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Purpose: In comparison with conventional filtered backprojection �FBP� algorithms for x-ray com-
puted tomography �CT� image reconstruction, statistical algorithms directly incorporate the random
nature of the data and do not assume CT data are linear, noiseless functions of the attenuation line
integral. Thus, it has been hypothesized that statistical image reconstruction may support a more
favorable tradeoff than FBP between image noise and spatial resolution in dose-limited applica-
tions. The purpose of this study is to evaluate the noise-resolution tradeoff for the alternating
minimization �AM� algorithm regularized using a nonquadratic penalty function.
Methods: Idealized monoenergetic CT projection data with Poisson noise were simulated for two
phantoms with inserts of varying contrast �7%–238%� and distance from the field-of-view �FOV�
center �2–6.5 cm�. Images were reconstructed for the simulated projection data by the FBP algo-
rithm and two penalty function parameter values of the penalized AM algorithm. Each algorithm
was run with a range of smoothing strengths to allow quantification of the noise-resolution tradeoff
curve. Image noise is quantified as the standard deviation in the water background around each
contrast insert. Modulation transfer functions �MTFs� were calculated from six-parameter model fits
to oversampled edge-spread functions defined by the circular contrast-insert edges as a metric of
local resolution. The integral of the MTF up to 0.5 lp/mm was adopted as a single-parameter
measure of local spatial resolution.
Results: The penalized AM algorithm noise-resolution tradeoff curve was always more favorable
than that of the FBP algorithm. While resolution and noise are found to vary as a function of
distance from the FOV center differently for the two algorithms, the ratio of noises when matching
the resolution metric is relatively uniform over the image. The ratio of AM-to-FBP image variances,
a predictor of dose-reduction potential, was strongly dependent on the shape of the AM’s nonqua-
dratic penalty function and was also strongly influenced by the contrast of the insert for which
resolution is quantified. Dose-reduction potential, reported here as the fraction �%� of FBP dose
necessary for AM to reconstruct an image with comparable noise and resolution, for one penalty
parameter value of the AM algorithm was found to vary from 70% to 50% for low-contrast and
high-contrast structures, respectively, and from 70% to 10% for the second AM penalty parameter
value. However, the second penalty, AM-700, was found to suffer from poor low-contrast resolution
when matching the high-contrast resolution metric with FBP.
Conclusions: The results of this simulation study imply that penalized AM has the potential to
reconstruct images with similar noise and resolution using a fraction �10%–70%� of the FBP dose.
However, this dose-reduction potential depends strongly on the AM penalty parameter and the
contrast magnitude of the structures of interest. In addition, the authors’ results imply that the
advantage of AM can be maximized by optimizing the nonquadratic penalty function to the specific
imaging task of interest. Future work will extend the methods used here to quantify noise and
resolution in images reconstructed from real CT data. © 2011 American Association of Physicists
in Medicine. �DOI: 10.1118/1.3549757�
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I. INTRODUCTION

Conventional filtered backprojection �FBP� algorithms1 pro-
vide an exact solution to the inverse problem of computed
tomography �CT� under the assumption that a complete set
of noiseless transmission measurements are available, which
are linear functions of the attenuation line integral through
the patient. However, phenomena such as measurement
noise,2 scatter,3,4 beam-hardening,5 and high-contrast edge
effects6 lead to data nonlinearity and artifacts such as streak-
ing and cupping in the reconstructed image. The classic
expectation-maximization algorithm of Lange and Carson7

was formed around the statistical nature of x-ray CT data and
provided the foundation for a class of statistically motivated
algorithms that can directly incorporate many of these non-
linear signal-formation processes into their data models. The
reader is referred to Fessler’s8 overview of statistical image
reconstruction �SIR� algorithm methodology. The promise of
better image quality via a more realistic modeling of the
underlying CT physics has motivated many investigations of
statistical algorithms, despite the extensive computational re-
sources they demand.

It seems intuitive that SIR algorithms that explicitly
model CT-signal statistics would be able to reconstruct im-
ages with less noise than FBP from the same noisy projection
data set. However, it is known that the image most likely to
match the measured data suffers from excessive image
noise.9,10 A widely used approach to suppress image noise in
statistically based reconstruction algorithms is to modify the
objective function to incorporate some a priori assumptions
about the scan subject, e.g., the local neighborhood penalty
function investigated by this study that enforces the assump-
tion of image smoothness. As with any noise-reduction
method, there is an associated cost. In CT image reconstruc-
tion, one of the most tangible costs of noise reduction is loss
of spatial resolution. The degradation of spatial resolution
associated with noise reduction constitutes what we will re-
fer to as the noise-resolution tradeoff.

An algorithm with a better noise-resolution tradeoff
would have an advantage in a number of clinical situations.
Better noise-resolution tradeoff means that an algorithm can
reconstruct images from the same data with either less image
noise for similar resolution or better image resolution for
similar image noise. By extension, an algorithm that pro-
vides a noise-resolution tradeoff advantage could provide
images of comparable image quality, in terms of both noise
and resolution, from data with more noise, i.e., data acquired
with lower imaging dose, an important area of concern in
diagnostic radiology.11 Pediatric imaging and lung cancer
screening are relevant clinical scenarios where improved re-
construction techniques for low dose CT would be clinically
valuable.

SIR algorithms could also find use in quantitative CT ap-
plications. The very specific application of estimating the
photon cross-sections from dual-energy measurements has
been shown to be extremely sensitive to the accuracy of the
measured CT values.12 Cupping and streaking artifacts from

data nonlinearities such as beam-hardening and scatter rep-
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resent systematic shifts in CT image intensity. The focus of
this work is to assess the suppression of random errors, i.e.,
image noise. Measurement noise can be reduced by averag-
ing over a large number of pixels within a homogeneous
region but at the expense of reduced spatial resolution. This
may, in turn, introduce large systematic dose-calculation er-
rors in low energy photon-emitting treatment modalities that
exhibit large dose gradients, such as brachytherapy. An algo-
rithm that can provide superior noise-resolution tradeoff may
prove useful in such quantitative CT applications where both
low noise and high resolution are important.

In this work, we assess the noise-resolution tradeoff, in
comparison with FBP, for the alternating minimization �AM�
algorithm,13 which provides for an exact update solution to
the objective function. A nonquadratic penalty function is
used to regularize the AM algorithm and to tradeoff noise
and resolution. Previous investigators have assessed the
noise-resolution tradeoff to evaluate SIR algorithms using
parabolic surrogates to model the Poisson log-likelihood,14,15

adaptive statistical sinogram smoothing techniques,14 and it-
erative reconstruction algorithms for cone-beam CT imaging
geometries.16,17 In contrast with these previous studies that
have quantified resolution only for high-contrast structures,
our study investigates the impact of structure contrast on the
reported noise-resolution tradeoff. An ideal monoenergetic
simulation environment is used to avoid artifacts arising
from data nonlinearity, such as scattered radiation and beam-
hardening, the goal being to isolate the smoothing effects of
the two algorithms. In this way, we form a baseline of noise-
resolution tradeoff performance for the FBP and alternating
minimization algorithms for ideal Poisson-counting projec-
tion data. Future work will extend the methods for the quan-
tification of noise and resolution in this paper to images re-
constructed from real CT data.

II. MATERIALS AND METHODS

II.A. CT image reconstruction

II.A.1. Penalized AM reconstruction

The penalized monoenergetic version of the alternating
minimization algorithm is used to reconstruct the synthetic
projection data. The AM algorithm reformulates the classic
maximization of the Poisson log-likelihood as an alternating
minimization of Csiszar’s18 I-divergence between the mea-
sured data d and the expected data means g

I�d � g� = �
y�Y

�d�y�ln
d�y�

g�y:���
− d�y� + g�y:���� , �1�

where �� is the current image estimate. The I-divergence is
the negative of the log-likelihood, meaning that minimiza-
tion of the I-divergence is identical to the maximization of
the log-likelihood. For full details of the alternating minimi-
zation algorithm, the reader is referred to O’Sullivan’s 2007
paper.13 A log-cosh penalty term is included in the AM algo-
rithm’s objective function to enforce our a priori assumption

of image smoothness
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����� = I�d � g� + � · R���� , �2�

where � controls the relative weight of the penalty function.
The roughness penalty computes a penalty for a pixel x as a
function of the pixel intensities in the local neighborhood
N�x�. The penalty chosen for this study is defined as

R���� = �
x

�
x��N�x�

w�x��

· �1

�
�log�cosh������x� − ���x����� . �3�

The neighboring pixels are weighted as 1.0 for directly ad-
jacent pixels and 0 for all other pixels

w�x�� = 	1; directly adjacent

0; all others

 . �4�

Purely quadratic penalty functions effectively suppress noise,
but tend to blur high-contrast edges as the penalty grows
quickly for large pixel intensity differences. The continu-
ously defined edge-preserving log-cosh function19 is similar
to a Huber penalty,20 which is quadratic for small pixel-to-
pixel variations, so as to suppress noise, and linear for larger
variations, so as to preserve edge boundaries. The parameter
� controls the pixel intensity difference for which the penalty
transitions from quadratic to linear growth. Increasing �
causes the transition to linear growth to occur at smaller
intensity differences. Two different values of � are investi-
gated to study the effect on image noise and resolution. We
let AM-100 denote images reconstructed with the penalized
AM algorithm with �=100, which transitions to linear pen-
alty growth for pixel differences approximately 50% of the
water background. AM-700 denotes the AM algorithm using
a log-cosh penalty with �=700, which has a growth transi-
tion for pixel differences around 10% of background. Figure
1 plots both of the log-cosh penalties investigated in this
work and a quadratic penalty function for comparison. Note
that the Lagrange multipliers used in Fig. 1 were chosen
retain as much high-frequency content as possible. When
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purely for plotting purposes to showcase the different penalty
growth. Values of � for AM-700 nearly an order of magni-
tude smaller than for AM-100 were necessary to reconstruct
images with acceptable quality. AM-100 and AM-700 repre-
sent two bounds of potential clinically relevant penalty pa-
rameter value choices: AM-100 is closer in shape to a qua-
dratic penalty and AM-700 is closer in shape to a linear
penalty. Results for � values between 100 and 700 would
reasonably be expected to lie between the two presented pa-
rameter values.

To evaluate the tradeoff between image noise and reso-
lution, a set of images was reconstructed with varying log-
cosh penalty Lagrange multipliers �� in Eq. �2��. Here we
use the term smoothing strength to refer to both the Lagrange
multiplier � for the AM algorithm and the full-width at half
maximum �FWHM� of the Gaussian-modified ramp filter in
the FBP algorithm described in Sec. II A 2. For each data
case, an unpenalized AM image is reconstructed as a perfor-
mance baseline. Both penalty function parameter values of
the alternating minimization algorithm were run for 250 it-
erations with 22 ordered subsets, used to increase the con-
vergence rate.21 The number of iterations was chosen from
preliminary simulations that showed the images were well
converged.

II.A.2. Filtered backprojection reconstruction

Weighted filtered backprojection as described in Kak and
Slaney1 is used to backproject the filtered fan beam projec-
tion data. The filter H�f� is a modified ramp filter defined in
frequency space as

H�f� = s · �f � · W�f� · G�f� . �5�

Here s is a constant scale factor that ensures the image in-
tensities represent the correct units of linear attenuation
�mm−1� and �f � is the ramp function. The window function
that causes the ramp filter to roll off at f �0.9· fN �fN

=Nyquist frequency� with a raised cosine function to sup-
press high-frequency noise is given by
W�f� = �
1, 0 � f � 0.9 · fN

0.5 · �1 + cos�� · �f − 0.9 · fN�
0.1 · fN

�� , 0.9 · fN � f � fN

0, f � fN

 . �6�
Figure 2 displays the windowed ramp filter. The cosine roll-
off in the window function was incorporated to suppress
high-frequency ringing artifacts observed in prior simula-
tions at Washington University when a rectangular window
function was employed. The frequency at which the cosine
roll-off kicks in �90% of Nyquist� was chosen as the highest
frequency that suppressed the ringing artifacts in order to
compared side-by-side to reconstructions from the propri-
etary Siemens FBP, trained observers were unable to distin-
guish which FBP implementation was used for each image.
G�f� is the Fourier transform of a Gaussian smoothing kernel
that further reduces the amplitude of high spatial frequencies.
A series of images with varying levels of noise and reso-
lution is achieved by varying the FWHM of the Gaussian

smoothing kernel. For consistency, the system matrix used
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for the filtered backprojection algorithm is the same as that
used for the penalized AM algorithm.

II.B. Simulated projection data

II.B.1. Virtual CT system

The virtual third generation CT system �Fig. 3� is com-
posed of 1056 gantry positions �	� equally spaced around a
full 360° rotation. There are 384 detectors �
�, each subtend-
ing an arc angle of 4.0625 min. The source-to-isocenter dis-
tance is 570 mm and the source-to-detector distance is 1005
mm. This gives a virtual detector width of 1.2 mm and a
projected width at isocenter of 0.67 mm. The image space x
is composed of 512�512 square pixels with a length of 0.5
mm on a side, providing a field-of-view �FOV� of 256 mm.

We simulate monoenergetic projection data with no scat-
tering to avoid beam-hardening and scatter artifacts in the
image reconstruction. Simulated projection data are gener-
ated by integrating the ray-traces through the analytically
defined phantoms over the detector area

d�y:�� = I0 · �

�=
−�
/2


�=
+�
/2
exp�− �

i

�i · li�
���d
�. �7�

The phantom image �i is defined as a superposition of i
analytically defined ellipses. I0 is the number of incident
photons on the scan subject and li�
�� is the analytical path
length through the ith ellipse of uniform composition along
the ray 
�. A data-model mismatch is present as the data are
generated using an analytical forward projector and the re-
construction algorithms use discrete projection. The artifacts
from this mismatch are minimal and methods to avoid con-
tamination in the image noise and resolution metrics are dis-
cussed in Sec. II C.

Simple Poisson noise is included in the analytically ray-
traced, noiseless sinogram data by randomly varying the in-

FIG. 1. Comparison of penalty function shape for the two log-cosh penalties
investigated in this work and a quadratic penalty. Quadratic penalty func-
tions grow too quickly for large pixel differences and consequently overblur
high-contrast edges. Note that the log-cosh penalties are scaled ��� for plot-

ting purposes and do not correspond to the values used in simulation.
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cident photon fluence I0. Though CT-signal statistics have
been shown to follow the compound Poisson distribution,22

previous literature has shown that approximating this more
complex distribution by the simple Poisson distribution, as-
sumed by AM, does not significantly affect image quality.23

An incident fluence of 100 000 photons per detector leads to
a percent standard deviation of �0.3% for unattenuated
source-detector rays, which approximates experimentally ob-
served noise levels in projection data exported from our Phil-
ips Brilliance Big Bore CT simulator using a typical clinical
scanning protocol �120 kVp, 325 mA s, and 0.75 mm slice
thickness�. To investigate the impact of projection noise on
the noise-resolution tradeoff, noisy sinograms are generated
for I0=25 000 photons per detector �25k projection noise
case� and I0=200 000 photons per detector �200k projection
noise case�, which represent low dose and low noise imaging
protocols, respectively. Noiseless projection data are also re-
constructed with all algorithms and smoothing strengths for
use in the quantification of noise and resolution.

II.B.2. Phantoms

Two simulation phantoms were used in this work to in-
vestigate the tradeoff between noise and resolution �Fig. 4�.
Both phantoms consist of a background 20 cm diameter wa-
ter cylinder and various 2 cm diameter cylindrical inserts.
The water background is set to �=0.0205 mm−1 corre-
sponding to the 61 keV energy of our monoenergetic simu-
lation. The main noise-resolution tradeoff comparison is
made using the clock phantom, which contains eight inserts
of varying contrast. Each insert center is located 5.5 cm from
the image FOV center. The clock phantom allows us to in-
vestigate the effect of varying contrast magnitudes on the
noise-resolution tradeoff.

The radial phantom contains four contrast inserts at vary-
ing radial distances from the FOV center. Inserts with the
same contrast �+30%� and varying distance from the FOV
center �2–6.5 cm� allow us to investigate the spatial depen-
dence of the noise-resolution tradeoff.

FIG. 2. Windowed ramp filter �no Gaussian smoothing kernel included�.
Ramp filter is rolled off for frequencies�90% of fN with a cosine function
to suppress high-frequency noise. This filter was chosen in preliminary
simulations to reconstruct images that are qualitatively indistinguishable

from Siemens clinical images.
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II.C. Noise and resolution measurement

II.C.1. Noise measurement

Image noise is assessed in the water region surrounding
each contrast insert. For an image reconstructed from a noisy
projection data set, the image noise is the standard deviation,
as a percent of the water background value, for the pixels
inside the noise region of interest �ROI�:

% noise = 100 ·
ROI

�water
. �8�

The noise ROI for each insert is an annulus that includes
image pixels in the water background lying within 4–6 mm
�inclusive� of the insert boundary, shown in Fig. 5, contain-
ing 756 pixels. A subtraction image between the noiseless
and noisy data reconstructions is used for the variance mea-
surement to remove systematic bias, such as sampling arti-
facts, from the calculation.

To reduce computational burden, spatial statistics are used
to quantify image noise in lieu of ensemble statistics. To test
this, 30 monoenergetic data sets of the clock phantom, each
with a different Poisson noise realization, were created and
reconstructed with a single smoothing strength for each of
the three algorithms. The ensemble noise in each image pixel
for each algorithm was calculated from the resultant se-
quence of 30 images. The results of this comparison showed
the use of spatial statistics within an annular ROI for noise
quantification to be an adequate approximation of the aver-
age ensemble noise around each insert. The ensemble noise
was seen to be slowly varying with radial distance from the
FOV center, which is also shown in the radial phantom re-
sults of Sec. III D. The dependence of noise on distance from
the insert edge was found to be negligible due to the circular
symmetry of the ROI and slowly varying radial dependence
of the noise.

An algorithm that can reconstruct an image of comparable
resolution with less noise from the same projection data of-
fers the clinical advantage of patient dose reduction. We as-
sume that the image noise is proportional to relative projec-

1,24

FIG. 3. Third generation virtual CT geometry. Square pixels, 0.5 mm on a
side, compose the image space denoted by x. The rays connecting source
angle 	 and detector index 
 form the sinogram space y.
tion noise and that projection variance is inversely
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proportional to the patient dose. From these assumptions, we
can formulate an answer to the question “For the same image
noise and resolution, how much can the AM algorithms re-
duce patient dose in comparison to FBP?” We calculate the
dose fraction as the ratio of AM variance to FBP variance at
a constant resolution metric value

dose fraction =
AM

2

FBP
2 . �9�

Intuitively, the ratio of variances, or dose fraction, represents
the fraction of dose necessary for the AM algorithm to
achieve the same image noise as the FBP algorithm with the
same resolution metric for the chosen contrast insert.

II.C.2. Resolution measurement

The resolution metric used in this work is based on the
modulation transfer function �MTF�. While x-ray transmis-

FIG. 4. Simulation phantoms consist of a 20 cm water cylinder with various
2 cm diameter contrast inserts. �a� The clock phantom with eight inserts of
varying contrast allows comparison of the noise-resolution tradeoff for vary-
ing magnitude of contrast. �b� The radial phantom with four inserts of the
same contrast �+30%� and varying distance from the FOV center allows the
spatial dependence of the noise-resolution tradeoff to be investigated.
sion CT is not a shift-invariant linear system, we believe that
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MTF analysis as a measure of local impulse response can
still provide insight into the effect of reconstruction on edge
blurring. The radial phantom study was designed to investi-
gate the spatial variation of noise and resolution for each
reconstruction algorithm.

The edge-spread function �ESF� was differentiated to ob-
tain the line-spread function �LSF� and the Fourier transform
of the LSF was calculated to obtain the MTF

LSF�r� =
d

dr
�ESF�r�� , �10�

MTF�f� = �FT�LSF�r��� . �11�

Here r is the distance between the pixel center and the
known edge location. The circular symmetry of the contrast
inserts can be used to construct a supersampled edge-spread
function from the reconstructed image. Since our simulation
phantom is comprised of a set of circular structures, we can
plot each reconstructed image pixel’s intensity as a function
of the distance �r� between its center and the analytically
defined insert edge. As multiple pixels will have the same
distance to the edge, the mean intensity at each unique dis-
tance is calculated and used for subsequent estimation of the
MTF. Sampling pixels around a circularly symmetric insert
to form a supersampled edge-spread function represents an
average of the edge response function within the region of
interest. In this way, we can view the transition between the
water background and the contrast insert. This idea of using
circular symmetry to oversample an edge-spread function is
similar to Thornton’s use of a sphere25 to measure the in-
plane MTF and slice-sensitivity profile for a multislice CT
scanner. Figure 6 displays a flowchart illustrating the reso-
lution measurement technique for the �30% contrast insert
reconstructed with FBP �FWHM=2.0 mm�. The location of
the analytically defined insert edge is superimposed on the
reconstructed image to aid visualization.

An edge-spread function model was then fit to the super-

FIG. 5. Each insert’s annular noise region of interest consists of the 756
image pixels whose centers lie between 4 and 6 mm from the insert
boundary.
sampled ESF �ESFinsert�r��. While the image noise is mea-
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sured on images reconstructed from the noisy projection data
sets, the edge-spread function is derived from images recon-
structed from the noiseless projection data set to avoid bias
from the image noise and to improve the model fitting. The
model fitting is used to further reduce noise from the super-
sampled ESF prior to differentiation and Fourier transforma-
tion. Although ESFs are extracted from images reconstructed
from noiseless projection data, the individual data points ex-
hibit fluctuations due to effects such as partial volume aver-
aging of finite voxels and the mismatch between data and
reconstruction forward projectors. To avoid instability in the

FIG. 6. Illustration of the resolution measurement for the �30% insert re-
constructed using FBP with FWHM=2.0 mm.
MTF arising from numerical differentiation of noisy data, we
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use an ESF model that assumes the line-spread function is
well-described by a linear combination of Gaussian and ex-
ponential components26

ESF†�r� = a · �1 − exp�− b · �r��� + c · �erf�d1/2 · �r��� , �12�

ESF�r� = 	 ESF†�r�; if r � 0

− ESF†�r�; if r � 0

 , �13�

ESFfit�r� = e + f · ESF�r� . �14�

The MATLAB function fminsearch is used to find the six pa-
rameters a– f that minimize the relative least-squares differ-
ence between the reconstructed image ESF and the ESF
model. The second image in Fig. 6 shows the supersampled
ESFinsert�r� and the fitted model. All contrast inserts within
an image are fitted separately. Each fitted ESF model is then
differentiated to obtain the LSF, which is then Fourier trans-
formed to calculate the MTF for the reconstructed contrast
insert of interest.

To analyze the noise-resolution tradeoff for a particular
reconstruction algorithm, i.e., how the image noise and res-
olution vary with increasing smoothing strength, it is useful

FIG. 7. �a� Comparison of the bone insert ESF shape for the FBP algorithm
sponding lines represent the Gaussian-exponential model fit used for the es
reconstructed nearly matched image noise ��1.09%�0.01%�. Note the diff
noise. The FBP edge-spread functions were found to be well fit by both Gaus
fitting to show that the Gaussian blurring model had trouble fitting the steep
This finding motivated the use of the Gaussian-exponential blurring model
calculation for the FBP and AM-700 bone inserts, respectively.
to extract a single parameter to characterize resolution for
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each contrast insert in each image. This will allow us to plot
a curve of how the edge resolution is degraded as the image
noise is reduced. La Rivière14 reported the FWHM of a
Gaussian blurring model fitted to line profiles of high-
contrast bone inserts. This is an intuitive metric as a wider
Gaussian represents a blurrier edge. However, our six-
parameter Gaussian-exponential model does not lead to such
a straightforward metric.

We choose to report the area under the MTF curve up to
0.5 lp/mm as a single-value surrogate of edge resolution. The
0.5 lp/mm integration limit was chosen as it is near the fre-
quency where MTF shapes differ the most between FBP and
AM-700, as shown later in Fig. 7. It is also close to the
ACR’s accreditation requirement of 0.6 lp/mm for high-
contrast resolution. The MTF area for a particular recon-
structed insert edge is calculated as the area under the MTF
up to 0.5 lp/mm or

A0.5 =
�0

0.5 lp/mmMTF�f�df

0.5
. �15�

The MTF area is normalized to 0.5, as this is the area under

h FWHM=1.4 mm and the AM-700 algorithm with �=0.015. The corre-
ion of the MTF. Smoothing strengths were chosen for comparison as they
e in ESF shape between the two algorithms in �a� at nearly matched image
nd Gaussian-exponential blurring models. �b� zooms in on the AM-700 ESF
ral transition and shoulder roll-off seen in the AM-700 high-contrast edges.
all of the edge-spread functions in this work. �c� and �d� display the MTF
wit
timat
erenc
sian a
cent

to fit
an ideal MTF curve that has amplitude 1.0 for all spatial
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frequencies. Refer again to Fig. 6 for the calculated MTF and
subsequent MTF area metric of an example contrast insert.
Intuitively, the MTF area represents the fraction of ideal in-
put signal that is recovered for spatial frequencies less than
or equal to 0.5 lp/mm.

III. RESULTS

III.A. Necessity of Gaussian-exponential edge-spread
function model

Previous investigators have characterized CT image reso-
lution under the assumption of Gaussian blurring, e.g., the
FWHM of a Gaussian ESF model14 as a surrogate for reso-
lution. Our preliminary work revealed that purely Gaussian
blurring models did not fit the AM-700 high-contrast edges
well. Figure 7 illustrates the different shapes of the high-
contrast bone insert ESF and subsequent calculated MTFs as
reconstructed with the FBP and AM-700 algorithms. The
smoothing strengths of the noiseless FBP and AM-700 edge-
spread functions in Fig. 7 were chosen for comparison as
they led to nearly the same image noise ��1.09%�0.01%�
when reconstructing the 100k noisy data set.

The steep central transition and shoulder roll-off of the
AM-700 high-contrast edges was found to be poorly fit by a
purely Gaussian blurring model �Fig. 7�b�� and motivated us
to use the edge-spread function model �Eq. �12��, which as-
sumes the blurring kernel has both Gaussian and exponential
components. The Gaussian-exponential model was used to fit
all reconstructed image edge-spread functions in this work to
provide a consistent methodology. No loss of ESF fitting
quality with the Gaussian-exponential model was seen for
the edges that were well fit by the purely Gaussian model,
such as all FBP edges, all AM-100 edges, and AM-700 low-
contrast ��30%� edges.

In contrast with the FBP bone MTF �Fig. 7�c��, in which
the amplitude quickly drops, the AM-700 bone MTF �Fig.
7�d�� shows an initial drop for low frequencies due to the
rounded shoulder of the AM-700 ESF and retention of higher
spatial frequencies due to the sharp central transition of the
ESF. For high-contrast structures reconstructed by the AM-
700 algorithm, the ESF and MTF shape were found to be
markedly different than those seen in the literature.15,16,25,27

Conventional MTF metrics, such as the spatial frequency
corresponding to 10% MTF and 50% MTF, were found to
provide poor characterization of the curves, given the long
MTF tails of the high-contrast AM-700 structures. For ex-
ample, the 10% MTF for AM-700 bone insert shown in Fig.
7�d� occurs at a frequency of 2.79 lp/mm, while the corre-
sponding FBP MTF is essentially zero at this frequency. The
desire for a single-valued metric that describes a clinically
relevant feature common to all the MTF shapes characteristic
of our study motivated our use of the MTF area as a surro-
gate for resolution.

III.B. Noise-resolution tradeoff for varying contrast

For each reconstructed clock phantom image, the relative

noise in the water background and the MTF area were deter-
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mined independently for each of the eight contrast inserts.
Plotting the image noise as a function of resolution �MTF
area� for a set of images reconstructed by a particular algo-
rithm with varying levels of smoothing strength describes the
noise-resolution tradeoff characteristic of the algorithm.

Figure 8 compares the noise-resolution tradeoff between
the FBP algorithm and the AM algorithm, with �=100 and
�=700 for images reconstructed from the 100k noisy projec-
tion data. The tradeoff curves for the clock phantom’s eight
contrast inserts are plotted separately to show how the
tradeoff varies with the magnitude of contrast. Each point
along a curve represents an image with a unique smoothing
strength. For display purposes, the unpenalized AM images
are not included on the AM tradeoff curves as the image
noise is greater than 6% and reduces the scale of the noise
axis. The noise in the water background around each contrast
insert within a single reconstructed image is essentially the
same. Thus, the differences seen in the AM tradeoff curves
for varying magnitudes of insert contrast are due to differ-
ences in the resolution. This is a direct result of the nonqua-
dratic local neighborhood penalty function. Also, note that
the FBP algorithm appears to have a lower achievable reso-
lution than AM; this is a result of the raised cosine roll-off
windowed ramp function used for FBP in this work.

For all magnitudes of contrast, the AM tradeoff curves lie
below the FBP algorithm curve. Both AM-100 and AM-700
reconstruct images with either less image noise for the same
resolution metric, sharper edges for matched image noise or,
by extension, images with similar resolution and image noise
for less patient dose. The AM-700 algorithm shows an in-
creasing benefit as the contrast magnitude used for resolution
comparison is increased. The clock phantom study shows us
that the noise-resolution tradeoff advantage of the penalized
AM algorithm in comparison with conventional FBP is de-
pendent on the contrast magnitude used for resolution calcu-
lation and the choice of parameter value for AM’s edge-
preserving penalty function.

III.C. Effect of projection noise magnitude

As outlined in Sec. II C 1, the potential for dose reduction
that the AM algorithm offers is calculated as the ratio of
AM-insert variance to FBP-insert variance when matching
the resolution metric for a chosen contrast insert. By apply-
ing spline interpolation to the tradeoff curves of Fig. 8, FBP
and AM noise levels for a matched resolution metric of
A0.5=0.75 were estimated. The resulting AM-to-FBP vari-
ance ratio �for all three projection noise realizations� is plot-
ted as a function of contrast in Fig. 9. The magnitude of
projection noise investigated in the three noise realizations
does not appear to have a marked effect on the advantage of
the AM algorithm. The maximum impact of low dose �25k�
and low noise �200k� imaging techniques relative to 100k is
seen for the AM-700 low-contrast structures ranging from
0.66 to 0.81 �Fig. 9�b��. This variation was overshadowed by
the variation due to contrast magnitude for the AM-700 al-
gorithm, for which the variance ratio ranges from 0.69 to

0.05 �100k projection noise realization�. Figure 9 shows that
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the potential for dose reduction is largely driven by the con-
trast magnitude chosen for matching image resolution.

III.D. Spatial dependence of noise-resolution tradeoff

The dependence of resolution, noise, and variance ratio on

FIG. 8. Noise-resolution tradeoff curves for the clock phantom reconstructed
is increased, noise is reduced at the cost of reduced resolution. The tradeo
structures of varying contrast.
spatial location is illustrated in Figs. 10 and 11. Within a
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single reconstructed image, FBP noise varies more with FOV
location than the AM image noise �Fig. 10�a��. In contrast,
Fig. 10�b� shows that AM resolution increases with distance
from the FOV center, while FBP resolution is nearly spatially
constant. Figure 11 shows the spatial variation of noise and

100k projection noise. Note the reverse x-axis. As the smoothing strength
rve for AM with �=700 for the penalty function is markedly different for
with
ff cu
variance ratios for AM and FBP images with a matched spa-
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tial resolution metric of A0.5=0.75. For all algorithms,
resolution-matched image noise decreases with increasing
distance from the FOV center. This is not surprising, as the
projection noise for the peripheral insert locations is smaller
due to a shorter average path length through the phantom for
the source-detector rays that traverse the peripheral image
pixels. The dose fraction of the AM algorithm is nearly the
same for all four insert locations �Fig. 11�b�� with dose frac-
tions ranging from 0.65 to 0.70 for AM-100 and from 0.41 to
0.45 for AM-700.

III.E. Reconstructed image comparison

Figure 12 shows images of the simulated clock phantom
reconstructed from the 100k noisy data set with similar reso-
lutions �A0.5�0.75� around the high-contrast bone insert.
The AM-700 image noise level is only 25% of that of the
FBP image. While the AM-700 high-contrast resolution met-
ric value nearly matches that of the FBP images, the low-
contrast inserts exhibit subjectively poorer resolution than

FIG. 9. AM/FBP variance ratio at a matched resolution value of AMTF0.5

=0.75 for each of the eight inserts of the clock phantom. �a� and �b� display
the results for AM-100 and AM-700, respectively. The 100k projection noise
case is plotted as the baseline with the low noise �200k� and low dose �25k�
cases plotted for comparison. As can be seen, the three noise realizations
cause some variability in the dose fractions, but this is overshadowed by the
choice of penalty function parameter values and contrast magnitude effects.
that of the FBP algorithm. In comparison, the AM-100 algo-
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rithm was found to offer comparable resolution to the FBP
for all contrast inserts, with about 70% of the noise relative
to FBP.

Note the presence of an artifact around the phantom edge
in the AM images �Figs. 12�b� and 12�c��. The literature9,28

has shown these artifacts are in fact inherent to maximum
likelihood reconstruction methods and arise from mis-
matches between the SIR algorithm’s forward model and the
true physical detection process. Zbijewski28 shows that re-
constructing on a finer voxel grid alleviates much of the edge
artifact, but this will lead to much longer computing times.
While the smallest penalty strength ��min� was found to
eliminate the edge artifact around the internal contrast inserts
for both AM-100 and AM-700, further work will be needed
to address the ringing artifact around the phantom edge if it
is determined to be of clinical concern.

III.F. Qualitative real data comparison

Real CT data includes effects from physical phenomena

FIG. 10. Results of the radial phantom study showing the spatial dependence
of �a� noise and �b� resolution within a single reconstructed image from each
algorithm. The smoothing strengths were chosen such that the resolution
metric for the reconstruction algorithms were similar for purposes of com-
parison. The AM resolution increases with distance from the FOV center,
while the FBP algorithm’s resolution does not. FBP image noise varies more
spatially than for the AM algorithm.
such as beam-hardening and scatter, which are known to de-
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grade image quality. Figure 13 illustrates the ability of the
penalized AM algorithm to reconstruct images from axial
sinograms acquired on the Philips Brilliance Big Bore scan-
ner. Smoothing strengths for the three reconstructions were
tuned to give nearly the same noise in a 2�2 cm2 square
ROI �1600 total pixels� in the center of the water region. For
the low-contrast detectability insert �6 o’clock� differences
among the three reconstructions could not be visually dis-
cerned. However, profiles through the high-contrast insert,
located at 4 o’clock, reveal sharper edge discrimination for
the AM-700 algorithm �Fig. 13�b��, which motivates future
work to investigate the noise-resolution tradeoff using real
CT data.

IV. DISCUSSION

This work compares the noise-resolution tradeoff of the

FIG. 11. Comparison of the noise-resolution tradeoff for varying distance
from FOV center. When compared at matched resolution �noise interpolated
to matched A0.5=0.75�, �a� the FBP and AM algorithms show similar varia-
tion of noise across the FOV and �b� the dose fraction stays nearly constant
for all inserts.
conventional filtered backprojection algorithm to that of the
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alternating minimization algorithm with two different param-
eter values for a local edge-preserving penalty function. This
is not the first work comparing the noise-resolution tradeoff

(c)

FIG. 12. Reconstructed images of the simulated clock phantom data with
nearly matched bone insert �7 o’clock position� resolution metric of A0.5

�0.75. All images set to identical �15% window �0.017:0.023� mm−1 for
display of image noise. Noise around the bone insert is �a� 2.04% for FBP,
�b� 1.36% for AM-100, and �c� 0.47% for AM-700.
between filtered backprojection and statistical iterative algo-
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rithms. However, it is the first to do so for the alternating
minimization algorithm for x-ray transmission tomography,
which supports an exact solution to the maximization of the
Poisson log-likelihood �M-step�. The conclusions from the
simulation study presented here could reasonably be extrapo-
lated to other SIR algorithms that seek to maximize the same
penalized-likelihood objective function, since the AM solu-
tion images are very near complete convergence due to the
large number of iterations employed. It is also the first, to the
best of the authors’ knowledge, to characterize the noise-
resolution tradeoff curves and subsequent dose-reduction
factors for a range of contrast magnitudes.

In this paper, we selected the normalized MTF integral up
to a cutoff frequency of 0.5 lp/mm as a convenient, but
somewhat arbitrary, single-parameter metric for quantifying
spatial resolution. Other integration limits up to the Nyquist
frequency were considered but were found to increase the
reported AM-700 advantage due to AM-700’s longer MTF
tails for high-contrast structures. For comparing FBP and

(a)

(b)

FIG. 13. �a� AM-700 reconstructed image of the multipin layer of a daily
QA phantom from real data acquired on a Philips Brilliance Big Bore CT
scanner. Smoothing strengths were adjusted to match noise ��0.94% in the
central square ROI� within 0.005% among the AM-700, AM-100, and FBP
images. �b� Visible differences in the high-contrast insert �4 o’clock� are
illustrated in the profiles.
AM resolution, the 0.5 lp/mm limit was chosen to ensure
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significant overlap of the nonzero frequency content of the
corresponding MTFs, which potentially have very different
shapes and high-frequency tails. This limit was considered to
be a conservative choice for reporting dose-reduction poten-
tial. While in theory the MTF is a linear-systems metric and
CT resolution is known to be spatially variant over the
FOV,29 we believe that a MTF derived from a supersampled
edge-spread function objectively describes the spatial fre-
quency content in the local region. The concept of measuring
the MTF for structures within a CT image dates back three
decades27 and is still a topic of debate to this day. To the
author’s knowledge, no gold standard metric for quantifying
CT image resolution has been embraced by the community,
making direct comparison of our results and other works
difficult.

Not surprisingly, the log-cosh penalized alternating mini-
mization algorithm, which models detector counting statis-
tics, reconstructs images with less noise than conventional
filtered backprojection images of comparable resolution. In
contrast with other investigations that matched high-contrast
structure resolution, e.g., bone and steel beads, our study
shows that the noise-resolution tradeoff for nonquadratic
neighborhood penalty functions markedly varies with con-
trast magnitude of the edge used for quantifying resolution.
The apparent advantage of using the log-cosh penalized AM
algorithm when comparing high-contrast resolution was
found to be moderately to substantially diminished when the
resolutions of low-contrast edges were compared. Moreover,
this variation was found to strongly depend on the chosen
penalty function parameters.

Despite some loss of benefit for low-contrast objects, the
ratio of variances for high-contrast objects in this work im-
plies that the penalized AM algorithm is capable of recon-
structing images with comparable quality to FBP using 10%–
70% of the dose required by FBP, depending on the penalty
function parameters �Fig. 9�. This is compatible with the
growing clinical literature; Stayman30 reported SIR-to-FBP
image SNR ratios of about 1.6 for a PET system. For x-ray
transmission CT, Ziegler15 reported SIR-to-FBP noise ratios
of 2.1 to 3.0, implying dose-reduction factors of 4.4 to 9.0.
La Rivière14 described an expectation-maximization sino-
gram smoothing technique which achieved a noise-resolution
tradeoff similar to the adaptive trimmed mean filter
approach2 that uses 50% less dose. These studies exhibit a
range of dose-reduction factors for a number of reasons.
Since the dose-reduction factor is a ratio of variances at an
arbitrary value of the resolution metric, choosing a different
value of the resolution metric along the noise-resolution
tradeoff curve for matching will change the reported variance
ratios. In addition, there are differences between the SIR and
the FBP reconstruction algorithms used in the literature and
the metrics used to quantify resolution. In spite of these dif-
ferences, our reported dose-reduction potentials for high-
contrast structures are in reasonable agreement with the pub-
lished literature.

Varying the magnitude of noise in the projection data was
found to only minimally affect the variance ratio at a

matched spatial resolution in our simulations �Fig. 9�. In con-
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trast, Ziegler et al.15 showed that projection noise level does
affect the SIR-to-FBP noise ratio. His work further showed
that this effect was stronger for points farther from the FOV
center than those near the center. Our range of distances from
the FOV center �2–6.5 cm� was much smaller than those in
Ziegler’s work �1.5–20 cm�. We found the contrast magni-
tude and penalty parameter choice to have a greater effect on
the variance ratio than projection noise.

As our work utilized a spatially invariant penalty func-
tion, it would be expected that AM images exhibit spatially
variant and anisotropic resolution.29 Our study of the radial
phantom shows that the resolution and noise vary differently
with distance from the FOV center of AM and FBP images
�Fig. 10�. In contrast with studies that report FBP resolution
to degrade with increasing distance,15 the FBP algorithm in
this work showed little spatial variation of resolution. This
difference could stem from slight differences in the FBP al-
gorithm or the larger range of distances to FOV center that
Ziegler investigated. The variation of AM resolution with
distance from the FOV center �Fig. 10�b�� illustrates the non-
uniform nature of the AM resolution. Interestingly, we found
the AM-to-FBP variance ratio for a fixed resolution to be
approximately constant over the FOV �Fig. 11�.

Resolution anisotropy was studied by separating the total
annular ROIs around the insert edges in the radial phantom
into four Cartesian quadrants and calculating the associated
MTFs using the same procedure described above. The quad-
rant MTFs in the FBP image were found to vary little from
the MTF of the total ROI. The penalized AM quadrant MTFs
were found to vary from one another, especially in the tan-
gential and radial directions, indicative of anisotropic reso-
lution. The AM anisotropies were found to be small com-
pared to the differences between the AM and FBP
algorithms, perhaps in part due to the highly symmetric na-
ture of the phantoms investigated here. The resolution metric
calculated from the total annular ROI represents an average
of the local resolution in the region surrounding each con-
trast insert.

Methods for designing spatially variant quadratic penalty
functions that achieve a target response have been described
in the literature and shown to support nearly uniform and
isotropic resolution for PET and transmission x-ray CT
problems.30–32 Ahn and Leahy33 reported on the design of
nonquadratic regularization penalties with similar goals in
PET.33 Design of penalty functions, both quadratic and non-
quadratic, that include the ideas of spatially variant29 and
nonlocal penalty functions20 to achieve desirable properties
such as uniform, isotropic resolution are important areas of
ongoing work for x-ray transmission CT.

The quantitative results presented in this work have been
performed exclusively in an idealized 2D x-ray CT simula-
tion environment, with projection noise assumed to follow
the simple Poisson distribution. While this data model allows
detection of very subtle effects of reconstruction algorithm
on noise-resolution tradeoffs, obviously clinical translation
requires handling complex detector nonlinearities and non-
ideal behaviors. Both the AM �Ref. 13� and parabolic

34
surrogates SIR algorithms generalize to more complex data
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models which include polyenergetic spectra, scatter, and cor-
related noise, all of which are necessary to extract statisti-
cally optimal smoothed images from measured sinogram
data. SIR algorithms including the known polyenergetic
x-ray spectrum in their forward model have been shown to
outperform FBP reconstruction preceded by sinogram linear-
ization corrections in terms of nonuniformity from beam-
hardening artifacts.35 Our example clinical case �Fig. 13�
suggests �but by no means proves� that our main conclusions
are preserved, at least qualitatively, in the transition to more
realistic data models. Beam-hardening and scatter effects
manifest themselves as artifacts, i.e., systematic shifts in the
mean image intensities. While such streaking and nonunifor-
mity artifacts caused by these data mismatches play a large
role in subjective image quality and quantitative CT, we
would not expect these nonlinear processes to substantially
affect the spatial resolution-noise tradeoff characteristic of
the device. The logical next step in translating AM benefits
to quantitative CT imaging to the clinic is to repeat system-
atic studies of resolution-noise tradeoff using more realistic
data models and experimentally acquired data sets derived
from scanning phantoms of known geometry and composi-
tion. Another issue is the incorporation of 3D system geom-
etry �spiral multirow detector geometry� into the forward
SIR projector. 3D SIR algorithms have been shown to alle-
viate CBCT artifacts, e.g., incomplete data artifacts in off-
axis planes� characteristic of conventional FBP
reconstruction.17 However, the Shi and Fessler36 design of
three-dimensional penalty functions pose challenges, provid-
ing another important area of future investigation.

Long SIR computing times constitute another barrier to
widespread clinical acceptance. Recent literature describing
GE’s adaptive statistical iterative reconstruction �ASIR� al-
gorithm shows that simplified statistical algorithms can still
provide diagnostically viable images with 50% or 65%
smaller doses than needed for conventional FBP.37–39 While
the ASIR algorithm does not include modeling of the system
matrix, which can play a large role in reducing artifacts and
noise,16,17 trained observers have rated the ASIR images ac-
quired at 50% of the FBP dose to have similar, if not better,
image quality for almost all metrics studied. The literature
has shown that the simplified ASIR algorithm has the capa-
bility to reconstruct image volumes acceptable to current
trained observers in a clinically relevant timeframe of 65 s
compared to 50 s for FBP.39 For the AM algorithm, Keesing
et al.40,41 has demonstrated the feasibility of speeding up the
computation time by parallelizing the projection operations
for a fully 3D helical geometry.

Comparing the AM-100 and AM-700 results reveals the
importance of optimizing the nonquadratic penalty function
parameter �. AM-700, with a penalty that transitions to linear
growth for smaller pixel differences, shows greatly improved
noise performance over AM-100 and the FBP algorithm
when comparing high-contrast resolution. However, when
comparing images with nearly matched high-contrast reso-
lution metric values, AM-700 was seen to have worse reso-
lution for the low-contrast inserts. The log-cosh penalty

function with �=700 could be beneficial where high-contrast
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resolution is important and reduced low-contrast resolution is
acceptable, e.g., for dose reduction in image registration ap-
plications using bony landmarks. For clinical situations in
which low-contrast resolution is important, for example,
intensity-driven soft-tissue deformable image registration or
soft-tissue delineation for contouring, log-cosh penalized
AM with �=100 could provide comparable image quality
with 70% of the FBP dose. The results presented here show
the need for future work in penalty function parameter opti-
mization and those choices will certainly be task-specific.42

V. CONCLUSIONS

This work assessed the noise-resolution tradeoff of the
penalized alternating minimization algorithm in comparison
with FBP for a set of structures with a range of contrast
magnitudes ��7% to +238%� and varying distance from the
FOV center �2–6.5 cm�. An idealized simulation environ-
ment was used to isolate the effects of each algorithm’s
smoothing technique. A spatial resolution metric A0.5, de-
rived from ESFs in the reconstructed image, was developed
in response to the observation that the AM-700 MTF shape
for high-contrast edges deviates significantly from that of
FBP images. The parameter value used to specify AM’s local
log-cosh penalty function has been shown to drastically
modulate noise-resolution tradeoff curves and subsequent
dose-reduction potentials reported for SIR algorithms. The
noise-resolution tradeoff was also found to be greatly af-
fected by the contrast of the structure used for evaluating
spatial resolution. The range of projection noise levels inves-
tigated here and the variation in structure distance from FOV
center only minimally affected the noise-resolution tradeoff.
The ratio of AM-to-FBP image variance ratio for matched
resolution surrogate implies a dose-reduction potential; the
AM algorithm has the potential to reconstruct images with
comparable noise and MTF area using only 10%–70% of the
FBP dose. These values are in line with other published lit-
erature. The result that log-cosh penalized AM noise-
resolution tradeoff is dependent on the contrast magnitude
implies that nonquadratic penalty function parameters can be
optimized to maximize the dose-reduction potential for spe-
cific imaging tasks.
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