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A set of techniques developed under the umbrella of the string method is used in combination with
all-atom molecular dynamics simulations to analyze the conformation change between the prepower-
stroke (PPS) and rigor (R) structures of the converter domain of myosin VI. The challenges specific
to the application of these techniques to such a large and complex biomolecule are addressed in de-
tail. These challenges include (i) identifying a proper set of collective variables to apply the string
method, (ii) finding a suitable initial string, (iii) obtaining converged profiles of the free energy along
the transition path, (iv) validating and interpreting the free energy profiles, and (v) computing the
mean first passage time of the transition. A detailed description of the PPS↔R transition in the con-
verter domain of myosin VI is obtained, including the transition path, the free energy along the path,
and the rates of interconversion. The methodology developed here is expected to be useful more gen-
erally in studies of conformational transitions in complex biomolecules. © 2011 American Institute
of Physics. [doi:10.1063/1.3544209]

I. INTRODUCTION

The analysis of large-scale conformational changes in
biomolecules is one of the most challenging problems in
experimental and computational chemistry. Despite encour-
aging advances in computer speed, direct observation of such
conformational changes in conventional molecular dynamics
(MD) simulation is impossible in most cases, because it
would require integration times that are orders of magnitude
beyond the reach of most available computers. To confront
this difficulty, several accelerated sampling techniques have
been developed, such as transition path sampling (TPS),1, 2 the
string method,3–5 metadynamics,6, 7 adaptive biasing force,8

and milestoning.9, 10 In each of these methods, the ultimate
goal is to find a detailed and unbiased description of the
transition without a priori assumptions. Unfortunately, such
assumptions are often unavoidable [e.g., one must choose an
initial path, collective variables (CVs), or the resolution of
the transition path]. In the present paper, we address some of
these assumptions in the context of the string method applied
to a complex biomolecular system at atomic resolution.11–13

Specifically, we use the string method to find the most
probable transition path between the prepowerstroke (PPS)
and rigor (R) conformers of the converter domain of myosin
VI (MVI),11–13 compute the free energy (FE) profile along
the transition path, and estimate the rate of interconversion
between the two conformers. The present example illustrates
generic challenges that are likely to arise in the application of
the string method to large biomolecular systems and provides
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solutions that can be implemented with present-day com-
puters. We therefore expect that the methodology developed
herein will extend the applicability of the string method to a
wide class of biomolecules.

The string method provides a representative path for the
transition, i.e., the minimum free energy path (MFEP). If cer-
tain conditions are met, as described in Sec. II, the MFEP lies
at the center of a tube in which the transition is most likely
to occur.14, 15 The MFEP is much smoother than a trajectory
(such as those found by TPS) and is likely to be more informa-
tive about the mechanism of the transition, because it averages
out the motions that are unimportant in the transition. The
elimination of the unimportant degrees of freedom is achieved
because the MFEP is computed in a reduced space of the col-
lective variables that are essential for describing the transi-
tion; such collective variables can be center-of-mass (COM)
positions of groups of selected atoms, distances between such
groups, bond or dihedral angles, etc. The introduction of a re-
duced collective variable space is necessary to justify the as-
sumptions implicit in the string method and to make the calcu-
lation of MFEP affordable. In addition, unlike methods such
as metadynamics that also use collective variables but require
their number to be rather small, the string method can be used
with large sets of collective variables (hundreds or more16).
Although the string method has been applied to a number of
problems,5, 16–18 the present study treats a more complex sys-
tem, which requires the resolution of issues beyond those en-
countered in previous applications. For a detailed summary
of the methods used in this study and the results obtained by
their application to myosin VI, the reader is encouraged to
read Secs. IV and V, respectively, before the main body of
the paper.
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Sections II and III describe the methodology and its im-
plementation for the myosin VI converter in detail. In Sec.
II we review the general techniques employed in this paper:
collective variables are introduced in Sec. II A, the MFEP is
discussed in Sec. II B, the string method in collective vari-
ables is summarized in Sec. II C, and the calculation of the
free energy and the rate of the transition is explained in Sec.
II D. Section III addresses the application of the methods to
MVI. Section III A discusses the preparation of MD simula-
tion structures. Section III B explains the use of targeted MD
simulations to choose collective variables (two sets are chosen
in order to ascertain that the free energy profiles and rates cal-
culated are insensitive to the choice of collective variables).
Section III C describes the initial conditions used in the string
simulations. In Sec. III D we present the transition mecha-
nism together with the corresponding free energy profiles and
transition rates. Section IV summarizes the accomplishments
and the limitations of the present method, and in Sec. V we
highlight key results from the myosin VI simulations.

Additional validation of the present methodology using
the simple test case of the alanine dipeptide in vacuum is
given in the supplementary materials.19

II. METHODOLOGY

The calculation by the string method of the free energy
and the reaction rate associated with an optimized transi-
tion path proceed in several steps. First, a set of collective
variables that are sufficient to describe the transition are se-
lected. Initial values for the these collective variables (ini-
tial “string” of replicas) are determined from a minimum en-
ergy path (MEP) calculated between the endpoint structures
using the zero-temperature string method in the full space
of Cartesian atom positions.3, 20 With the string method in
collective variables5 and starting from the initial string, the
replicas are allowed to “relax” in the direction of the neg-
ative gradient of the free energy, with the arc-length be-
tween adjacent replicas kept approximately constant. The fi-
nal converged string corresponds to an MFEP between the
endpoint states in the collective variable space. Starting from
the MFEP, the free energy profile and rate of the reaction can
be calculated using the finite-temperature string method21 and
milestoning,9, 18 respectively. Each step of the methodology is
outlined below. Because the zero-temperature string method
is conceptually similar to the string method in collective vari-
ables, it is summarized in the supplementary materials.19 Ap-
pendix A describes some technical calculations. Appendix
B provides additional discussion of sources of errors in the
finite-temperature string method, and in Appendix C we
present a validation of the transition state obtained from one
of the present simulations using an ensemble of unbiased
trajectories.

A. Collective variables

An essential aspect of the present method is the selec-
tion of a set of collective variables that are appropriate for
describing the transition of interest. Collective variables are
scalar functions of the atomic coordinates of the system that

characterize its state at a coarse-grained level. Examples are
the Cartesian positions of representative atoms, the positions
of the center of masses of groups of atoms, dihedral angles,
and interatomic or atomic-group distances. The starting point
for finding a suitable set of collective variables is the as-
sumption that the transition path can be described by spec-
ifying the positions of a relatively small number of atoms.
Restrained targeted molecular dynamics (RTMD) (Ref. 22) is
used to find a small set of atoms, such that applying RTMD
forces to the atoms in this set steers the converter structure
from one conformation to the other. This set of atoms, de-
noted the “resolving set (RS),” is then used to define CVs.
Letting x denote the Cartesian positions of all the atoms in
the system, we identify a set of K CVs, which we denote by
θ̂ (x) = (θ̂1(x), θ̂2(x), . . . , θ̂K (x)).

The identification of the resolving set and the construc-
tion of collective variables for the converter of MVI are de-
scribed in detail in Sec. III B. The specific CVs sets used are
given in Tables II and III.

B. The minimum free energy path and its
interpretation

An MFEP is a path of steepest descent on the free en-
ergy surface associated with the collective variables, scaled
by a metric tensor that arises from the curvilinear nature of
the collective variables, and guarantees that the location of
the MFEP is invariant to nonlinear transformations of these
variables.5 More precisely,

An MFEP is a path in collective variable
space connecting two local minima of G(θ)
to which the vector M (θ)∇ G(θ) is
everywhere tangent . (1)

In Eq. (1), M(θ)∇G(θ ) denotes the vector with Cartesian
components,

K∑
j=1

Mi, j (θ)
∂G(θ)

∂θ j
, i = 1, 2, . . . , K , (2)

G(θ ) is the free energy associated with the collective vari-
ables,

G(θ ) = −β−1 ln
〈
δ(θ − θ̂ (x))

〉
, (3)

and M(θ) is a tensor given by

Mi, j (θ) =
∑

k

1

mk

〈
∂θ̂i (x)

∂xk

∂θ̂ j (x)

∂xk

〉
θ̂(x)=θ

. (4)

In Eq. (3), β = 1/kB T , where kB is Boltzmann’s constant and
T is the temperature, and 〈·〉 denotes canonical average; in
Eq. (4), mk are the masses of the atoms, the sum is
taken over all the coordinates of all the atoms in the sys-
tem, and 〈·〉̂θ (x)=θ denotes the conditional average 〈(·)δ(θ
− θ̂ (x))〉/〈δ(θ − θ̂(x))〉. The estimation of G(θ ) and M(θ) in
the string method and the calculation of an MFEP are ex-
plained in Sec. II C. The significance of the MFEP defined
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here is established in transition path theory (TPT).14, 15, 23 TPT
analyzes the statistical mechanics properties of the reactive
trajectories—those by which the transitions from one end-
point structure to the other actually happen—and gives ex-
pressions for the probability density and current of these tra-
jectories.

Central in the expressions for both the probability den-
sity and the current is the committor function q(x, p) (pfold in
protein folding studies24) which gives the probability that, if
one initializes the system at position x with momentum p, the
system will go to one end-point structure (the product) rather
than the other (the reactant). In principle, the function q(x, p)
is an ideal reaction coordinate for describing a transition.
However, q(x, p), per se, gives limited insight into the tran-
sition mechanism because it does not provide direct informa-
tion on the essential variables that govern the transition.24–26

Although q(x, p) satisfies a closed-form equation of Liouville
or Fokker-Planck type, this equation cannot be solved directly
in high dimensional systems. The equation for q(x, p) can,
however, be used as the basis for meaningful approximations.
Under the assumptions,

(i) the committor function can be parametrized approxi-
mately as a function of the collective variables, i.e.,
q(x, p) ≈ Q (̂θ(x)) for some function Q, and

(ii) projected in the space of collective variables, most of the
probability flux of the reactive trajectories goes through
one narrow channel (or a few channels separated by bar-
riers much higher than kB T ), referred to as transition
tube(s),

it can be shown that, for the MFEPs defined by
Eq. (1),5, 14, 15, 23

(1) the MFEPs lie at the center of the transition tubes;
(2) locally around the MFEP, the isosurfaces of the com-

mittor function (isocommittor surfaces) can be approxi-
mated by the surfaces defined by

K∑
i, j=1

θ ′
i (α)M−1

i, j (θ(α))(θ̂ j (x) − θ j (α)) = 0; (5)

(3) the value of the committor function along the MFEP is

Q(θ(α)) =
∫ α

0 m(α∗)eβF(α∗)dα∗∫ 1
0 m(α∗)eβF(α∗)dα∗

. (6)

In Eqs. (5) and (6), θ (α) with α ∈ [0, 1] denotes a para-
metrization of the MFEP [i.e., for every α ∈ [0, 1], θ (α) is
a point along the MFEP]; the prime denotes derivative with
respect to α; M−1

i, j (θ) are the elements of the matrix M−1(θ );
the scalar m(α) is defined as

m(α) =
K∑

i, j=1

θ ′
i (α)M−1

i, j (θ(α))θ ′
j (α) (7)

and F(α) is the free energy defined as

F(α) = −β−1 ln〈δ(g(x, α))〉, (8)

where g(x, α) is a shorthand notation for the left hand side of
Eq. (5),

g(x, α) =
K∑

i, j=1

θ ′
i (α)M−1

i, j (θ (α))(θ̂ j (x) − θ j (α)). (9)

The free energy F(α) [not to be confused with the free en-
ergy as a function of the collective variables G(θ ) defined
in Eq. (3)] is the free energy as a function of the committor
used as the reaction coordinate, since, by Eq. (5), g(x, α) = 0
approximates the isocommittor surface on which Q (̂θ(x))
= Q(θ(α)). As such, F(α) plotted vs Q(θ(α)) should be in-
sensitive to the choice of collective variables, provided only
that these variables are adequate; i.e., that Q (̂θ(x)) is a good
approximation of the actual committor function q(x, p). The
free energy F is a one-dimensional function, whereas G(θ)
of Eq. (3) is K -dimensional, with K equal to the number of
collective variables. Profiles of G are evaluated only on the
corresponding MFEP and have only local information about
the free energy values for points not on the MFEP (see condi-
tions 1 and 2 above). In contrast to G, the reaction free energy
F maps the entire transition tube onto a single curve. For this
reason, we define the function F(α) as the free energy pro-
file of the reaction. In the special case that the transition tube
is extremely narrow, or has uniform cross-sectional volume
along the path, G 
 F . We will show that this is not the case
in the present study (see Sec. III D 5). Additional details on
the calculation of free energy profiles and rates of transition
can be found in the TPT papers14, 15, 23 and in Ref. 5. An alter-
native method to compute one-dimensional free energy pro-
files was proposed by Krivov and Karplus.27, 28 The method
uses long MD trajectories during which multiple transition
events are observed, in combination with the minimum-cut
procedure (see Appendix D).

Assumptions (i) and (ii) above formalize the property that
the collective variables are “good” variables to describe the
transition. In principle, assumption (i) can be checked a pos-
teriori by a committor test. This test amounts to launching
trajectories from the isosurface on which Q (̂θ(x)) = 0.5 and
checking that these trajectories “commit” to the two endpoint
structures with equal probability. The committor test can be
computationally too costly for diffusive systems because (1)
trajectories take a very long time to commit (e.g., micro- to
milliseconds) and (2) a very large number of trajectories is
needed to ensure a good statistical sample. For these reasons,
we are unable to perform a full committor test for the present
calculations. Instead, we perform a less stringent test: starting
from configurations chosen randomly from a putative transi-
tion state ensemble, we launch a collection of relatively short
unbiased MD trajectories and examine the distribution of the
reaction coordinate values at the end of the simulations. We
find that 41% and 59% of the trajectories terminate on the re-
actant and product sides along the reaction coordinate, respec-
tively, although none of the trajectories reach the reactants or
the products. The above “splitting” probability is considered
sufficiently close to the optimal 50%/50%, because the com-
mittor values are known to change rapidly in the vicinity of a
transition state.29 Details of the calculations can be found in
Appendix C.
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In addition, we resort to an indirect qualitative strategy to
validate assumption (i). We compute the reaction free energy,
Eq. (8), using two different sets of collective variables. If the
results are similar for the two sets, as we find for the present
study (see Sec. III D 4), it is likely that either set is adequate
to describe the transition. Note that, in contrast to F(α), the
free energy G in Eq. (3) depends on the choice of collective
variables and is more difficult to use for cross-validation.

Assumption (ii) can be tested a posteriori by examining
the transition tubes corresponding to the MFEPs, as discussed
in Sec. III D.

C. String method in collective variables

The string method in collective variables was introduced
in Ref. 5. It has been applied to an isomerization reaction in
the alanine dipeptide in vacuum5 and in explicit solvent,17

the insertion of a coarse-grained model of a protein into a
lipid bilayer,18 and to the collapse of a hydrophobic chain
of beads, in which water molecules were represented explic-
itly and hundreds of thousands of collective variables were
used.16 A number of closely related variants of the method
were introduced recently.30–33 Here we give a brief account of
the method we use and refer the interested reader to Refs. 5
and 17 for more details.

The string method in collective variable space is a gen-
eralization of the string method in the Cartesian space.3, 20

The essence of the method is to evolve a curve—the string—
using −M(θ)∇G(θ ) as a force while maintaining a prescribed
parametrization of the curve. If we parametrize the string as
θ (α) with α ∈ [0, 1], this evolution can be written as

γ θ̇ = −M(θ)∇G(θ ) + λθ ′, (10)

where γ is an adjustable friction coefficient (discussed be-
low), the dot and the prime denote differentiation with the re-
spect to tand α, respectively, and λθ ′ is a Lagrange multiplier
term added to enforce a specific parametrization of the string
(in the present case, that the string have uniform arc-length
increments; i.e., |θ ′| = constant). Note that the steady-state
solution of Eq. (10) satisfies λθ ′ = −M(θ)∇G(θ ), i.e., it is
an MFEP according to the definition of Eq. (1).

To integrate Eq. (10), the string is discretized into N + 1
representative “images:”

θn = θ (n/N ), n = 0, 1, . . . , N . (11)

At each iteration, these images are evolved in the following
two steps:

(1) Evolution step. Each image is evolved independently of
the others using

θn(t+	t) = θn(t) − γ −1	t M(θn(t))∇G(θn(t)). (12)

(2) Reparametrization step. The images are reparametrized
to enforce equal arc-length increments, which requires
that

|θn+1 − θn| = |θn − θn−1|, n = 1, . . . , N − 1, (13)

where | · | denotes the Euclidean norm.

The evolution step Eq. (12) uses a forward Euler discretiza-
tion of Eq. (10) with the Lagrange multiplier term neglected.
[The computation of M(θn(t))∇G(θn(t)) is described be-
low, and the numerical values for 	t and γ are specified in
Sec. III D 1.]

The reparametrization step represents the action of the
Lagrange multiplier term in Eq. (10). It is performed in
two steps. First, we calculate the piecewise linear function

(α), such that 
(0) = 0 and its values at α = n/N with
n = 1, . . . , N are


(
n

N
) =

n∑
m=1

|θm − θm−1|. (14)

Second, we compute the images at new parameter values
specified by


(αn) = n

N

(1) (15)

using linear interpolation. These new images satisfy Eq. (13)
approximately. Although arbitrary accuracy can be achieved
by applying the reparametrization step iteratively, we only
used one iteration, after which the constraint was satisfied to
greater than 1% accuracy.

For a string that is far from the MFEP (as would
be observed in early stages of the string calculation), the
reparametrization correction is small compared to the evolu-
tion step. On the other hand, after the string has converged
to the MFEP, the reparametrization correction exactly cancels
the evolution step, so that the string images remain stationary.

The evaluation of the terms M(θn) and ∇G(θn) is per-
formed using MD sampling with restraints as follows. To each
image θn , we assign an independent all-atom replica of the
system, which we simulate by MD with the restraining poten-
tial

U (x, θn) = 1

2

K∑
i=1

ki (θ̂i (x) − θn,i )
2. (16)

The force constants ki should be chosen such that the con-
straint θ̂ (x) = θn is approximately satisfied during the MD
simulation. In practice, however, it may be advantageous to
use low force constants to accelerate equilibration of the repli-
cas during MD. In particular, low force constants permit the
use of Hamiltonian replica exchange (REX) (Refs. 34 and 35)
to increase conformational sampling, as will be illustrated in
Sec. III D 3. The use of low force constants, however, requires
correcting the free energy gradients computed from the simu-
lations, e.g., with the umbrella integration (UI) method.36

Denoting by xn(t) the MD trajectory of the replica as-
signed to image θn , the i th component of the free energy gra-
dient ∇G(θn(t)) is estimated as

− 1

	t

∫ t+	t

t
ki (θ̂i (xn(t ′)) − θn,i (t))dt ′ (17)

and the (i, j)th entry of the tensor M(θn(t)), as

1

	t

∫ t+	t

t

n∑
k=1

1

mk

∂θ̂i (xn(t ′))
∂xk

∂θ̂ j (xn(t ′))
∂xk

dt ′. (18)
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Equations (12), (17), (18) suggest that γ −1	t must be small
enough so that the solution of Eq. (10) is stable and accu-
rate; yet, 	t must be large enough so that the time averages
in Eqs. (17) and (18) are converged. This compromise can
be achieved by choosing the friction coefficient γ sufficiently
large. It was shown in Ref. 17 that for large values of γ , the
integration step 	t can be made as low as that of a single
MD evolution step (1-2fs) without compromising the accu-
racy of the MFEP. For γ large enough, the images θn evolve
much more slowly than the corresponding MD replicas and
effectively “feel,” via Eqs. (12), (17), and (18), the average
effect of the MD replica. The averages in Eqs. (17) and (18)
need not be converged to attain convergence of Eq. (12) to
the MFEP. Furthermore, even for somewhat smaller values
of γ (with 	tsufficiently small), the steady-state solution of
Eq. (12) will oscillate around the MFEP, but will not diverge
from it. The approximate values for γ and 	t used in the
present simulations are 1500 ps−1 and 20 fs, respectively (see
Sec. III D 1).

In the present simulations, the averages in Eqs. (17) and
(18) are computed using either 10 or 15 MD steps, depending
on the simulation (see Sec. III). The images are updated ac-
cording to Eq. (10), and the string is reparametrized. Evolving
and reparametrizing the string once in every several MD itera-
tions only incurs a small additional cost compared to a regular
MD simulation. Moreover, the MD replicas can be evolved in
parallel using different sets of central processing units (CPUs)
for each.

Convergence of the string to the MFEP is assessed by
monitoring the quantity D(t) defined as

D(t) =
[∑N

n=0 |θn(t) − θn(0)|2
K (N + 1)

]1/2

, (19)

which measures the root-mean-square distance (RMSD) by
which the images along the string have moved from their ini-
tial positions. Convergence is assumed after D(t) reaches a
plateau (see Sec. III).

D. Calculation of free energies and mean first
passage times (MFPTs)

1. Free energy of the collective variables
along the MFEP

Once the string has converged to the MFEP, the images
θn are fixed, and we can compute the approximate gradient of
the free energy, Eq. (3), at these images using

∂G(θn)

∂θi
= − 1

T

∫ T

0
ki (θ̂i (xn(t)) − θn,i )dt, (20)

where xn(t) denotes the trajectory of the MD replica evolv-
ing in the potential with the restraint term of Eq. (16) and T
is taken large enough for the average to converge. The free
energy G(θ ), relative to the endpoint value G(θ0) along the
MFEP, can then be obtained by numerical integration. The
trapezoidal rule yields

G(θn) − G(θ0)

=
n∑

m=1

∇G(θm) + ∇G(θm−1)

2
(θm − θm−1). (21)

It is shown in Ref. 5 that the errors due to the use of a re-
straint instead of a constraint in the approximation, Eq. (20),
are of the order (βki )

−1 (see also Sec. III D 3). Thus, if the
force constants ki are chosen sufficiently large, Eq. (21) will
yield an accurate free energy profile. In the present applica-
tion, we found that convergence was difficult to achieve using
Eq. (20) as written, and Hamiltonian replica exchange was
employed with the MD simulations to improve sampling.

The REX employed herein is based on the replica-
exchange umbrella sampling (US) algorithm, in which um-
brella potentials corresponding to adjacent “windows” of
a progress coordinate are exchanged “on-the-fly” during
the simulation.34 Unlike the implementations in Refs. 34,
and 37–39, which implement one-dimensional US, we use the
multidimensional biasing potential of Eq. (16). The number
of windows equals the number of string replicas, and the win-
dows are centered on the string images θn . To use REX, the re-
strained MD simulations must be performed concurrently for
each image, so that exchange moves between adjacent images
may be attempted. Specifically, after a prescribed number of
iterations, we attempt to switch the atomic coordinates of the
MD replicas xn and xn+1 that correspond to the neighboring
images θn and θn+1, respectively,

{. . . , (xn; θn), (xn+1; θn+1), . . .}
→ {. . . , (xn+1; θn), (xn; θn+1), . . .}, (22)

where n is chosen randomly from 0, 1, . . . , N . The accep-
tance probability of the move in Eq. (22) is computed accord-
ing to the Metropolis criterion,

pacc(xn ↔ xn+1) =
{

1 if 	 ≤ 0,

exp(−	) if 	 > 0,

	 = β[U (xn+1, θn) + U (xn, θn+1)

−U (xn, θn) − U (xn+1, θn+1)]. (23)

In Eq. (23), U (x, θ ) is the restraining potential defined in
Eq. (16) and pacc is the probability of accepting the move in
Eq. (22). To achieve high-enough acceptance rates in REX,
the force constants had to be lowered so that the conforma-
tional ensembles corresponding to adjacent images have suf-
ficient overlap. To correct the gradients obtained using lower
force constants, we employ the umbrella integration method36

as follows. For each window centered on θn , we have40

Gn(θ) = − 1

β
ln Pn(θ) − 1

2

K∑
i=1

ki (θi − θn,i )
2 + Cn, (24)

where Gn is an estimate of G corresponding to the window,
Pn(θ) is the probability density of θ , and Cn is an unknown
constant. Differentiation of Eq. (24) with respect to θ j gives

∂Gn(θ )

∂θ j
= − 1

β

∂ln Pn(θ)

∂θ j
− k j (θ j − θn, j ). (25)

Approximating Pn(θ) by a Gaussian of the form36

Pn(θ ) =
K∏

i=1

1

σi

√
2π

exp

⎡⎣−1

2

(
θi − θn,i

σn,i

)2
⎤⎦, (26)
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in which θn,i and σn,i denote the mean and the standard devia-
tion of the time series θ̂i (xn(t)), respectively, and substituting
into Eq. (25) leads to

∂Gn(θ )

∂θ j
= − 1

β

θ j − θn, j

σ 2
n, j

− k j (θ j − θn, j ). (27)

The estimates ∂Gn(θ)/∂θ j from all windows are combined
according to

∂G(θ)

∂θ j
=

N∑
n=0

∂Gn(θ)

∂θ j

Tn Pn(θ)∑N
m=0 Tm Pm(θ )

, (28)

in which Tn is the number of integration steps in the window
corresponding to θn .

The values of θ at which gradients of G(θ ) were com-
puted were obtained by linearly interpolating the original
string θn onto a finer string θm, m = 1, . . . , M = 500. The
free energy profiles were calculated using the trapezoidal rule,
as in Eq. (21). The results were insensitive to values of M in
the range 200–1000, similar to the conclusions in Ref. 36. The
choice of REX parameters is described in Sec. III D 3.

2. Free energy as a function of the reaction coordinate

As explained in Sec. II B, the free energy expressed in
terms of the collective variables, G(θ), is not the same as the
free energy along the parametric reaction coordinate, F(α),
defined in Eq. (8). To compute F(α), we use the procedure
introduced in Ref. 21. Once the string has converged to the
MFEP, we associate a cell Bn with each fixed image θn . The
cell Bn is defined by

Bn = {x : dn,m (̂θ(x), θn) < dn,m (̂θ(x), θm),

for all m �= n}. (29)

Thus, Bn contains all the points in configuration space that are
closest to image θn , according to the distances,

dn,m(θa, θb)

=
[

(θa − θb)T

(
M−1(θn) + M−1(θm)

2

)
(θa − θb)

]1/2

,

(30)

where θa and θb are arbitrary K -dimensional vectors. The
cells Bn form a tessellation of the entire configuration space.
If the tensor M is proportional to the identity, the distances
reduce to the standard Euclidean distance.

For two adjacent images on the string, θn and θn+1, the
boundary between the corresponding cells, Bn and Bn+1, is
defined by

dn,n+1(̂θ(x), θn) = dn,n+1(̂θ(x), θn+1)). (31)

Using Eq. (30) with m=n + 1 and that M−1 = M−T , the
square of Eq. (31) can be written as

0 = (θn+1 − θn)T

(
M−1(θn) + M−1(θn+1)

2

)
×

(
θ̂(x) − θn + θn+1

2

)
. (32)

This equation is a second-order finite-difference approxima-
tion to Eq. (5) evaluated at α = (n + 1/2)/N . Consequently,
the boundaries of successive cells along the string are local
approximations of the isocommittor surfaces at the MFEP.
Equations (8) and (9) imply that, for n = 1, . . . , N − 1, up
to discretization errors of order 1/N ,

πn = Z−1
∫

Bn

e−βV (x)dx ≈
∫ (n+1/2)/N

(n−1/2)/N
e−βF(α)dα

≈ N−1e−βFn , (33)

where πn is the probability to find the system in cell Bn at
equilibrium, V (x) denotes the MD potential, Z is the config-
urational partition function, and Fn = F(α = n/N ). Equation
(33) gives the following estimate for Fn in terms of πn:

Fn = −β−1 ln πn − β−1 ln N , n = 1, . . . , N − 1.

(34)

As shown in Ref. 21, there is a simple procedure to com-
pute the probabilities πn . First, we run independent MD sim-
ulations in each of the cells Bn and impose a “reflection” rule
at the cell boundaries, in which all particle momenta are re-
versed to maintain the MD replica in its cell. Specifically, if
(xn(t), pn(t)) denotes the position and momentum at time t of
the MD simulation assigned to the replica in cell Bn , we set

(xn(t + δt), pn(t + δt))

=
{

(x∗
n(t + δt), p∗

n(t + δt)) if x∗
n(t + δt) ∈ Bn ,

(xn(t),− pn(t)) if x∗
n(t + δt) �∈ Bn,

(35)

where (x∗
n(t + δt), p∗

n(t + δt)) denotes the time-evolved
value of (xn(t), pn(t)) after one MD step of size δt . Up to
time discretization errors, the trajectories generated in this
way sample the canonical distribution for the cell Bn . The
test involved in Eq. (35) is a distance check, in accord with
Eq. (30).

Let Nn,m denote the number of collisions the MD replica
in cell Bn makes with the boundary of cell Bm during the MD
simulation interval Tn . For a sufficiently large Tn , the quantity

νn,m = Nn,m

Tn
(36)

gives an estimate of the rate of escape from cell Bn to cell Bm .
At a statistical steady state, the conservation of probability
requires

N∑
m=0
m �=n

πnνn,m =
N∑

m=0
m �=n

πmνm,n, n = 0, 1, . . . , N , (37)

which can be solved for πn using the normalization condition∑N
n=0 πn = 1. The free energy Fn ≈ F(α = n/N ) can then

be computed from Eq. (34).

3. Transition rate between the initial and final states

To compute the transition rate, the free energy calculation
method described in Sec. II D 2 can be combined with the
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version of Markovian milestoning proposed in Ref. 18, which
builds on the original works in Refs. 9, 10, and 41, and 42.

In Markovian milestoning, one calculates from each MD
trajectory the index of the “milestone” that the trajectory
crossed most recently; in the string method, the milestones
are defined as the boundaries between the cells Bn defined
in Eq. (29). The time-evolution of the index is approximated
by a continuous-time Markov chain. To calculate the rate of
transition, one needs to estimate the rate matrix of this chain.
Markovian milestoning is similar to Markov state modeling
(MSM) (Refs. 43–50) using master equations. The main dif-
ference is that in Markovian milestoning, the system states
(milestones) are hypersurfaces, whereas in standard MSMs,
the states form a partition of the configuration space. We de-
note by a, b, . . . the indices of the milestones (not to be con-
fused with the index n of the cells). It was shown in Ref. 18
that the rate of instantaneous transition from milestone a to
milestone b (ka,b) can be estimated as

ka,b =
∑N

n=0 πn N n
a,b/Tn∑N

n=0 πnT n
a /Tn

, a �= b. (38)

In Eq. (38), πn is the equilibrium probability to find the sys-
tem in cell Bn computed from Eq. (37), N n

a,b is the total num-
ber of transitions from milestone a to milestone b observed
in the MD simulation confined to cell Bn , T n

a is the total time
during this simulation during which a was the most recent
milestone visited by the system, and Tn is the total duration of
the simulation confined to cell Bn .

Given an arbitrary milestone denoted by b∗, the instanta-
neous rate matrix and the MFPTs to the milestone b∗ from the
other milestones in the system, denoted by Tb,b∗ with b �= b∗,

satisfy the relationship∑
b �=b∗

ka,bTb,b∗ = −1, a �= b∗. (39)

This equation is a standard result in the theory of Markov
chains51 and its derivation in the context of milestoning can
be found in Ref. 18. If the milestones a∗ and b∗ are chosen
as the isocommittor surfaces for the transition between two
metastable states of a system (e.g., A and B) with qa∗ ≈ 0 and
qb∗ ≈ 1, then (Ta∗,b∗ )−1is an estimate of the rate of transition
from A to B. Use of an unrealistic low friction with the im-
plicit solvent model (Sec. III D 1), as was done for improved
sampling, is expected to result in an overestimate of the tran-
sition rate (see Sec. IV).

It was shown in Ref. 52 that the MFPT estimate is exact
if the milestones are isocommittor surfaces for the transition.
This condition will be satisfied approximately, provided as-
sumptions (i) and (ii) in Sec. II B hold, because in that case
the boundaries of the cells Bn , which we use as the milestones,
are approximations of the isocommittor surfaces.

III. APPLICATION TO THE MYOSIN VI CONVERTER

A. Preparation of simulation structures

Crystal structures of MVI in the (R) and (PPS) confor-
mations were obtained from the protein data bank (PDB en-
tries 2BKH and 2V26, respectively). The resolution of the re-
spective structures is 2.4 and 1.75 Å. Only residues 703–788,
which correspond to the converter domain, were included.
The R and PPS conformers are shown in panels (a) and (b),
respectively, in Fig. 1. Atoms that form the basis for the col-
lective variables defined in Sec. III B 2 and listed in Table II

FIG. 1. VI converter in the R (a) and PPS (b) conformation. The secondary structure elements are helices 1–5 (H1–H5), loops 1–4 (L1–L4), and the β-sheet.
We alternatively refer to H5 as the converter insert (CI) to emphasize that it is known to be present only in MVI (Ref. 53). The helices and loops are numbered
in the order of increasing residue numbering. Atoms to which forces were applied in the RTMD or string simulations (see Tables I and II) are drawn as spheres.
If forces were applied to a sidechain atom, the entire corresponding residue is shown. Atoms that are used to define the collective variables set CVS1 (Table II)
are shown as spheres. In (b), red circles are drawn approximately around subdomains that correspond to CV 1–21 in CVS2 (Table III). The green oval is drawn
around L4 and corresponds to the collective variables 46–50 in CVS2. The blue line corresponds to the distance CV 51 in CVS2.
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are shown as spheres. In the PPS structure, the atoms CD1
and ND2 in residue N716 were interchanged to optimize the
local hydrogen bonding patterns. Assignment of histidine pro-
tonation states was based on a visual inspection of the local
environment for each histidine residue. For both conformers,
all histidines were singly protonated on the δ-nitrogen except
for H776, which was singly protonated on the ε-hydrogen.

The all-atom CHARMM22 topology and parameter files
were used in the simulations. To approximate the effect of
solvent, we employ the fast analytical continuum treatment
of solvation (FACTS) model,54 which has been shown to
yield accurate atomic solvation and pair interaction energies
when compared with finite-difference Poisson–Boltzmann
data. In applications, FACTS has been shown to maintain
stable structures during long simulations (≈ 100 ns) of small
proteins and has been implemented in CHARMM.55, 56

Prior to performing string calculations, each conformer
was simulated for 60 ns by equilibrium MD in the canoni-
cal ensemble. The average backbone-atom RMSD of the sim-
ulation structures from the corresponding crystal structures
is 1.6 and 1.25 Å for the R and PPS conformers, respec-
tively, confirming that both converter domain structures are in
metastable local minima. The RMSD between the backbone
atoms in the x-ray structures is 4.2 Å, while that between the
backbone atoms in the average MD structures is 3.9 Å.

B. Selection of collective variables

As explained in Sec. II B, the quality of a given set of
collective variables to describe a complex reaction can only
be determined a posteriori, either by a committor test or by
“cross-validating” the reaction free energy of the reaction rate
computed using two or more sets of collective variables. In
this section we propose a methodology to generate a pri-
ori candidate collective variables to describe conformational
transitions in proteins.

1. Identification of a “resolving set” of atoms
using RTMD

RTMD is closely related to the original TMD
method.57, 58 The main difference is that targeting forces
are applied in the form of a harmonic restraint, rather than
a holonomic constraint.22 We apply RTMD forces only to
the atoms in a putative RS starting with their positions in
one structure to decrease the best-fit RMSD between this
structure and the target structure. Let rrs ∈ R3N denote the
vector containing the positions of the N atoms in the putative
RS to which the RTMD forces are applied. The driving forces
are derived from the potential

URTMD(rrs) = k

2

(
RMSD(rrs, rrs

T ) − δ
)2

, (40)

where k is the force constant and rrs
T is the (fixed) value of the

positions of the atom in the target structure. We start the sim-
ulation with rrs in the initial structure and set δ to the RMSD
between rrs and rrs

T . The value of δ is then decreased lin-
early to zero over ∼2 ns. After the zero value of δ is reached,
the restraining potential URTMD(rrs) is applied for ∼3 ns and

then scaled linearly to zero over 1 ns, after which the sys-
tem is allowed to relax for 1–3 ns. The RMSD between all
heavy atoms in the relaxed structure and the target structure
is taken as the indicator of the quality of our choice of the
RS. The RTMD simulations performed in this study and the
corresponding RSs are summarized in Table I.

In the RTMD simulations, the RMSD
(
rrs, rrs

T

)
was com-

puted between the positions rrs and rrs
T , after a best-fit orien-

tation using the backbone atoms of helix 3 (H3) (see Fig. 1),
which does not include any atoms from the RS. Because this
orientation set and the RS are different, there is a net force and
a net torque acting on the protein. To prevent the rigid-body
motion of the simulation structures, the backbone atoms of H3
were restrained to their original positions with harmonic po-
tentials of the form (1/2)k|r i − r0

i |2, where r i denotes the po-
sition of atom i , k equals 1 kcal/mol/Å2, and the superscript 0
refers to the initial position. These restraints are very unlikely
to affect the path of the transition because (i) the restrained
helix is relatively far away from the region in which the two
endpoint structures differ appreciably and (ii) the RMSD be-
tween the helix backbone in the two conformations is only
0.24 Å. These two facts indicate that the helix is not involved
in the conformational change and remains intact during the
transition.

The first trial RS was chosen based on a visual inspec-
tion of the endpoint structures shown in Fig. 1. Two promi-
nent qualitative differences between the structures are (i) the
orientation of helix 4 (H4), which is vertical and approxi-
mately perpendicular to the β-sheet in the R structure, and
inclined at 
45o to the β-sheet in the PPS structure, and (ii)
the conformation of loop 4 (L4), which is α-helical in the R
structure, and unwound in the PPS conformation. In addition,
going from the R structure to the PPS structure, H4 appears
to rotate about its axis, moving the sidechains of M770 and
F766 from the interior to the outside of the converter domain
(Fig. 1). Based on these observations, we assumed that much
of the conformational transition could be accounted for by the
movement of H4, L4, M770, and F766. Therefore, the first RS
includes the Cα atoms of H4 and L4, the Sδ atom of M770,
and the Cγ atom of F766. Because we expect that the move-
ment of M770 would involve significant motion of Y718 due
to steric clashes between the two residues, we also included
the Cγ atom of Y718 in the RS.

Starting from the first trial RS, which contained 28 atoms
(listed as RTMD 1 in Table I), additional atoms or domains
were added until the heavy-atom RMSD between the final
RTMD simulation structures and the corresponding the target
structures was below 2.0 Å in both directions. The smallest
tested RS that satisfies these criteria was used in RTMD sim-
ulation 5 in Table I. It is composed of 59 atoms, which are
drawn as spheres in Fig. 1 and listed in Table I. This RS in-
cludes atoms from helices H1 and H5 as well as from several
aromatic residues in the core of the converter domain.

We note that the RS found by the above procedure is un-
likely to be unique. Furthermore, the composition of the RS
will depend on the RMSD criterion above, such that a lower
RMSD would probably require a larger RS. Therefore, al-
though the search for the RS is systematic, the final choice
of RS is somewhat subjective.
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TABLE I. Summary of RTMD simulations. Residue numbers followed by an atom type indicate that only that atom was included. Residue numbers followed
by “BB” indicate that the backbone atoms (N C O CA) were included. CHARMM atom nomenclature is used. “n/a” indicates that the corresponding simulations
were not performed. Important residues in the RS are shown in Figs. 1(a) and 1(b). “RMSD (δ = 0)” is the minimum RMSD value observed after the target
RMSD, δ, reaches 0, but before the forces are switched off. “RMSD (relaxed)” is the average RMSD value observed after the forces are switched off. RMSD
values are computed using all heavy atoms. The force constant κ is given in units of kcal/mol/Å2. Simulation time is quoted in ns. For brevity, “P” denotes the
“PPS” state. RMSD values are quoted in Angstroms.

RMSD (δ = 0) RMSD (relaxed) Simulation time
RTMD Resolving set (number of atoms) κ R→P/P→R R→P/P→R R→P/P→R
1 761–769 CA; 770–773 BB; 0.5 4.2/3.9 (n/a) 2/2

770 SD; 718 766 CG (28)
2 762–769 BB; 771–773 BB (44) 0.5 3.8/(n/a) (n/a) 2
3 761–769 711–720 774–788 CA; 1.0 3.0/3.4 (n/a) 2

770–773 BB; 770 SD; 716 766 CG (38)
4 761–769 711–720 774–788 CA; 1.0 1.75/1.5 2.3/1.65 6/6

770–773 BB; 770 SD;
718 766 758 749 708 CZ (56)

5 761–769 711–720 774–788 CA; 1.0 1.25/1.26 1.60/1.66 6/10
770–773 BB; 770 SD; 713 CD;

718 766 758 749 708 739 751 CZ (59)
6 761–769 711–720 774–788 CA; 1.0 1.26/1.26 1.75/1.45 6/6

770–773 BB; 770 SD; 713 722 CD;
718 766 758 749 708 739 751 CZ (60)

The evolution of the heavy-atom RMSD in RTMD 5 is
shown in Fig. 2. The equilibration (with δ=0) and relax-
ation (forces turned off) phases were each 2 ns longer for
the PPS→R transition to determine whether the final RMSD
could dip below the R→PPS value (
1.6 Å). A comparison
of the final RMSD values from the PPS→R and R→PPS sim-
ulations shows that the extra 4 ns made no difference.

The fact that the RMSD values (
 1.6 Å) between the
final relaxed RTMD structures and the target structures are
lower than the maximum RMSD values from the NVT sim-
ulations of the R and PPS structures (2.6 and 2.0 Å, respec-
tively, see Fig. 2) strongly suggests that each simulation struc-
ture has reached a stable conformation near the corresponding
target structure.

Because applying targeting forces only to the atoms in
the RS used in the RTMD listed as number 5 in Table I is suf-
ficient to enforce a complete conformational change, we as-
sume that the mechanism of the transition can be understood
by considering only the positions of these atoms. Two sets

of collective variables used for the string simulations in this
study were chosen on the basis of the RS used in RTMD 5.

2. First set of collective variables (CVS1)

A simple set of collective variables that can be con-
structed from the RS of RTMD 5 consists of just the
positions of the atoms in the RS. Specifically, given the
set of 59 atomic position triplets rrs

i = (xrs
i , yrs

i , zrs
i ) with i

= 1, 2, . . . , 59, one can define a set of 3 × 59 = 177 CVs,

θ̂3(i−1)+1(x) = xrs
i ,

θ̂3(i−1)+2(x) = yrs
i ,

θ̂3(i−1)+3(x) = zrs
i . (41)

A serious drawback of this definition, however, is that
the variables are not invariant under rigid-body translation or
rotation of the simulation system. To guarantee rigid-body

TABLE II. Atoms used to define the set of collective variables CVS1. For each atom, three CV are defined,
which correspond to the Cartesian x , y, and z positions. Atoms are specified by their residue ID and the atom
type. Atom positions on the converter structure are shown in Fig. 1. The total number of position CV is 177.

CV description Residue ID(s) Atom type(s) CV indices (number of CV)
Helix 1 position 711–720 CA 1–30 (30)
Helix 4 position 761–769 CA 31–57 (27)
Converter insert position 774–788 CA 58–102 (45)
Loop 4 conformation 770–773 N, C, CA, O 103–150 (48)
Sidechain position R708 CZ 151–153 (3)
Sidechain position E713 CD 154–156 (3)
Sidechain position Y718 CZ 157–159 (3)
Sidechain position F739 CZ 160–162 (3)
Sidechain position Y749 CZ 163–165 (3)
Sidechain position F751 CZ 166–168 (3)
Sidechain position F758 CZ 169–171 (3)
Sidechain position F766 CZ 172–174 (3)
Sidechain position M770 SD 175–177 (3)
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FIG. 2. Evolution of the RMSD of the heavy atoms between the RTMD sim-
ulation 5 structures and the corresponding target structures. Red solid line R
structure (PPS target); green solid line PPS structure (R target); dashed verti-
cal lines mark the times at which δ reaches 0.0 (black dashed line), the RTMD
forces are switched off for the R→PPS simulation (red dashed line) and the
PPS→R simulation (green dashed line).

invariance of the CV defined above, the atomic positions in
Eq. (41) were expressed in local coordinates as follows. A lo-
cal frame of reference was constructed based on the positions
of all atoms in H3 (this helix was restrained in the RTMD
simulations). First, a mass-weighted 3 × 3 correlation tensor
was computed as

Ci, j =
N∑

n=1

(rn,i − r̂i )(rn, j − r̂ j )mn. (42)

In this equation, N is the number of atoms that comprise H3,
rn,i is the i th coordinate of the atom indexed by n (i.e.,rn,1

= xn , rn,2 = yn , rn,3 = zn , if [xn, yn, zn] are the x , y, and z po-
sitions of atom n), r̂i = ∑N

n=1 mnrn,i/
∑N

n=1 mn is the COM
position vector of the N atoms, and mn is the mass of atom n.
Ci, j is symmetric positive definite and therefore has three real
eigenvalues, λi , i = 1, 2, 3, with three corresponding eigen-
vectors, v i , that are orthonormal (v i · v j = δi j ). These eigen-
vectors are taken to be the basis vectors of a moving coordi-
nate frame in which the positions CV are computed. To ensure
right-handedness of the coordinate frame, one of the eigen-
vectors occasionally needed to be inverted (v i → −v i ) during
the MD simulations. Additional constraints that guarantee the
uniqueness of the computed coordinate frame and the details
of computing the derivatives of the position CV expressed in
a local frame of reference are given in Appendix A. The set
of positions CV defined above is denoted as CVS1.

The positions CV expressed in the local reference frame
are invariant with respect to rigid-body motion of the sim-
ulation system. Although such motions change the position
vector relative to the absolute (simulation) frame, the po-
sition vector remains the same in the local frame, because
both the frame and the rest of the molecule undergo the
same rigid-body motion. We note that other methods of
avoiding the change in CV due to rigid-body motion exist,
such as those based on simple harmonic restraints,59 Eckart
constraints,60–62 or moment of inertia tensor constraints.63

Each method, including ours, comes with disadvantages, such
as additional complexity of implementation, or approximation

in the force calculations. In the present simulations the eigen-
vectors of Ci, j were always unique, which ensured an unam-
biguous definition of the local frame. However, this will not
be the case for some molecular geometries, such as those in
which the atoms that define the coordinate frame have internal
symmetry, such as backbones of α-helices. (In this case, one
principal vector will be directed along the axis of the α-helix,
but the two remaining vectors are unique only up to a rota-
tion in the plane perpendicular to the first vector). In addition,
coordinate frame vectors defined on the basis of very flexible
bodies may fluctuate strongly during MD simulation, which
could render any function of these vectors (such as positions)
effectively ill-defined, and lead to instabilities if forces are ap-
plied based on these functions. Thus, the choice of local frame
must be made with caution and may require experimentation.

We note that Ci, j can be related to the moment of inertia
tensor,

Ii, j =
N∑

n=1

(|rn − r̂ |2δi, j − (rn,i − r̂i )(rn, j − r̂ j ))mn, (43)

by Ci, j = I ∗δi, j − Ii, j , where I ∗ = ∑N
n=1 |rn − r̂ |2mn . Since

the vectors v i are orthonormal, they also diagonalize I ∗δi, j

and, consequently, Ii, j . Thus, the vectors v i are also eigen-
vectors of the moment of inertia tensor Ii, j (although the cor-
responding eigenvalues will be different).

The collective variables CVS1 defined in this subsection
are listed in Table II and shown in Fig. 1.

3. Second set of collective variables (CVS2)

To cross-validate the results using the strategy explained
in Sec. II B, we constructed an additional set of collective
variables, hereafter referred to as CVS2. In this set, the num-
ber of collective variables was reduced from 177 to 51 by first
representing several groups of atomic positions used in CVS1
by the position of their COM expressed in local coordinates
as explained above for CVS1 (see CV 1–21 in Table III). In
addition, the positions of several atoms in CV1 were replaced
by five dihedral angles and one distance between the COMs
of two sets of atoms (see CV 46–51 in Table III).

C. Generation of initial conditions

The string method in collective variables described in
Sec. II C requires an initial string [i.e., a value for each θn(0)]
and n all-atom configurations of the converter for the estima-
tion of M(θn(t)) and ∇G(θn(t)) [see Eq. (12)].

These initial conditions were obtained from MEPs gen-
erated using the zero-temperature string method in Cartesian
coordinates (ZTS), which was implemented in CHARMM fol-
lowing Ref. 20. Because the ZTS method is conceptually and
algorithmically very similar to the string method in collec-
tive variables described in Sec. II C, with the mean force
∇G(θ ) and the tensor M(θ) replaced by the atomic force,
∇V (x), and the inverse of the mass matrix, respectively,
we refer the reader to the supplementary materials for full
details.

ZTS was used to generate two MEP from which the ini-
tial conditions, described above, were computed. The purpose
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TABLE III. CV in set 2. Each COM-position entry corresponds to three Cartesian positions. Residue numbers followed by an asterisk indicate that only the
sidechain atoms were included in the CV definition (the backbone atoms C, N, CA, and O were excluded). CVs are indicated on the converter structure in
Fig. 1(b). The total number of CV is 51.

CV description CV type Atoms involved CV indices (No. of CV) Equivalent CVs in CVS1
H1 position COM-position Residue 711–715 1–3 (3) 1–30

COM-position Residue 716–720 4–6 (3)
H2 position COM-position Residue 723–728 7–9 (3) None
H4 position COM-position Residue 761–765 10–12 (3) 31–57

COM-position Residue 766–770 13–15 (3)
CI position COM-position Residue 774–781 16–18 (3) 58–102

COM-position Residue 782–788 19–21 (3)
Sidechain position COM-position Residue 718∗ 22–24 (3) 157–159
Sidechain position COM-position Residue 722∗ 25–27 (3) None
Sidechain position COM-position Residue 739∗ 28–30 (3) 160–162
Sidechain position COM-position Residue 749∗ 31–33 (3) 163–165
Sidechain position COM-position Residue 751∗ 34–36 (3) 166–168
Sidechain position COM-position Residue 758∗ 37–39 (3) 169–171
Sidechain position COM-position Residue 766∗ 40–42 (3) 172–174
Sidechain position COM-position Residue 770∗ 43–45 (3) 175–177
L4 conformation Dihedral (φ) M770C/K771N/K771CA/K771C 46 (1) 103–150

Dihedral (ψ) K771N/K771CA/K771C/S772N 47 (1)
Dihedral (φ) K771C/S772N/S772CA/S772C 48 (1)
Dihedral (ψ) S772N/K772CA/K772C/D773N 49 (1)
Dihedral (φ) S772C/D773N/D773CA/D773C 50 (1)

Sidechain position COM distance Residues 708∗, 713∗ 51 (1) 151–156

of generating two initial paths was twofold. First, it allowed
us to investigate the extent to which the choice of the initial
condition affects the computed free energy profile. We found
a difference of several kilocalories per mole in the free energy
barriers that correspond to the two initial paths, indicating a
significant effect (see Sec. III D 1). Second, computing the
free energy along two different paths provides a test of the
accuracy of the calculation: since the endpoints of both paths
correspond to the same metastable states, the free energy dif-
ference between the endpoints should be independent of the
path. In practice, errors arising from the discretization of the
string or insufficient sampling may lead to different free en-
ergy values. The magnitude of the difference is a measure of
the accuracy of the computed free energy. The first MEP (re-
ferred to as MEP1), resolved using 256 replicas, was gener-
ated in seven cycles, starting from the two endpoint (R and
PPS) structures. In each cycle, a linear interpolation in Carte-
sian space that doubles the number of replicas is performed,
followed by 100 iterations of the ZTS method. Each itera-

tion of the method consists of 20 steps of minimization using
the steepest descent minimizer in CHARMM, followed by a
reparametrization step, to enforce Eq. (13) with θ replaced by
x (see supplementary materials).

The second MEP (referred to as MEP2) was constructed
by changing the direction of rotation of the dihedral angles in
a flexible loop (see Fig. 3). In MEP1, the backbone oxygen
of residue K771 (indicated by a green arrow) rotates to the
“outside,” while in MEP2, it passes “under” the upper part of
L4 (residue S772). A four-replica path was taken at the end of
the first cycle in the generation of MEP1. The two intermedi-
ate structures were modified manually to change the direction
of loop torsion. This path was then refined to 256 replicas, as
described for MEP1.

To quantify the difference between MEP1 and MEP2, we
computed the RMSD between corresponding structures along
the two paths, using all atoms and using only the atoms that
belong to L4. The RMSD plots are shown in Fig. 4(a). The
difference in the configurations of L4 is more pronounced

FIG. 3. Conformational change in L4 in zero-temperature path MEP1 (a) and MEP2 (b). The converter in the R conformation is shown in transparent gray. For
each case, the R, PPS, and one intermediate conformation of loop 4 are shown. The directions of loop torsion are shown by green arrows. The inset indicates
the location of L4 in the converter domain.
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FIG. 4. (a) RMSD between corresponding replicas from MEP1 and MEP2: red solid line computed using all atoms; green solid line computed using atoms of
L4. (b) Superposition of structures from MEP1 and MEP2 at α = 0.66 (replica 170 of 256); red: MEP1; green: MEP2; black: backbone from MEP2.

than the overall (all-atom) difference between the structures.
This is expected because only the coordinates of L4 were
modified directly in the construction of MEP2. However, the
all-atom RMSD between MEP1 and MEP2 (maximum of
1 Å at α 
 0.5) suggests that the changes made to L4 propa-
gate through the entire converter domain. In Fig. 4(b) we have
superposed structures from MEP1 and MEP2 at α = 0.65 af-
ter a best-fit alignment.62 The figure makes clear that differ-
ences between the MEPs are not limited to L4, but are present
throughout the entire converter structure. The potential en-
ergy along MEP1 and MEP2 is shown in Fig. 5. The figure
indicates that at α 
 0.35 and α 
 0.65 MEP1 is higher in
energy than MEP2 by 
40 kcal/mol. By examining the in-
dividual contributions to the total effective potential energy
[i.e., bond, angle, linear and improper dihedral, electrostatic,
van der Waals (vdW) and solvation energies], we found that
most of the difference arises from differences in the dihedral
and vdW energy terms. Figure 5 shows that if the dihedral
and vdW energy terms are omitted, the profiles correspond-
ing to MEP1 and MEP2 are very similar (the contributions
of the two terms are approximately of the same magnitude).
To see whether the differences in the energies arise primar-
ily from differences in the conformations of L4, we com-
puted the matrix of interaction energies between all pairs of
residues at α = 0.65. We found the difference in the interac-
tion energies between L4 and the rest of the converter to be

6 kcal/mol (compared with the total energy difference of

40 kcal/mol). Furthermore, the difference in the interaction
energies was significant for many residue pairs throughout
the converter domain. These findings indicate that MEP1 is
a higher-energy path with the higher interaction energies not
localized in a specific region of the converter (e.g., L4). De-
spite the 
40 kcal/mol differences in the potential energies
between the MEPs at α = 0.65, Fig. 4(b) shows that most
of the residue sidechains occupy similar positions and sug-
gests that the origin of the differences in the energies between
MEP1 and MEP2 is rather subtle (excluding L4).

Prior to running simulations using the string method in
collective variables, the resolution of MEP1 and MEP2 was
decreased from 256 to 32 replicas to reduce the computer
cost of simulation. The resulting coordinate sets were used
to calculate the initial values of the collective variables in
CVS1 and CVS2 and to initialize the restrained MD simula-
tions required for the estimation of M(θn(t)) and ∇G(θn(t)).
The reduction in resolution is justified because the number
of dimensions of the CV spaces (177 and 51 for CVS1 and
CVS2, respectively), which contain the respective MFEPs,
is much lower than the dimensionality of the full Cartesian
space (4326). Consequently, the free energy landscape in the
space of CV will be much smoother, requiring fewer dis-
cretization points. Furthermore, after the string has converged
to the MFEP, the resolution can be increased by interpolation
to improve the accuracy of discretization, as performed in Sec.
III D 3. Animations of MEP1 and MEP2 can be found in the
supplementary materials.19

D. Minimum free energy paths, free energies,
and rates

1. Calculation of the MFEPs

To compute MFEPs, three simulations were performed
using the string method in collective variables, as summarized
in Table IV (S1–S3). Each simulation was performed using
a string discretized into 32 images, with one MD replica as-
signed to each image, using 1–4 processors per replica, so that
the total CPU requirement was between 32 and 128 CPUs.
Each replica was simulated in the NVT ensemble at 300 K
using the Langevin dynamics thermostat coupled to heavy
atoms using a friction constant of 1 ps−1. With this value
of the friction constant, the temperature computed from the
MD simulations fluctuated around 300K with a standard de-
viation of 6 K (computed over 20 ns of simulation). Cova-
lent bonds to hydrogen atoms were constrained with SHAKE.
The FACTS model was used to approximate the effects of
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FIG. 5. (a) Potential energy along the initial paths calculated using the zero-temperature string method (ZTS). MEP1: Red solid line iteration 400, 32 replicas;
green solid line iteration 500, 64 replicas; blue solid line iteration 600, 128 replicas; magenta solid line iteration 700, 256 replicas; (magenta ◦––) iteration 700,
256 replicas; energy from dihedral angles and van der Waals interactions excluded. MEP2: black solid line iteration 700, 256 replicas; (black ◦––) iteration 700,
256 replicas; energy from dihedral angles and van der Waals interactions excluded.

solvent.54 The approximate time required to integrate 1 ns of
MD was 15 CPU-core-hours per replica using a multiproces-
sor cluster equipped with quad-core Intel Xeon CPUs with
the InfiniBand interconnect. Thus, simulation S1 (see Table
IV) running on 32 quad-core processors of comparable speed
(128 cores in total) would take 6 days.

For the string simulations using CVS1, the force constant
in the restrained dynamics Eq. (16) was set to 1.0 kcal/mol/Å2

for all CVs. For each replica on the string, ten MD steps
were performed to compute the average force and tensor
M , which corresponds to 	t =20 fs in Sec. II C. The CV
values were updated using Eqs. (12) and (13). The friction
coefficient γ was set to 1673 ps−1. This value corresponds to
five times the minimum value of γ for which γ −1	t results
in stable integration of Eq. (12) (determined by trial and er-
ror). In view of the Einstein relation for the Brownian motion
(D = kB T/mγ ),64 in which m represents particle mass and
D is the coefficient of diffusion of the particle, the need to
use a large value for γ in the string simulation indicates a low
rate of diffusion of the string on the landscape of the free en-
ergy G(θ ) defined by Eq. (3), as would be expected for the
evolution of a coarse-grained representation of the system.

For the string simulations with CVS2, the force constants
in Eq. (16) were set to 1.0 kcal/mol/Å2 for position CVs and
distance CVs and to 10.0 kcal/mol/rad2 for dihedral angle
CVs. The average force on each CV was computed after ev-
ery 15 MD steps, which corresponds to 	t = 30 fs. γ was set
to 1255 ps−1, determined by trial and error as for simulations
with CVS1.

In each simulation, the string was evolved from the initial
condition until convergence to the MFEP was obtained, ac-
cording to Eq. (12). Figure 6 shows the evolution of D (t) in
simulations S1–S3 (Table IV). Simulation S3 was run longer
(49 ns) than either S1 (36 ns) or S2 (40 ns) to ascertain that
D (t) was not continuing to increase. Since D(t) is a mea-
sure of the distance that a path has traveled from the initial
path, the different plateau values in Fig. 6 corresponding to
the simulations S1–S3 reflect the different distances between

the MFEPs and the respective MEPs. Although simulations
S1 and S2 were initialized from the same initial path, they
employ different collective variables (different both in type
and number), which is likely to be the reason for the differ-
ence in the respective plateau values. In addition, the different
plateau distances between the MFEPs and the MEPs may be
related to the different widths of the corresponding transition
tubes (discussed in Sec. III D 4), with MFEP S1 having the
widest transition tube and MFEP S2, the narrowest.

2. Description of the MFEP

In this section, we describe the mechanism of the tran-
sition corresponding to the MFEP from simulation S3. S3 is

TABLE IV. Summary of string simulations performed in this study. Simu-
lations G2fr and G3fr were performed with REX (see text). For simulations
G2f10 and G3f10, all force constants in the restraining potential in Eq. (16)
were increased by a factor of 10, as described in the text. Simulation dura-
tions correspond to the different procedures associated with the particular
type of simulation (see text for details).

Simulation CV Initial Number of Simulation
index set path images/cells duration (ns)
S1 CVS1 1 32 36
G1c CVS1 1 32 20
F1 CVS1 1 32 30

S2 CVS2 1 32 40
G2c CVS2 1 32 20
G2f CVS2 1 128 15
G2fr CVS2 1 128 20
G2f10 CVS2 1 128 15
F2 CVS2 1 32 40

S3 CVS2 2 32 49
G3c CVS2 2 32 20
G3f CVS2 2 128 15
G3fr CVS2 2 128 20
G3f10 CVS2 2 128 15
F3 CVS2 2 32 30
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FIG. 6. Convergence of string simulations (see Table IV) monitored by the
evolution of D (t) [Eq. (19)]. Red solid line, S1; green solid line, S2; blue
solid line, S3.

chosen in preference to S2 because the corresponding free en-
ergy profile associated with the committor is probably more
accurate (discussed in Sec. III D 4). In addition, the profiles
of the free energies G and F associated with simulation S3
exhibit lower barriers (see Sec. III D 3). This transition path,
therefore, is more likely to be relevant for the ensemble of
all transition paths. A brief discussion of the MFEP from S2
is available in the supplementary materials.19 S3 is chosen

in preference to S1 because the calculated endpoint free en-
ergy difference is closer to that of MFEP S2 (discussed in
Sec. III D 3).

Six snapshots from the MFEP ordered in the R→PPS di-
rection are shown in Fig. 7 to illustrate the transition mech-
anism; important residues and secondary structure elements
are labeled in Fig. 1. The main differences between the R and
PPS conformations of the converter were discussed in Sec. III
B 1. Transition in the R→PPS direction begins with a down-
ward motion of H4, which positions M770 in the middle of the
converter interior and causes H5 to rotate (R to I5); (the num-
bers in parentheses correspond to image indices and R and P
correspond to the rigor and prepowerstroke states); the hydro-
gen bonds between R708 and E713 break (I5); H4 continues
its downward motion and M770 moves between the aromatic
rings of Y718 and F766 (I15 to I22). Aromatic residues in the
converter core (F739, Y749, F751, F758, F766) move into
their PPS positions (I22 to I25). L4 begins to twist toward its
PPS position (I22 to I25), and H4 begins to tilt and twist, ac-
companied by the motion of M771 and F766 to the outside of
the converter interior (I22 to I25). H4 continues to tilt, and CI
rotates into its PPS position (I25 to P). An animation of this
MFEP can be found in the supplementary materials.19

Structures I15 and I25 on the MFEP (Fig. 7) correspond
to peaks in the free energies G(θ) and F(α) (not to be con-
fused with the energy along the MEP shown in Fig. 5). Free

FIG. 7. Snapshots from simulation S3 (Table IV) that illustrate the transition mechanism. The converter structures are shown, as in Fig. 1. Red arrows indicate
the conformational change associated with the snapshot. The location of the snapshot on the transition path (α =Ix/I31), and the corresponding image index
(I0–I31) are shown for each snapshot. Images I0 and I31 correspond to the rigor (R) and pre-powerstroke (P) states, respectively. Hydrogen bonds between
R708 and E713 are indicated by dotted black lines in the R snapshot. The metastable state is indicated by an asterisk. Residues and secondary structure elements
are labeled in Fig. 1.
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energy profiles are discussed in Secs. III D 3 and III D 4 be-
low. In I15, M770 is involved in repulsive interactions with
Y718 and F766 (while passing from the interior of the con-
verter to the outside), and in I25, loop L4 is in a strained con-
figuration (while twisting from the R into the PPS conforma-
tion). The global maximum of the committor free energy F
corresponds to I15.

Structure I22 on the MFEP (located between I15 and I25)
is at a local free energy minimum. In this case, M770 is in the
PPS position, but L4 is still in the R position, i.e., M770 has
completed crossing its barrier, but L4 has not yet begun. As
a qualitative check of whether the snapshot I22 corresponds
to a metastable state, a 40 ns equilibrium MD simulation was
performed, starting from the structure I22. The heavy-atom
RMSD from the initial configuration remained at 
1.7 Å dur-
ing the simulation, M770 and L4 both remained close to their
starting positions, and no major structural changes in the con-
formation were observed, consistent with metastability.

3. Free energy as a function of the collective variables

In this subsection, we describe the calculation of G(θ ),
the free energy as a function of the collective variables de-
fined in Eq. (3). We find that considerable care is required to
compute accurate and converged profiles of G. The free en-
ergy of the committor (F) is discussed in Subsection III D 4.

After the simulations S1–S3 converged to the corre-
sponding MFEPs, the images θn were held fixed, and re-
strained MD simulations were performed for approximately
20 ns in each case to compute the gradients ∇G(θn). These
simulations are denoted G1c–G3c in Table IV. Free energies
were then computed using the trapezoidal rule [Eq. (21)], as
described in Sec. II D 1 (not using umbrella integration).

The resulting FE profiles are shown in Fig. 8(a). The pro-
files corresponding to the 32-image calculations show that the
PPS state has higher free energy than the R state. It was puz-
zling, however, that the FE difference between the two end-
states was ∼12 kcal/mol for G2c, but ∼5 kcal/mol for G3c,
because both the collective variables and the endpoint im-
ages along the initial string (computed from equilibrated x-
ray structures) were the same for these simulations; only the
initial paths connecting the two endpoints were different (see
Table IV). The difference in paths, however, should have no
impact on the FE difference between end states, since free en-
ergy is a function of state.

Three potential causes for the discrepancy were consid-
ered: (I) integration error of the trapezoidal rule, (II) move-
ment of the endpoints during the string simulations that could
position them in different locations on the FE landscape, and
(III) inadequate sampling in the estimation of the FE gradient
∇G(θn).

To rule out (I), the MFEPs from S2 and S3 were in-
terpolated onto 128-image strings using linear interpolation,
and the FE was calculated from restrained MD simulations
for ∼15 ns, followed by trapezoidal rule integration, as be-
fore. Fig. 8(a) shows that the resulting profiles did not change
significantly. These simulations are denoted G2f and G3f in
Table IV and Figs. 8(a) and 8(b).

To rule out (II), we constructed four-replica strings be-
tween the corresponding endpoints of the MFEPs in S2 and
S3 using linear interpolation (the resulting path was accept-
able because the endpoints were very close, e.g., within ∼1
Å RMSD of one another). Restrained simulations were per-
formed for 20 ns, and the FE profiles was computed as before.
The FE difference between the endpoint images was found to
be ∼0.5 kcal/mol for each pair, which cannot account for the
7 kcal/mol difference in the FE change described above.

To test (III) efficiently, rather than running additional
simulations beyond the original 20 ns (which could require
much longer integration times), we combined restrained MD
simulations with Hamiltonian replica exchange (see Sec.
II D 1). The algorithm is a generalization of umbrella sam-
pling replica exchange,34 in which restraining potentials are
exchanged between neighboring windows, according to the
Metropolis criterion.

Twenty-nanosecond simulations with REX were per-
formed using 128-image strings, interpolated from the
MFEPs. These simulations are denoted G2fr and G3fr in
Table IV and Figs. 8(a) and 8(b). Trial moves for all repli-
cas were attempted simultaneously (i.e., 0 ↔ 1, 2 ↔ 3, . . .,
or 1 ↔ 2, 3 ↔ 4, . . ., by a random decision) once in every
100 MD iterations. The average acceptance probability pacc

was ∼70%, although the minimum pacc was ∼10%, corre-
sponding to the replica from MFEP S3 located at α 
 0.5 [see
Fig. 8(a)].

The results of the REX simulations shown in Fig. 8(a)
demonstrate that 7 kcal/mol discrepancy in the endpoint free
energy difference between simulations G2c/G2f and G3c/G3f
was caused by insufficient sampling in the evaluation of the
gradient ∇G(θn). The enhanced sampling of REX is most sig-
nificant for the replicas near α 
 0.5 of simulations G3. At
this location on the path, the free energy gradients computed
without REX are underestimated, lowering the free energy by
several kilocalories per mole, relative to the simulations with
REX. As noted above, α 
 0.5 is also the location of mini-
mum pacc values, which means that the MD replicas that cor-
respond to adjacent images near α 
 0.5 sample somewhat
different regions of space and probably have to overcome
greater energy barriers in order to exchange. This explanation
is consistent with the fact that the free energy profile in the
vicinity of α 
 0.5 has sharp variations. For simulation G2fr,
the minimum of pacc (∼15%) occurs near α 
 0.8, which is
also the location of a sharp free energy peak [Fig. 8(a)].

In addition to the 128-image REX simulations, 32-replica
REX simulations were performed. However, the acceptance
probabilities were very low in the vicinity of α 
 0.5 (MFEP
from S3) (<1%), and therefore we did not see substantial im-
provement in the FE profile over that from G2c (results not
shown).

As discussed in Sec. II B, since the free energy G(θ ) does
not correspond to the free energy as a function of the commit-
tor reaction coordinate, it is less informative than F(α) and
more difficult to interpret. While REX simulations G2fr/G3fr
were necessary to establish the accuracy of the thermody-
namic integration Eq. (21) for computing G(θ ), we decided
that the additional computational cost of performing a 128-
replica REX simulation for MFEP S1 was not justified, and
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FIG. 8. (a) Free energy of the collective variables (G) along the MFEPs (red ×........), G1c; (green ×........), G2c; (blue ×........), G3c; (green - - -), G2f;
(blue - - -), G3f; (green •—), G2fr; (blue •—), G3fr. (b) Comparison of the FE G for simulations G2f/G2fr/G2f10 and G3f/G3fr/G3f10 computed using
different methods (see text). (Green ––), G2fr; (blue ––), G3fr. Umbrella integration (corrected gradients with low force constants). (Green - - -), G2f10; (blue
- - -), G3f10. Simple trapezoidal integration (uncorrected gradients with high force constants). (Green − · −), G2fr; (Blue − · −), G3fr. Simple trapezoidal
integration (uncorrected gradients with low force constants).

this simulation was not performed. The corresponding free
energy profile in Fig. 8(a) is therefore less accurate than that
for the other simulations.

As described in Sec. II D 1, the errors in the estimation
of the gradients ∇G(θn) due to the use of a restraint instead
of a constraint in Eq. (20) are small if the force constants used
in the restraint potential are sufficiently large. On the other
hand, in order to use REX efficiently in the calculation of
FE gradients, the force constants have to be sufficiently low
to ensure high acceptance probabilities. To assess the accu-
racy of the FE profiles from simulations G2 and G3, shown
in Fig. 8(a), we corrected the gradients computed from the
128-image REX simulations using UI (Ref. 36) and repeated
the integration, as discussed in Sec. II D 1. In addition, we
increased all force constants by a factor of 10 and repeated
the 128-image simulations (REX was not used because of the
high constants), following by integration. These simulations
are denoted G2f10 and G3f10 in Table IV.

The resulting FE profiles are compared in Fig. 8(b). In the
profiles obtained by integrating the gradients computed from
the REX simulations directly (without using UI), the peaks
are underestimated almost by a factor of 2, compared to the
other two sets of profiles. This indicates that the force con-
stants used in the REX simulations (1.0 kcal/mol/Å2 for posi-
tion and distance CV to 10.0 kcal/mol/rad2 for dihedral angle
CV) are too low to obtain an accurate free energy profile. On
the other hand, if UI is used to correct the gradients obtained
from REX simulations, the resulting FE profiles agree well
with those computed directly from simulations that employ
the larger force constants. The good overall agreement also
suggests that the higher force constants are sufficiently large
to estimate the magnitude of the FE barriers. Unfortunately,
in this case, REX cannot be used efficiently, and the gradi-
ents are affected by sampling errors, as before (note e.g., the
∼7 kcal/mol endpoint FE difference between the plots corre-
sponding to the high force constants).

It is not surprising that the FE profiles computed directly
from simulations that use low force constants underestimate
the magnitude of the FE profiles. Equation (17), which is used
to approximate gradients of G(θ ), becomes exact (assuming
no sampling errors) for a “smoothed” free energy defined by,

G∗(θ ) = −β−1 ln
〈
C1e−βU (x,θ )

〉
= −β−1 ln[(e−βG ∗ N (0, (βk)−1))(θ)], (44)

in which U (x, θ ) is the potential defined in Eq. (16),
N (0, (βk)−1) is the multivariate Gaussian distribution cen-
tered at zero with variances (βki )−1 for i = 1, . . . , K , (∗) is
the convolution operation, and C1 is a normalization constant.
Equation (44) follows from the definition of G(θ ) in Eq. (3)
and the properties of the delta function. Thus, the use of the
estimate in Eq. (17) is equivalent to applying a Gaussian filter
to 〈δ(θ − θ̂ (x))〉(the probability density of θ ) and computing
the gradients of the smoother FE G∗(θ ). Using low force con-
stants implies that the variances of the Gaussian will be large,
which will lead to greater smoothing of the peaks and valleys
of the true FE G(θ). Note, also, that in the limit of zero ki ,
G∗(θ) is identically zero.

The preceding discussion demonstrates that obtaining ac-
curate profiles of the free energy as a function of the collective
variables can be laborious. In the present simulations we used
replica exchange to improve sampling, which required rein-
terpolation of the MFEP from 32 to 128 images to obtain high
exchange probabilities, quadrupling the computational cost.
Furthermore, because the use of REX requires lowering force
constants in the restraining potentials, an additional postpro-
cessing step is needed to compute corrected FE gradients
by UI.

The definition of G(θ ) given in Eq. (3) depends on the
collective variables chosen to describe the transition. Not sur-
prisingly, profiles of G(θ ) obtained using different CV sets but
the same initial paths (i.e., G1 vs G2) in Fig. 8(a) are quite
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FIG. 9. (a) Free energy of reaction (F). (b) MFPT to the milestone nearest to the PPS state. The symbols are as follows: (red •—), F1; (green •—), F2;
(green ◦ · · ·), corrected F2 (only for a); (blue •—), F3; see text and Table IV for a description of each simulation.

different, although the corresponding MFEPs represent the
same transition. We show in Subsection III D 4 that the differ-
ences between the different simulations can be accounted for
if one considers instead the free energy of the reaction coordi-
nate. We also discuss the correspondence between the struc-
tures along the MFEP shown in Fig. 7 and their free energy.

4. One-dimensional free energy profiles and
rates of transition

The free energy as a function of the committor reaction
coordinate [Eq. (8) in Sec. II B] was computed as described
in Sec. II D 2. After the string had converged to the corre-
sponding MFEP, the images θn were fixed, and unrestrained
MD simulations were performed concurrently for each cell to
estimate the rates of escape νm,n . Three simulations were car-
ried out, denoted for brevity as free energy simulations F1,
F2, and F3, in correspondence to the string simulations S1,
S2, and S3. The computational requirements of the free en-
ergy simulations were approximately the same as those for
the string calculations used to compute the MFEPs and con-
siderably less than those required to compute accurate profiles
of G using REX (see Table IV). Convergence of the free en-
ergy simulations was assessed by monitoring the total rate of
escape from all cells. This quantity reached a plateau after 5–
10 ns of MD simulation for simulations F1 and F3 and after
∼15 ns for simulation F2. The apparent reason for the longer
time to convergence, required for F2, is a fairly large number
of collisions between cells corresponding to nonadjacent im-
ages compared to simulations F1 and F3. This issue will be
discussed further below because it affects the accuracy of the
computed free energy profiles.

After the total rate of escape was stationary, MD integra-
tion was continued for 20 ns for simulations F1 and F3 and
for 25 ns for simulation F2. Statistics obtained from these tra-
jectory segments were used to compute the free energy and
the rate. The FE profiles computed from the entire 20–25 ns
trajectory segment were compared to those computed using
only the first half of the corresponding segment. The maxi-
mum difference was ∼0.4 kcal/mol.

Free energy profiles computed from simulations F1–F3
are shown in Fig. 9(a), and the MFPTs from the milestones
Bi ∩ Bi+1 (the “main” milestones, since they approximate
isocommittor surfaces, as described in Sec. II D 2) for i
= 1, 2, . . . , N − 2 to the (last) milestone BN−1 ∩ BN , are
shown in Fig. 9(b). The FE profiles for simulations F1 and F3
are in good agreement, even though the corresponding col-
lective variables sets have different type and size (see Tables
II and III). In particular, the FE barriers and the FE differ-
ence between the end states are in agreement to within ∼1
kcal/mol. The second FE peak appears to be in slightly dif-
ferent locations (α 
 0.71 for F1 and α 
 0.78 for F3). This
shift is due to the different parametrizations of the respective
MFEPs from S1 and S3. Both are parametrized by arc-length,
but the definition of the arc-length involves the collective vari-
ables, which are different in type. The actual atomic config-
urations that correspond to this FE peak are similar for the
two paths (compared in the supplementary materials19). The
profiles of the MFPT for transitions from the main milestones
to the last milestone along the paths computed in S1 and S3
are also in fair agreement. The profiles show that the MFPT to
the last milestone is approximately constant for the milestones
that correspond to α < 0.5, indicating that the main FE bar-
rier that occurs near α = 0.5 for both paths is the transition
“bottleneck.”

The FE profile from simulation F2, on the other hand, has
consistently higher energies than the profiles from F1 and F3.
Examining the rates of escape νn,m [from which the free en-
ergy is computed via Eqs. (37) and (34)], we observed that in
simulation F2, a large fraction (13%) of the total rate of es-
cape from all cells Bn involved pairs of cells that correspond
to nonadjacent images (for simulations F1 and F3, this frac-
tion was 0.3% and 0.7%, respectively). Most of the “flux” be-
tween nonadjacent cells involved a replica restricted to one of
the cells Bi for i = 14, . . . , 21 (93% of the cases), which cor-
respond approximately to α ∈ [0.45, 0.67] in Fig. 9, and no
replicas restricted to an endpoint cell (i = 0 or i = 31). Al-
though the presence of nonzero fluxes between nonadjacent
cells poses no concerns for the estimation of the probabilities



085103-18 Ovchinnikov, Karplus, and Vanden-Eijnden J. Chem. Phys. 134, 085103 (2011)

πn , it implies that the planar approximation to the isocommit-
tor surface in Eq. (5) is not accurate at certain points away
from the MFEP within the transition tube (see Appendix B).
The inadequacy of the approximation suggests a problem with
assumption (ii) in Sec. II B for simulation S2 (i.e., that the
transition tube through which most of the reactive trajectories
proceed is narrow).

It should be stressed that this finding does not invali-
date the use of CVS2 in general, because the quality of the
approximation of isocommittor surfaces by hyperplanes de-
pends not only on the collective variables but also on the
curvature of the MFEP and the local free energy landscape
(see Appendix B). The fact that the flux between nonadja-
cent cells in simulation F3 is only 0.3% of the total flux
suggests that the present problem does not arise for simula-
tion F3. An approximately corrected free energy profile can
be computed by setting the fluxes between nonadjacent cells
to zero. This (ad hoc) approach corresponds most closely
to discarding a portion of the reactive trajectories that are
sufficiently far from the MFEP that the hyperplane approx-
imation of the isocommittor surfaces is inaccurate. While
accounting for such trajectories properly would produce a
more accurate free energy profile, it is impossible to do this
without a higher-order approximation to the isocommittor
surface.

The corresponding FE profile [included in Fig. 9(a)]
shows a significant improvement in the free energy difference
between the endpoint states relative to simulations F1 and F3.
Since, as mentioned above, 93% of the flux between nonadja-
cent cells involves MD replicas in cells Bi for i = 14, . . . , 21,
and no MD replicas in the endpoint cells, the discarding of the
fluxes should affect to the greatest extent the values of the free
energy near the barrier (“middle” of the path) and to a lesser
extent the FE difference between the endpoints.

One possible reason for the higher FE barrier in sim-
ulation F2 relative to simulation F3 is that the FE profile
computed in F2 is less accurate due to the spurious transi-
tions between nonadjacent cells described above. In addition,
the higher barrier in F2 may be caused by differences in the
MFEPs. Recall that calculations S2 and S3 start from initial
paths 1 and 2, respectively (see Sec. III C), which specify op-
posite directions of rotation of the dihedral angles in the loop
L4. These dihedrals are explicitly present in the CV set used
in simulations S2/G2/F2 and S3/G3/F3 (CVS2), which means
that the MFEPs and the transition tubes associated with sim-
ulations F2 and F3 cannot intersect. Therefore, paths from F3
may simply be higher in free energy than those from F2. It
seems somewhat surprising that the free energy barriers com-
puted from the simulations F1 and F2 differ by 
3 kcal/mol
[Fig. 9(a)]. However, although the corresponding simulations
S1 and S2 were both initialized from zero-temperature path
1, some instantaneous MD configurations observed in simu-
lation F1 were found to be more consistent with path 2. This
observation suggests that simulation F1 represents a broader
ensemble of transition paths, since it contains configurations
that are similar to those from both paths 1 and 2. A broader
ensemble of paths is likely to result in a lower free energy bar-
rier. As a check of this conjecture, we estimated the width of
the transition tube from the free energy simulations (F1–F3)

by computing the average,

wn = 〈(θn − θ̂ (x))T M−1(θn)(θn − θ̂ (x))〉1/2
Bn

, (45)

for each cell Bn .
From the simulations F1, F2, and F3, respectively, we

found the values of wn for cells at α = 0.5 ± 0.1 to be ap-
proximately 2wave, 1wave, and 1.5wave, where wave is the av-
erage width of the transition tube (wn < 1wave at the endpoint
states). This is in accord with the suggestion that transition
tube associated with MFEP S2 is narrower than those for
MFEPs S1 and S3, explaining the higher free energy barrier
obtained in simulation F2. The quantity wn , however, is only
useful as a qualitative measure of the size of the ensemble of
transition paths. It is contaminated by large statistical errors
because of the high dimensionality of the CV space (177 and
51 for CVS1 and CVS2). In addition, if the shape of the tran-
sition tube is irregular, which is likely to be the case in many
dimensions, wn will not provide an accurate estimate for the
volume of the transition tube. We note, also, that that the low
apparent width of the transition tube in F2 may be caused by
spurious reflections of MD replicas due to collisions with non-
adjacent cells (see above).

Having computed profiles of the one-dimensional free
energy as a function of the committor, we briefly return to
the free energy as a function of the collective variables (G).
Although computing G accurately requires great care (see
Sec. III D 3), the significance of this free energy for the
present simulation system appears to be limited, because
G cannot be related simply to the reaction free energy F .
Indeed, although the MFEP lies approximately in the center
of the corresponding transition tube, it does not, by itself,
contain information on how the volume of this transition
tube varies along the path (see Appendix B). From the above
estimates of the width of the transition tubes for simulations
F1–F3, we can conclude that the transition tube is generally
larger at intermediate states along the path compared to the
endpoint states. This indicates that the entropic contribution
to the reaction FE neglected in G due to the “freezing” of
the K collective variables is nonuniform along the MFEP.
Consistent with this interpretation, a comparison of Figs. 8(b)
and 9(a) shows a dramatic reduction in the free energy values
at intermediate locations along the free energy profiles, going
from G to F . Higher entropic contributions to the FE at inter-
mediate values of the reaction would imply that, in Cartesian
space, more configurations are required to characterize these
intermediate states.

The curve in Fig. 10 shows the RMSD computed between
the structures in each cell Bn and the initial structure (a corre-
sponding replica on the MFEP) for simulation F3. The RMSD
is generally higher for intermediate cells than for the endpoint
cells, and the highest value occurs at the location of the FE
barrier [α 
 0.5 in Fig. 9(a)]. Surrounding the RMSD curve,
we show overlays of four configurations taken from simula-
tion F3 that correspond to α = 0, 0.5, 0.8, and 1.0. The in-
termediate values of α correspond to the two FE peaks in Fig.
9(a) and also to the snapshots I15 and I25 on the MFEP shown
in Fig. 7. The larger differences between the overlaid confor-
mations are evident for α = 0.5 and 0.8, than for α = 0 and
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FIG. 10. The curve corresponds to the RMSD computed between the structures in each cell Bn and the initial structure in each cell for simulation F3. The
structures correspond to instantaneous MD configurations from simulation F2 in Table IV constrained to cells B0, B15, B25, and B31.

1.0, consistent with the RMSD plot, and suggest that transi-
tions occur via many paths.

Despite the differences in the magnitudes of G and F ,
a qualitative comparison of Figs. 8(b) and 9(a) suggests that
profiles of G and F are correlated, so that based on G, one
can identify correctly not only the relative stability of the end-
point states but also configurations along the MFEPs that cor-
respond to high-energy and metastable states. However, if one
aims to compute a one-dimensional free energy profile (versus
a parametric curve on a multidimensional landscape) and rates
of transition, in addition to the calculation of the MFEP(s),
separate free energy simulations are required.

5. Estimates of energy and entropy of transition

To estimate the energetic and entropic contributions to
the free energy profiles in Fig. 9(a), we computed the average
potential energy in each cell Bn from the trajectories in F1–
F3. The corresponding energy profiles are shown in Fig. 11.
The standard deviation of the energies in each cell was ∼27
kcal/mol, and the standard deviation of the averages shown in
the figure is about 9 kcal/mol (based on computing nine block
averages ∼2 ns in length). Because of the large error bars,
the relative contributions of the energy and entropy discussed
herein should be considered qualitative.

We note that that the endpoints have approximately equal
energies, which indicates that the FE difference between the
R and PPS conformers of the converter (∼8 kcal/mol) is of
entropic origin. As a rough check of this conclusion, we esti-
mated the configurational entropy of the R and PPS conform-
ers from quasiharmonic analysis of 60 ns unbiased MD sim-
ulations of the two conformers. Using the harmonic oscillator
formula in Ref. 65, the value for −T 	S for the PPS state was
∼17 kcal/mol higher than that for the R state, qualitatively
consistent with the main results.

A second observation from Figs. 11 and 9(a) is that for
intermediate values of the progress variable α, the entropic
contribution to the FE is similar in magnitude to the energetic

contribution (∼10 kcal/mol). This finding is qualitatively con-
sistent with the larger widths of the transition tube in the
vicinity of α 
 0.5 than at the endpoints, as discussed in Sub-
section III D 4, and the somewhat broader conformational en-
sembles found for MD trajectories restricted to intermediate
cells Bn (Fig. 10). This result underscores the important point
that a single path connecting two states separated by a bar-
rier is unlikely to provide a full description of the transition.
However, this does not impact the utility of the MFEP as an
“average” path, i.e., located in the center of a transition tube
that may itself be quite wide.

IV. DISCUSSION OF METHODOLOGY

In the study of the prepowerstroke ↔ rigor transition of
the converter domain of myosin VI, several challenges were
addressed that are likely to arise in the application of the string
method to other complex biomolecular systems. The choice of
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FIG. 11. Average potential energy of the tessellations Bn ; (red •—), F1;
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CVs to describe the transition under study is far from obvious.
In the present approach, we first found a set of atoms, such
that applying forces to just these atoms in a targeting simula-
tion (RTMD) drives either conformation toward the other. To
be confident that the final RTMD simulation structure was in a
local minimum corresponding to the target, the structure was
“relaxed” by gradually removing the restraints and allowing
it to equilibrate without external forces; the relaxed structure
was within 1.6 Å (heavy-atom RMSD) of the target. Using
this atomic set, we constructed two sets of CV. The first CV
set is comprised of just the positions of the atoms, expressed
in an internal frame of reference. In the second set, the num-
ber of CV is reduced by a factor of 3 compared to the first set.
Since any CV set that can be used to parametrize the com-
mittor function with reasonable accuracy should represent the
behavior of the system equally well (and, in particular, lead to
the same free energy profiles and rates), using the two differ-
ent CV sets allows us to “cross-validate” the results. The fact
that we have obtained similar paths and reaction free energies
for the transition in the MVI converter indicates the robust-
ness of the present approach.

To use the string method, one must have initial values
for the CV as well as complete coordinates for the corre-
sponding MD replicas. Starting with a linear interpolant in
Cartesian coordinates between the two structures, a minimum
energy path was obtained with the zero-temperature string
method. Although linear interpolation produces distorted in-
termediate structures, subsequent energy minimizations re-
store equilibrium bond lengths and angles, and alleviate bad
contacts. We note that other interpolation algorithms can be
used for zero-temperature path generation, such as the chain-
of-states method,66 the nudged elastic band method67 and
conjugate peak refinement.68 The main advantage of the zero-
temperature string over these methods is that it can be used
“out-of-the-box” with many solvation models in CHARMM,
including FACTS. Although initial conditions to the string
methods can also be generated from targeted molecular dy-
namics simulations with constraints57, 58 or restraints22 (as
well as TMD enhanced with Monte-Carlo sampling in trajec-
tory space69), we did not employ such methods. Since TMD
simulation structures in general are not in equilibrium (i.e.,
far from an MFEP), the direction in which TMD is performed
can introduce directional bias into the transition path (this was
also found for the symmetric TMD of Ref. 22). In contrast, in
(symmetric) interpolation methods, endpoint structures con-
tribute equally.

Two types of free energies were used in this study [see
Eqs. (3) and (8)]. G is the free energy as a function of the
collective variables along the MFEP, and F is the free en-
ergy of reaction as a function of the committor function q
(plotted versus the parameter α). Thus, the free energy G is a
K -dimensional function, with K equal to the number of col-
lective variables, whereas F is one-dimensional. The profiles
of G computed in this study are evaluated only along the cor-
responding MFEP and have no information about the free en-
ergy values for points not on the MFEP (other than that they
are higher in free energy locally near the MFEP). In contrast
to G, the reaction free energy F maps the entire transition
tube onto a single curve. In the special case that the transition

tube is extremely narrow or has uniform cross-sectional vol-
ume along the path, G 
 F . If the volume of the tube cross
section is variable (which is true for the present system), G
does not provide an accurate measure of the free energy of the
reaction. A qualitative comparison of the profiles of G and F
[Figs. 8(b) and 9(a)] suggests that G can be used to identify
high-energy states and metastable intermediates.

The function F can be calculated by taking a Boltzmann
average of G along all reactive trajectories that pass through
the transition tube with the same value of the committor
function q(α). This approach is equivalent to the Boltzmann-
weighted integration of G over the isocommittor surfaces. To
perform this integration, we make use of assumption (ii) in
Sec. II B and approximate the isocommittor surfaces by hy-
perplanes of θ (x) that are perpendicular to the MFEP (scaled
by M−1). The free energy F is computed by tessellating the
configurational space into cells with boundaries that coincide
locally with the hyperplanes. MD is then used to estimate the
rate of escape from each cell by recording the number of col-
lisions between the cell boundaries.

If assumption (ii) is satisfied, then the hyperplane approx-
imation to the isocommittor surface is accurate, and only col-
lisions between adjacent cells will be observed. Conversely, a
significant number of collisions between nonadjacent cells in-
dicates a failure of assumption (ii). In this case, F defined by
Eq. (8) will not be an accurate approximation of the true free
energy of the reaction coordinate (i.e., FE of the committor).

In one of the free energy simulations performed, 13% of
all collisions were between nonadjacent cells (in the other
two cases, this number was less than 1%), and the endpoint
free energy difference computed from this simulation differed
from the other two. In a corrected free energy profile, which
was calculated by setting the fluxes between nonadjacent cells
to zero, the free energy difference was in agreement with the
other two profiles.

The preceding discussion suggests that optimal sets of
CV for studying transitions are those which correspond to rel-
atively narrow transition tubes. It is likely that the construc-
tions of appropriate CV will require specific analysis of each
transition.

Although the use of the FACTS model to represent the
effects of solvation is unrelated to the string method per se, it
was essential for the present calculations. A simulation with
explicit water molecules would increase the size of the system
to approximately 17 000 atoms, compared to 1442 atoms re-
quired with FACTS. The calculation of additional MD forces
arising from FACTS was found to slow down the overall
speed of the calculation by a factor of 2. Therefore, the com-
putational cost of performing MD simulations with explicit
solvation would be roughly six times greater.

Reaction rate calculations with implicit solvent models
require inclusion of realistic solvent friction. To improve con-
formational sampling, in the present study we used a simple
Langevin friction model with a very low value (1 ps−1) for the
friction coefficient (see Sec. III D 1). This choice of friction
kernel will most likely lead to an overestimation of the rate.
An approximate magnitude of the error can be obtained by
considering a friction model based on hydrodynamic interac-
tions. Models in which atoms or atom groups are treated as
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point particles interacting via the Oseen or the Rotne–Prager
tensors70, 71 have led to good agreement between the com-
puted and experimentally determined translational and rota-
tional diffusion tensors72 [provided that a hydration shell of
thickness 1.1–1.5 Å (Refs. 72 and 73) is modeled around
the protein]. Such a model could be incorporated into the
present calculations via, e.g., the Langevin equation74 using
a parametrization of the friction constants based on Stokes’
law and an accessible surface area model.75, 76 Venable and
Pastor76 found that if the friction coefficient in their hydro-
dynamic model is reduced by a factor of 10, the computed
diffusional and rotational tensors increase by factors of 
6
and 
15, respectively. Reference 76 recommends using mass-
scaled friction constants of 
50 ps−1 compared to 1 ps−1 used
in the present study. These considerations suggest that with a
realistic solvent friction model the rate of transition would be
slowed by an order of magnitude. Another concern with sol-
vation models is the long-time stability of the protein struc-
ture. In the present calculations, the two endpoint structures
were stable for around 100 ns of simulation (including equili-
bration and string calculations). FACTS was thus an excellent
choice for the myosin VI converter domain, but this may not
be true for all systems.

V. CONCLUDING DISCUSSION

The present results demonstrate the utility of the string
method in computing transition paths, free energy profiles and
rates of transition in complex biomolecular systems. In par-
ticular, the prepowerstroke ↔ rigor transition of myosin VI
considered here is complicated in that it involves rearrange-
ments of residue side chains, large motions of alpha helices,
and changes in the backbone structure of a flexible loop (see
Sec. III D 1 and Fig. 7). The presence of diffusive motion
along the transition path is evident in the behavior of unbiased
trajectories launched from the transition state found in one of
the simulations: the evolution of the system projected onto the
reaction coordinate is slow, with frequent reversals of the di-
rection of motion (see Appendix C). Such behavior makes it
difficult to use transition path sampling,1, 2 because the trajec-
tories would require very long integration times to reach the
endpoint structures. Since the reaction coordinate for transi-
tions in complex biomolecular systems is usually unknown,
the ability of the string method to use a fairly large number
of collective variables in the approximation of the reaction
coordinate (defined here as the committor function) is an es-
sential aspect of the method. In contrast, other methods based
on collective variables, such as metadynamics6 or adaptive
biasing force,8 require their number to be rather small. Thus,
the string method, although not trivial to use (see Sec. II), ap-
pears to be well-suited for obtaining transition paths and free
energies in complex biomolecular systems.

The present study of the prepowerstroke ↔ rigor transi-
tion of the myosin VI converter is an important step toward the
understanding of the powerstroke.11–13 The mean first passage
times of the transition computed from the simulations [10−3

–10−2 s; see Fig. 9(b)] are consistent with an experimental
study that find the rate-limiting step of the powerstroke transi-
tion in myosin VI to be ≤ 90 s−1.77 (However, as mentioned

at the end of Sec. II D 3, the rate calculation does not take
into account the implicit solvent approximation, and probably
overestimates the rate by an order of magnitude.) The com-
puted free energy profiles reveal the structures that have the
highest free energies along the transition paths and that cor-
respond to the transition states, as shown by an analysis of
unbiased trajectories (see Appendix C). The predicted struc-
tures can be tested by experimental mutagenesis studies, e.g.,
by mutating residues Y718, F766, or M770 (see Fig. 7). In
addition, the simulations predict the existence of a metastable
state along the transition path at α 
 0.65 [see Fig. 9(a)],
which suggests that the lever arm of myosin VI may occupy a
position that is intermediate between the rigor and prepower-
stroke states, and could help to explain the variable step size
observed for myosin VI dimers.78, 79 Finally, we find that the
prepowerstroke converter conformation is higher in free en-
ergy than the rigor conformation by 
8 kcal/mol. This re-
sult should be viewed with caution, however, because only
the converter domain was simulated in the present study; the
rest of the myosin VI molecule that was excluded from the
simulations to decrease computational cost may preferentially
stabilize one conformation of the converter. Calculations that
treat the entire myosin VI head are in progress to examine this
question.
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APPENDIX A: DERIVATIVES OF THE POSITION CV

Let A = [v1, v2, v3] and let o = [o1, o2, o3] denote the
origin of the coordinate frame A (o is the COM of the atom
group that defines the frame). Let p∗ denote the absolute co-
ordinates of a point P . In the frame of A, the coordinates of P
are p = AT (p∗ − o), and we have used the orthogonality of
A. Differentiating this expression with respect to an absolute
atomic coordinate, r∗

i , we obtain

∂p

∂r∗
i

= ∂ AT

∂r∗
i

(
p∗ − o

) + AT

(
∂ p∗

∂r∗
i

− ∂o

∂r∗
i

)
. (A1)

The only nontrivial derivative in Eq. (A1) is ∂ AT /∂r∗
i . Since

A depends on r∗
i through Ci, j , i.e., A

(
r∗

i

) = A
(
Ci, j

(
r∗

i

))
, we

first compute the derivative of A with respect to the com-
ponents of Ci, j . Let v be an eigenvector and λ the corre-
sponding eigenvalue. Differentiating the eigenvalue relation
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(Ci, j − δi jλ)v j = 0 with respect to C p,q , we have

δi pδ jqv j − ∂λ

∂C p,q
vi + (Ci, j − δi jλ)

∂v j

∂C p,q
= 0, (A2)

where vi is the ith component of v . Multiplying Eq. (A2) by
vi and applying the eigenvalue relation yields

δi pδ jqvi v j − ∂λ

∂C p,q
vi vi + vi (Ci, j − δi jλ)

∂v j

∂C p,q
= 0,

(A3)

v pvq − ∂λ

∂C p,q
= 0, (A4)

∂λ

∂C p,q
= v pvq , (A5)

where we have assumed that the eigenvectors v i have been
normalized to unity and summed on i and j . Inserting Eq.
(A5) into Eq. (A3) and rearranging, we obtain a following
matrix equation that involves the eigenvector derivative:

(Ci, j − δi jλ)
∂v j

∂C p,q
= vq (v pvi − δi p). (A6)

Equation (A6) cannot be solved because Ci, j − δi jλ is singu-
lar. The singularity can be removed by augmenting Eq. (A6)
with the relation

1

2

∂(v · v)

∂C p,q
= v j

∂v j

∂C p,q
= 0, (A7)

which expresses the fact that the norm of the eigenvector v
is constant (which we set to unity). Equations (A6) and (A7)
can now be inverted to yield ∂v j/∂C p,q . The procedure is car-
ried out for each eigenvalue/eigenvector pair. The derivative
∂Ci, j/∂r∗

qk (where r∗
qk is the k-component of the absolute po-

sition of atom q) is computed by differentiating Eq. (42) (with
r replaced by r∗),

∂Ci, j

∂r∗
qk

= mq
((

r∗
q j − r̂∗

q j
)
δik + (

r∗
qi − r̂∗

qi
)
δ jk

)
. (A8)

The derivative ∂ AT
i, j/∂r∗

k can now be computed as

∂ AT
i, j

∂r∗
k

= ∂ A j,i

∂r∗
k

=
3∑

p=1

3∑
q=1

∂v j i

∂C p,q

∂C p,q

∂r∗
k

, (A9)

where v j i is the i th component of v j .
We note that position CVs expressed in a local moving

frame are somewhat more costly to calculate than those in an
absolute frame, since the tensor Ci, j must be diagonalized at
every MD iteration, and computing eigenvector derivatives re-
quires that Eqs. (A6) and (A7) to be solved six times for each
eigenvector (only six inversions are necessary because of the
symmetry in Ci, j ). Furthermore, each derivative in Eq. (A1)
requires two matrix multiplications. To increase the speed of
matrix diagonalization, a special-purpose routine for 3 × 3
symmetric positive semidefinite matrices was implemented
in CHARMM, in which the cubic characteristic polynomial is
solved using Cardano’s formula, and the eigenvectors are de-
termined using Cramer’s rule. In addition, the 3 × 3 matrix

multiplications were programmed in-line to avoid function
calls.

Since, for a right-handed coordinate frame, one can invert
any two coordinate vectors simultaneously to generate an-
other right-handed coordinate frame, an additional constraint
on the eigenvectors is needed to guarantee a unique solution
for the coordinate frame. (There are four ways to define a
right-handed frame using three orthonormal vectors.) Given
the coordinate frame computed at the previous timestep,[
vprev

1 , vprev
2 , vprev

3

]
, the new coordinate frame [v1, v2, v3] is

chosen from the four possible right-handed frames such that
the scalar product

vprev
1 · v1 + vprev

2 · v2 + vprev
3 · v3, (A10)

is maximal. This criterion ensures that the frame vectors
evolve continuously during the simulation. The coordinate
frame at the first step of the simulation is chosen randomly
from the four possible definitions. To compute the coordinate
frame vectors consistently for the images along the string, a
similar criterion is used. Given two adjacent images, i and
i+1, and a best-fit rotation matrix A that aligns the atoms
(those used to define the frame) of image i+1 with those of
image i in the sense of minimal RMSD, the coordinate frame
chosen for the image i+1 is that which maximizes the product

Av i+1
1 · v i

1 + Av i+1
2 · v i

2 + Av i+1
3 · v i

3. (A11)

The constraint in Eq. (A11) is enforced explicitly at the begin-
ning of a string simulation, and is guaranteed to hold at each
step of the simulation in view of the constraint in Eq. (A10).

APPENDIX B: A DISCUSSION OF FLUXES BETWEEN
NON-ADJACENT CELLS

A tessellation of a hypothetical two-dimensional space
of collective variables shown in Fig. 12 can be used to
understand the implication of fluxes between nonadjacent

FIG. 12. A tessellation of a two-dimensional space of collective variables
based on a hypothetical MFEP discretized into 20 images. The cells Bn are
drawn in thin solid lines. Two putative transition tubes are shown with bound-
aries drawn in thick solid and dotted lines (the upper dotted line coincides
with the solid line). The area inside the first transition tube (solid lines) is
shaded in gray. The numbers correspond to the images and to the associated
cells Bn .
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images. In the ideal case, trajectories initiated from the points
the MFEP will stay within the transition tube bounded by the
two thick black lines. Then, for any internal image point i ,
only the fluxes Bi ↔ Bi−1 and Bi ↔ Bi+1 are possible (these
are fluxes between adjacent cells). If, on the other hand, the
ensemble of trajectories is bounded by the dotted line, trajec-
tories launched inside cells Bi for i=2,3,4,6,7,8,9,10 will col-
lide with boundaries that correspond to nonadjacent cells. For
example, trajectories in B9 and B10 will collide with the cell
B1. In this case, some hyperplanes Bi ∩ Bi+1 provide poor
approximations to the corresponding isocommittor surfaces in
regions through which reactive trajectories pass with a signifi-
cant probability. Indeed, if all of the hyperplanes coincide pre-
cisely with isocommittor surfaces, then it will be impossible
for any trajectory restricted to a cell Bi to cross into any cell
other than Bi±1, since this would imply that two isosurfaces
that correspond to different values of the committor function
must intersect.

The effect of the curvature of the MFEP on the occur-
rence of fluxes between nonadjacent cells can be understood
by referring to Fig. 12. For replicas 10–16, the path is approx-
imately straight, i.e., the curvature is low, and the boundaries
of adjacent cells Bn are approximately parallel. The figure
suggests that the widest transition tube that is located inside
Bi for i = 10, . . . , 16 and that does not include boundaries
between nonadjacent cells is much larger than the one shaded
in gray. For replicas 2–7, however, the path is curved, and
even a slightly larger transition tube contains boundaries be-
tween no-adjacent cells (e.g., B4 and B6).

The curvature of the MFEPs computed in this study was
approximated using the formula

C (n) = |θn+1 − 2θn + θn−1|
|θn+1 − θn|2 , n = 1, . . . , N − 1,

(B1)

which uses a second-order finite-difference approximation of
second derivatives of the MFEPs and where explicit depen-
dence on time t has been omitted.

For the values given below, C(n) was averaged over the
duration of the simulations S2 and S3. In the vicinity of α

= 0.5, (n 
 15), C 
 1.5 for MFEP S2, and C 
 1.1 for
MFEP S3; at the endpoints (n = 1 and n = 30), C 
 1 for both
MFEPs. This difference may explain why the flux between
nonadjacent cells in simulation F2 is significantly larger than
that in simulation F3. We also computed the curvature for the
MFEP from simulation S1. We found that C(n) 
 1.1 at the
endpoints of the path and C(n) 
1.3 for intermediate values
of n. However, the curvature from MFEP S1 should not be
compared directly to that from MFEP S2 (or MFEP S3) be-
cause the CVs are different (see Tables II and III).

APPENDIX C: ANALYSIS OF THE TRANSITION STATE
IN F3 USING UNBIASED TRAJECTORIES

Whether a given region (or surface) of configurational
space corresponds to a transition state is typically tested by
commitment analysis, which involves launching trajectories
from configurations sampled from the region and checking

FIG. 13. Percent histogram of the indices of the cells Bn computed for the
final structures of the unbiased trajectories launched from configurations in
the cell B15 (filled in black color) of simulation F3.

whether the trajectories reach the endpoint structures with
equal probability.

Because the full committor test was computationally
infeasible for the present system due to the long integra-
tion times involved (see below), the following (less demand-
ing) test was performed. Twenty-five instantaneous structures
were chosen randomly from the MD trajectory from simula-
tion F3 confined to cell B15 (α 
 0.5). For each structure, 40
sets of momenta were generated according to the Maxwell–
Boltzmann distribution using different random seeds, and
25 × 40 = 1000 4-ns trajectories were generated by regular
MD at 300 K (with the same thermostat parameters as used
for the main calculations). For the final structure in each tra-
jectory, the corresponding cell Bn was determined by using
the criterion in Eq. (29). The set of final cell indices is shown
in a histogram in Fig. 13. We find that none of the trajectories
reach the reactants or the products in the allotted simulation
time. In addition, most of the trajectories do not travel far, ter-
minating in the cells B14, B15, and B16. In particular, 20% of
the trajectories remain in the initial cell (B15), suggesting that
long integration times would be needed for these trajectories
to commit to an endstate. We also find that 41% and 59% of
the trajectories that escape from B15 terminate on the reactant
side (Bn for n < 15) and the product side (Bn for n > 15), re-
spectively. Since the committor values are known to change
rapidly in the vicinity of a transition state,29 the 41%/59% ra-
tio should be considered satisfactory.

In Fig. 14 we show the time series of the index of the
cells Bn computed for three unbiased trajectories. The two se-
ries shown in blue and green were chosen randomly from the
entire sample of the trajectories; as expected from Fig. 13, the
corresponding trajectories terminate near the starting cell in
cells B16 and B17. The time series drawn in red correspond to
a rare trajectory chosen such that it terminates in cell B6 (see
Fig. 13). The figure shows that the evolution of the trajecto-
ries is rather slow, with frequent reversals of the direction of
motion, consistent with diffusive behavior.
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FIG. 14. Time series of the cell index for three unbiased trajectories launched
from configurations in the cell B15 (see text).

APPENDIX D: FREE ENERGY PROFILES COMPUTED
BY KRIVOV AND KARPLUS

In this appendix, we describe the difference between
the one-dimensional free energy profiles computed in the
present study and those computed by Krivov and Karplus
in Sec. 2.4 of Ref. 27. Krivov and Karplus construct an
MSM from long MD simulation trajectories, with the sys-
tem states characterized by trajectory clustering, and the
rates of transitions between the states computed directly
from the trajectory. The values of the committor function
are evaluated directly from the MSM, and the partition func-
tion Z (q∗ − 	 < q(x, p) < q∗ + 	) of a region that cor-
responds to a particular value q∗ of the committor func-
tion is proportional to the number of transitions across the
q(x, p) = q∗ surface, computed using the minimum-cut80

and the balanced-cut algorithms.27 The difference from the
present definition of the free energy profile is that the free en-
ergy is plotted as a function of the progress coordinate r (q∗)
= Z (q(x, p) < q∗) /Z (q(x, p) ≤ 1). The use of r (q∗) en-
sures that the computed free energy profile is invariant with
respect to arbitrary invertible transformations of r (q∗).27, 28

The two types of free energy profiles are related simply by
a transformation of the abscissa; r (q∗) can be computed from
the present results using Eqs. (6)–(8).
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