-9 granule neuron
precursors

Two physiological outcomes associated with heightened p53

activity are growth arrest and apoptotic cell death, both of which

could contribute to a decrease in the number of GNPs. To

investigate whether a reduction in cell proliferation contributes to

the diminished GNP population in P0 Mdm2puro/D7-9 mice, we

performed in vivo labeling with 5-bromo-2-deoxyuridine (BrdU).

We found that the EGL of both wild-type and Mdm2puro/D7-9 mice

was proliferative, but that there were fewer BrdU-positive GNPs in

the MDM2-deficient cerebella. The absolute number of prolifer-

ating BrdU-positive cells in the EGL in P0 Mdm2puro/D7-9 cerebella

was only 23% of that found in wild-type controls (Fig. 5A,B,D,E).

However, when a four-fold decrease in the number of GNPs in P0

Mdm2puro/D7-9 mice (Fig. 5C) was taken into account, the relative

number of BrdU-positive GNPs was 91% that in wild-type

controls (Fig. 5F). The apparent reduction in GNP proliferation in

the Mdm2puro/D7-9 EGL is therefore predominantly attributed to a

paucity of GNPs rather than a decrease in the fraction of

progenitor cells in S phase. Although the decrease in the number

of BrdU-positive Mdm2puro/D7-9 GNPs was statistically insignificant

(P = 0.082) as compared to wild-type, GNPs proliferate at a high

rate during the first week of post-natal cerebellar development.

Figure 2. Cerebellar size and foliation are defective in Mdm2puro/D7-9 mice. In 4-month-old male and female Mdm2puro/D7-9 mice, cerebellar
weight (A) is disproportionately reduced from wild-type relative to the decreases in both brain weight (B) and body weight (C) (n = 5–10, P,0.001
when comparing wild-type and mutant mice by sex). Gross analysis of whole brains of 1-month-old wild-type (D) and Mdm2puro/D7-9 mice (E). The
cerebellar vermis in mutant mice, denoted by the asterisk in (E), is reduced in mass thereby exposing more of the colliculi. H&E stained midsagittal
sections of 4-month-old wild-type (F) and Mdm2puro/D7-9 (G) cerebella. Mdm2puro/D7-9 cerebella show a marked agenesis of foliation, with the internal
granular layer (IGL) more severely diminished at the anterior and posterior folia. The asterisks in (F) and (G) denote the principal fissures which are
shallow in mutant mice.
doi:10.1371/journal.pone.0017884.g002
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Thus, even a modest decrease in proliferation could significantly

reduce the total number of GNPs generated and hence negatively

impact cerebellar size and foliation.

As MDM2 also limits the apoptotic function of p53, we next

assessed whether in Mdm2puro/D7-9 mice GNP survival was impaired.

To identify apoptotic cells, we performed terminal deoxynucleotidyl

transferase dUTP nick end labeling (TUNEL) in situ. Quantitative

analysis of cell death revealed an increase in the number of

TUNEL-positive cells in the EGL of Mdm2puro/D7-9 cerebella

(Fig. 5G,H). In contrast to the moderate decrease in cell

proliferation, the percentage of TUNEL-positive EGL cells was

increased 12.4-fold in the Mdm2puro/D7-9 cerebellum at P0

(P = 0.033; Fig. 5I). This increase in apoptosis persisted for at least

seven days, as Mdm2puro/D7-9 mice had a 20-fold increase in the

fraction of EGL cells that were apoptotic at P7 (n = 3, P,0.035; data

not shown). Consistent with the normal size and foliation of

Mdm2puro/D7-9;p532/2 cerebella, the increase in apoptosis in the

Mdm2puro/D7-9 EGL is p53-dependent, as demonstrated by the

normal (e.g., equivalent to wild-type) fraction of GNPs that were

TUNEL-positive in the EGL of P7 Mdm2puro/D7-9mice lacking p53

(n = 3, P = 0.39 when compared to wild-type; data not shown).

Together, these data indicate that increased apoptosis rather than

growth arrest is the main contributor to the diminished EGL in

Mdm2puro/D7-9 mice.

Attenuated Sonic Hedgehog signaling in Mdm2puro/D7-9

cerebella
As noted in the previous sections, we observed a striking

similarity between the cerebellar phenotypes of Mdm2puro/D7-9 mice

and those lacking Shh [11] or its downstream effectors (e.g. Gli2,

NMyc, CyclinD2) [45,46,47]. For example, the defects in EGL

expansion, Purkinje cell layer organization and foliation are

similar to those in which Gli2 has been deleted conditionally [45].

These observations prompted us to examine if Shh signaling was

altered in the cerebellum of Mdm2puro/D7-9 mice. We therefore

measured the level of expression of known targets of Shh-activated

transcription factors. Quantitative real-time PCR analyses re-

vealed that expression of each of the direct Shh target genes Gli1

and NMyc [15], as well as the indirect Shh target CyclinD1[48] was

reduced 2- to 3-fold in P5 Mdm2puro/D7-9 cerebella compared to

wild-type control cerebella (Fig. 6A). Analysis of Shh signaling in

an allelic series of Mdm2-deficient mice revealed that even an

,20% reduction in MDM2 expression in Mdm2+/puro mice was

sufficient to reduce Shh target gene expression (Fig. 6A). As the

Figure 3. Foliation defects in P0 mice. (A–B) Midsagittal sections of newborn (P0) wild-type and Mdm2puro/D7-9 cerebella stained with H&E. The
four principal fissures, denoted by asterisks, are apparent in wild-type cerebella at P0 (A), whereas only two are evident in Mdm2puro/D7-9 mice (B).
Wild-type pups show two additional fissures, indicated by arrows, whereas mutant pups do not. (C–D) Superimposition of P0 (purple outline), P7
(blue outline), and adult (green outline) cerebella from wild-type (C) or Mdm2puro/D7-9 (D) mice. By P7, all four primary fissures, as well as two
additional fissures, are evident in Mdm2puro/D7-9 mice. Moreover, even in adulthood, the mutant cerebellum does not reach the size or complexity of
the wild-type cerebellum. Abbreviations are: prc, precentral; pc, pre-culminate; pr, primary; pp, prepyramidal; sec, secondary; pl, posterolateral
fissures.
doi:10.1371/journal.pone.0017884.g003
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Figure 4. Cerebellar abnormalities of Mdm2puro/D7-9 mice are rescued by loss of p53. Midsagittal sections of cerebella from wild-type
(A,D,G,J,M), Mdm2puro/D7-9 (B,E,H,K,N), and Mdm2puro/D7-9;p532/2 (C,F,I,L,O) mice at P7. (A–F) H&E staining shows a thin EGL and sparsely-populated IGL
in Mdm2puro/D7-9 cerebella. (G–I) MDM2 deficiency does not appear to block GNP differentiation as immunohistochemical staining for CyclinD1
selectively marks undifferentiated GNPs of the outer, but not inner, EGL. (J–L) Mdm2puro/D7-9 Purkinje cells stained with anti-Calbindin D-28K have
stunted arborization of the dendrites and have failed to form a uniform monolayer as seen in wild-type controls. Mdm2puro/D7-9;p532/2 (M–O)
Immunohistochemical staining for p53 reveals an increase in the number of GNPs staining positively for p53 in the EGL of Mdm2puro/D7-9 mice.
(C,F,I,L,O) Mdm2puro/D7-9;p532/2 mice are phenotypically indistinguishable from wild-type mice, highlighting the importance of MDM2 for limiting p53
function in cerebellar development.
doi:10.1371/journal.pone.0017884.g004
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number of GNPs present in Mdm2puro/+ mice is equivalent to that

in wild-type mice (Fig. 6B), the reduction in Shh target gene

expression in these mice cannot be explained by an under-

representation of GNPs. Moreover, in the same samples, p53

target gene expression was increased as expected. The finding of

reduced Shh target gene expression is consistent with a recent

model in which enhanced p53 activity down-regulates Shh

signaling [49].

Gli1 and Gli2 proteins are decreased in Mdm2puro/D7-9

GNPs
The Gli proteins are critical mediators of the Shh signal. To begin

to establish the underlying basis by which a low level of MDM2

limits the output of Shh signaling in Mdm2puro/D7-9 cerebellum, we

analyzed the level of Gli1 and Gli2 in Mdm2puro/D7-9 GNPs.

Consistent with the reduction of Gli1 mRNA in the Mdm2puro/D7-9

cerebellum (Fig. 6A), the steady-state level of endogenous Gli1 is

reduced seven-fold in Mdm2puro/D7-9 GNPs as compared to wild-type

GNPs (Fig. 6C). Significantly, the steady-state level of endogenous

Gli2 protein was reduced two-fold in GNPs in which MDM2 is

expressed at only ,25% the level of wild-type (Fig. 6C). Our finding

that Gli1 and Gli2 expression is reduced in Mdm2puro/D7-9 GNPs in

which p53 function is heightened suggests a model in which

p53 attenuates Shh signaling output by negatively regulating Gli

activity.

Shh signaling induces MDM2
Activation of the Shh pathway in C3H10T1/2 mesenchymal

and mouse embryonic fibroblast (MEF) promotes phosphorylation

of MDM2 at serine 166 (p-MDM2S166), a modification that

enhances the ability of MDM2 to bind to and limit p53 function

[50,51,52]. To determine whether MDM2 is similarly regulated

by Shh signaling in GNPs, we employed primary cultures from

cerebellar homogenates. Derived from mice at P5, .85% of the

cells in cerebellar homogenates are GNPs [15,48]. In our hands,

,1.5% of cells in cultured from wild-type mice were GFAP+ glial

cells (n = 2, data not shown). Addition of recombinant Shh-N to

the culture medium increased proliferation ,4.9-fold based on

BrdU incorporation (Fig. 7A,B), consistent with other studies [15].

Concomitant with enhanced GNP proliferation, expression of the

Shh-target Gli1was increased greater than 10-fold (Fig. 7C).

Cultured GNPs thereby retain their in vivo characteristics and thus

provide a good experimental system with which to dissect the

molecular pathways that control their behavior. Using this

experimental system, we discovered that both total MDM2 and

its activated form, p-MDM2S166, accumulated 3- to 4-fold in

Figure 5. Decreased proliferation and increased apoptosis in Mdm2puro/D7-9 cerebella. (A,B) Identification of BrdU-positive (red) cells in the
EGL (blue) of midsagittal sections of newborn (P0) wild-type (A) and Mdm2puro/D7-9 (B) cerebella using ImagePro software as described under Materials
and Methods. The EGL of Mdm2puro/D7-9 cerebella was acellular (blue) and hypoproliferative (red) as revealed by BrdU staining followed by image
analysis. (C) Graph of the relative number of EGL cells in wild-type and Mdm2puro/D7-9 cerebella (n = 3, P,0.001). (D,E) High magnification of BrdU label
in tip of lobule III in a wild-type (D) and an Mdm2puro/D7-9 (E) cerebellum. (F) Graph of relative percentage of BrdU-positive cells in EGL of wild-type and
Mdm2puro/D7-9 cerebella (n = 3, P = 0.082). (G,H) High magnification of TUNEL label in end of lobule III in a wild-type (G) and an Mdm2puro/D7-9 (H)
cerebellum. (I) Graph of relative percentage of TUNEL-positive cells in EGL of wild-type and Mdm2puro/D7-9 cerebella. GNPs in the EGL of Mdm2puro/D7-9

cerebella are highly apoptotic (n = 3, P = 0.033).
doi:10.1371/journal.pone.0017884.g005
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Figure 6. Shh signaling is attenuated concomitant with p53 activation in Mdm2puro/D7-9cerebella. (A) Expression of Shh target genes (Gli1,
NMyc, CyclinD1) and p53 target genes (p21, DAPK, CyclinG) in whole cerebella was determined by real-time PCR and normalized to Tubb5. Graphed is
the average fold change in gene expression of Shh- and p53-target genes in whole cerebella of P5 mice with the indicated Mdm2 genotype relative
to wild-type controls (n = 3, *P,0.05). (B) Histogram showing the total number of GNPs isolated from cerebella of mice of the indicated Mdm2
genotype at P5 (n = 3–8, * P,0.05). (C) WB analysis of Gli1 and Gli2 in GNPs isolated from P5 mice of the indicated Mdm2 genotype. WB for actin
confirms equal loading.
doi:10.1371/journal.pone.0017884.g006

Figure 7. Regulation of MDM2 by Shh in cultured wild-type GNPs. (A) IHC for BrdU-incorporating cells in vehicle-treated (2Shh) and
stimulated (+Shh) GNPs. Total nuclei labeled by DAPI. (B) Graphed is the average fold change in the percentage of GNPs immunoreactive for BrdU in
Shh stimulated versus vehicle control cultures (n = 3). (C) Expression of Mdm2 and the Shh target gene, Gli1, was quantified by real-time PCR and
normalized to Tubb5. Graphed is the relative fold change in expression of Mdm2 and Gli1 in wild-type GNPs cultured in the presence of Shh (+) or
vehicle (2). (B) WB analysis of MDM2 and p-MDM2S166 in GNPs treated with Shh (+) or vehicle (2). WB for actin confirms equal loading of protein.
doi:10.1371/journal.pone.0017884.g007
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GNPs stimulated by Shh, without a corresponding increase in

Mdm2 mRNA (Fig. 7C,D).

Decreased incidence of pre-neoplastic lesions in Ptch1+/2;
Mdm2puro/D7-9 mice

Deregulation of the Shh pathway is implicated in .60% of MB

[23]. Based on our finding that MDM2 promotes Shh signaling

as well as GNP survival during cerebellar development, we

hypothesized that MDM2 also plays a critical role in Shh-induced

cerebellar disease. As a test of this hypothesis, we performed a

genetic loss-of-function study using Ptch1+/2 mice, a model of

Shh-induced human MB [18]. While only a subset of Ptch1+/2

mice develop MB, close to 100% of Ptch1+/2 mice exhibit clusters

of highly proliferative cells at the surface of the cerebellum at 3

weeks of age, by which time the majority of GNPs in wild-type

mice have stopped dividing, differentiated and migrated into the

IGL as mature GCs [18,40,53]. Orthotopic transplantation and

fate mapping experiments support the identity of these prolifer-

ating cells as uncommitted pre-neoplastic cells that are susceptible

to transformation [54]. These clusters of proliferative cells

therefore represent pre-neoplastic lesions (PNLs) for MB in this

mouse model. To determine the requirement for MDM2 in the

formation of PNLs, we examined cerebella of 3-week-old Ptch1+/

2 mice that differed in the level of MDM2. In agreement with

prior studies, no PNLs were present in the cerebellum of wild-

type mice (n = 5), whereas 100% of Ptch1+/2 mice with a wild-

type level of MDM2 (n = 10) exhibited multiple PNLs in the

cerebellum (Fig. 8). Strikingly, despite analysis of six cerebella

from Ptch1+/;Mdm2puro/D7-9 mice, we have yet to identify any with

a PNL. These results indicate that an approximately 70%

reduction in Mdm2 expression completely abrogates formation of

Shh-induced PNLs in Ptch1+/2 mice (Fig. 8A–D). These results

suggest that MDM2 plays a critical role in GNPs during Shh-

mediated MB formation.

Figure 8. Shh-induced pre-neoplastic lesion (PNL) formation in the cerebellum is significantly decreased in Ptch1+/2 mice
expressing ,30% the wild-type level of MDM2. (A–C) Shown are H&E stained sagittal sections of cerebella obtained from 3-week-old (A) wild-
type, (B) Ptch1+/2, and (C) Ptch1+/2;Mdm2puro/D7-9 mice. PNLs as indicated by the arrow and outlined by the dashed blue line in (B) are composed of
small, round tightly clustered cells with a high nucleus:cytoplasmic ratio located superficial to the molecular layer either on the surface of the
cerebellum or in a fissure between adjacent folia. Ptch1+/2;Mdm2puro/D7-9 mice (C) fail to develop PNLs. (D) Quantification of PNLs observed in 3-week-
old Ptch1+/2 and Ptch1+/2;Mdm2puro/D7-9 mice. (E) Model for crosstalk between p53 and Shh pathways in cerebellar development. During GNP
development, Shh stimulates proliferation through the positive regulation of the Gli family of transcription factors. P53 promotes apoptosis and
concomitantly interferes with Gli function, attenuating the proliferative effects of Shh. Shh regulates MDM2, to keep p53 activity in check, allowing
GNPs to expand in response to Shh signaling.
doi:10.1371/journal.pone.0017884.g008
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Discussion

Here we have taken advantage of a unique series of Mdm2

alleles to obtain a comprehensive understanding of MDM2

function in the cerebellum. Whereas Mdm2-null mice die early

in embryogenesis [34,35], Mdm2puro/D7-9 compound heterozygotes,

which express only ,30% of the wild-type level of MDM2 are

viable but display multiple cerebellar defects including decreased

expansion of the number of GNPs within the EGL, disorganiza-

tion of the Purkinje cell layer, and aberrant foliation. In contrast,

,50% expression of MDM2, as in Mdm2+/D7-9 mice, is sufficient

for cerebellar development to proceed normally, thus illustrating

the sensitivity of this process to the level of MDM2. Consistent

with the well-established role of MDM2 as a negative regulator of

p53 function, cerebellar defects in Mdm2puro/D7-9 mice correlate

with an increase in p53 protein expression and an elevated rate of

p53-mediated apoptosis in GNPs in the EGL suggesting that p53 is

responsible for the dearth of granule cells in adult cerebella. This

interpretation is borne out by the complete rescue of all

phenotypes of Mdm2puro/D7-9 mice by deletion of p53, and

establishes a critical role for MDM2 in negatively regulating

wild-type p53 function during normal cerebellar development. As

EGL expansion is a driving force of foliation [6], the inability of

the EGL to expand appropriately, due to the restricted number of

GNPs in the Mdm2puro/D7-9 cerebellum, likely underlies the

foliation defects observed in these mice. These results implicate

MDM2 as a major determinant of GNP cell survival and the

extent of cerebellar foliation.

There is extensive crosstalk between GNPs and Purkinje cells in

the developing cerebellum. Expansion of GNPs of the EGL is

instructive for localization and differentiation of Purkinje cells

[45]. Purkinje cells secrete Shh, which binds to and blocks the

inhibitory activity of the Ptch1 receptor expressed on GNPs,

thereby driving GNP proliferation and EGL expansion [11,55].

Therefore, the failure of the EGL to expand in MDM2-deficient

mice could either be due to a defect in GNPs or be secondary to a

defect in Purkinje cells. While our work does not preclude a role

for MDM2 in Purkinje cells, our results are consistent with an

intrinsic requirement for MDM2 in GNPs. Several lines of

evidence support this interpretation. (i) EGL expansion and

foliation defects in Mdm2puro/D7-9 cerebella coincide with p53-

mediated apoptosis that is increased in GNPs but not in Purkinje

cells. (ii) p53 expression is increased specifically in GNPs. (iii)

There are approximately twice as many Purkinje cells per EGL

cell in Mdm2puro/D7-9 mice as in wild-type mice (P = 0.002). (iv)

Reduced expression of Gli1 and Gli2, important transducers of the

Shh signal, in GNPs supports a cell autonomous disruption in Shh

signaling. Thus, the Purkinje cell phenotype of Mdm2puro/D7-9 mice

is likely a consequence of the paucity of GNPs.

In cerebellar development, MDM2 deficiency mimics aspects of

Shh deficiency. The decreased number of granule cells and

shortened length of the folia of Mdm2puro/D7-9 cerebella are

reminiscent of the phenotypes of cerebella from mice with reduced

Shh signaling. Shh-null mice lack cerebella [56], whereas mice in

which Shh has been deleted in Purkinje cells (Shhc/Shhn;L7-Cre)

have cerebella of reduced complexity [11]. As adults these mice

demonstrate decreases in cerebellar volume, short lobules, and a

less cellular IGL [11], as do mice with reduced levels of MDM2

(Fig. 1). Mice lacking Gli2, which mediates Shh signaling [45,57],

die before birth, precluding analysis of adult cerebella. However,

by E18.5, Gli22/2 mice exhibit a cerebellum smaller than wild-

type with a thinner, less proliferative EGL and diminished

foliation, as do newborn, Mdm2puro/D7-9 mice. When Gli2 has

been conditionally deleted (Gli2-En1), mice survive to adulthood

with small cerebella, short folia and a diminished IGL[45,57], as

do Mdm2puro/D7-9 mice. In contrast to Gli2, mice lacking Gli1 are

phenotypically normal [58]. A role for Gli1 in the cerebellum is

demonstrated however by the observation that loss of Gli1 further

accentuates the foliation defects of the Gli2-deficient cerebellum

[45,57]. Our data show that MDM2 regulates both Gli1 and Gli2

levels in GNPs supporting the concept that attenuated Shh

signaling contributes, at least partially, to the foliation defects

observed in Mdm2puro/D7-9 cerebella.

Impaired foliation of Mdm2puro/D7-9 cerebella is p53-dependent

thereby implicating p53 in the regulation of Gli1 and Gli2 in

GNPs. Recent studies in neural stem cells have demonstrated that

p53 inhibits Gli1 in two ways: it reduces the nuclear localization

and level of Gli1 protein and promotes phosphorylation of an N-

terminally truncated form of Gli1, resulting in a less active isoform

[49].

[49]. It is unknown whether p53 similarly inhibits Gli2. The

mechanism(s) by which Gli1 and Gli2 is regulated by p53 in GNPs

are an important area of future investigation.

The interconnections between the p53 and Shh pathways may

be greater than previously surmised. We show that Shh signaling

promotes the accumulation and phosphorylation of MDM2 in

GNPs. Although the Shh target NMyc binds to the Mdm2 gene

and directly regulate Mdm2 transcription in neuroblastoma cell

lines [59] we find that the level of total Mdm2 mRNA is not

significantly increased following Shh stimulation of GNPs

(Fig. 7C,D). The regulation of MDM2 in GNPs also differs from

that in C3H10T1/2 and MEFs in which Shh was shown to

promote an increase in p-MDM2S166 without a concomitant

increase in MDM2 protein levels [60]. Thus, Shh signaling

appears to regulate MDM2 function through different transcrip-

tional and post-transcriptional mechanisms depending on cell

type.

Elevated MDM2 function is predicted to keep basal p53 activity

low. Indeed, deregulated SMO in C3H10T1/2 and MEFs

promotes MDM2-mediated inhibition of p53 by enhancing the

binding of MDM2 to p53, and abrogates p53-mediated growth

arrest and apoptosis in response to DNA damage [60]. Conversely,

p53-dependent apoptosis is increased in the retina and developing

CNS of Shh2/2 zebrafish embryos suggesting that p53 function is

actively suppressed by Shh signaling [61]. These findings prompt

us to speculate that in cancers in which the deregulation of Shh

signaling is the initiating event, p53 function will be automatically

inhibited, if only partially, through the enhancement of MDM2

activity by Shh signaling. If so, this mechanism may account for

the infrequency of p53 gene mutations in childhood MB tumors.

There is growing knowledge that genes important for development

are also important for tumorigenesis. The inhibition of p53

through the up-regulation of MDM2 function in development may

have broad implications for understanding the etiology of

childhood embryonal tumors of the CNS that is thought to have

a strong developmental component.

We present a model in which MDM2 is required to down-

regulate p53 such that one or more Gli proteins is fully functional

to transmit the Shh signal for GNP proliferation and tumorigenesis

(Fig. 8E). In support of this model, expression of multiple Shh

target genes is decreased in GNPs from mice with reduced levels of

MDM2. We find that even a moderate, ,20% reduction in

MDM2 is sufficient to attenuate Shh target gene expression,

illustrating that Shh signaling in GNPs is sensitive to the level of

MDM2 (Fig. 6A). Despite the attenuation of Shh signaling in mice

with either ,50% or 80% the wild-type level of MDM2, gross

defects in cerebellar development were observed only when the

level of MDM2 was reduced to ,30% of the wild-type level. The

MDM2 and Shh in the Cerebellum
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p53 and Shh pathways influence many physiological processes,

including cell proliferation, survival, differentiation, and stem cell

renewal [reviewed in 62,63]. The coordinate regulation of these

two signaling pathways may be necessary during critical periods of

development, allowing high levels of Shh-mediated proliferation

without engaging p53 at a cell cycle checkpoint.

Defective foliation in Mdm2puro/D7-9 mice does not result in

motor defects as measured here. Our results do not preclude the

possibility that Mdm2 expression may be associated with human

cerebellar defects. In people, there is a single nucleotide

polymorphism in the Mdm2 gene that influences both Mdm2 gene

expression and susceptibility to breast and other cancers [64]. It

will be of interest to determine whether Mdm2 gene expression

levels are associated with cerebellar hypoplasia or behavioral

defects in people. Moreover, information about pathways

regulating the ability of MDM2 to inhibit p53 may provide

insight into the pathology of some congenital birth defects (e.g.

Treacher Collins Syndrome) or chronic human diseases (e.g.

Parkinson’s disease) for which there is growing evidence that

heightened p53 activity in neuronal cells may be an important

contributing factor [65,66,67].

While p53 is the most commonly mutated gene in human

cancers, a large subset of tumors with wild-type p53 overexpress

MDM2, an observation that has led to the development of

therapeutics designed to block the MDM2-p53 interaction [68].

This study demonstrates MDM2 promotes Shh-induced pre-

neoplastic lesions in the cerebellum, suggesting that inhibition of

MDM2 may be of high therapeutic value for the prevention or

treatment of MB. However, our results also indicate that MDM2-

targeted therapeutics may cause developmental defects. If MDM2

is found to be a critical component of pathways regulating MB in

people, a cautious approach to MDM2 inhibition may be

successful. Our results point to MDM2 as an important mediator

of Shh signaling that may contribute to human medulloblastoma

and its treatment.
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