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The emergence of a novel strain of H1N1 influenza virus in Mexico in 2009, and its subsequent
worldwide spread, has focused attention to the question of optimal deployment of mass vac-
cination campaigns. Here, we use three relatively simple models to address three issues of
primary concern in the targeting of any vaccine. The advantages of such simple models
are that the underlying assumptions and effects of individual parameters are relatively
clear, and the impact of uncertainty in the parametrization can be readily assessed in the
early stages of an outbreak. In particular, we examine whether targeting risk-groups, age-
groups or spatial regions could be optimal in terms of reducing the predicted number of
cases or severe effects; and how these targeted strategies vary as the epidemic progresses.
We examine the conditions under which it is optimal to initially target vaccination towards
those individuals within the population who are most at risk of severe effects of infection.
Using age-structured mixing matrices, we show that targeting vaccination towards the
more epidemiologically important age groups (5–14 year olds and then 15–24 year olds)
leads to the greatest reduction in the epidemic growth and hence reduces the total number
of cases. Finally, we consider how spatially targeting the vaccine towards regions of country
worst affected could provide an advantage. We discuss how all three of these priorities change
as both the speed at which vaccination can be deployed and the start of the vaccination
programme is varied.
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spatial structure
1. INTRODUCTION

Vaccination has long been viewed as a vital tool in the
armoury against infectious diseases. However, this per-
spective is largely based on our experience with endemic
infections ([1,2], where a routine policy of vaccination
can be used to increase the level of herd immunity [3])
and hence reduce or even eliminate the infection [4].
Examples of such approaches abound, from the eradica-
tion of smallpox and the virtual eradication of polio, to
the long-running campaigns against childhood diseases
such as measles, mumps and rubella [5,6], to the
recently introduced schemes such as vaccination against
human papillomavirus [7]. However, the recent experi-
ence with novel infections, such as SARS in 2003 and
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H1N1 pandemic influenza in 2009, have illustrated
how vaccines are not a panacea due to the time
needed to develop, manufacture and deploy the vaccine
[8]. The UK, for example, had contracts to provide up to
132 million doses in the case of an influenza pandemic
being declared, and 90 million doses were ordered in
May 2009; however immunization did not begin until
October. In total, only around five million doses [9]
(approx. 400 000 to healthcare workers, about 37% of
the 11 million people deemed in risk groups and about
20% of the three million children between 6 months
and 5 years [10]) had been administered to people in pri-
ority groups by the end of February 2010, when
the pandemic had effectively died out; therefore in
February and April 2010 the orders were substantially
reduced. Such statistics mean that we must carefully
assess whether mass or targeted vaccination has a
role in controlling future pandemics or large-scale
This journal is q 2010 The Royal Society
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outbreaks, and develop a range of robust models that
can rapidly assess the benefits of vaccination and the
best ways by which it can be targeted [8,11–15].

Here, we extend a relatively simple model for vacci-
nation (of previously unvaccinated individuals) at a
constant rate in three main directions to consider how
different forms of heterogeneity can impact optimal
vaccination. In particular, we focus on the trade-off
between vaccinating those at risk of severe compli-
cations (if they become infected) compared with
vaccinating individuals who are more epidemiologically
active; we consider who this epidemiologically active set
are in terms of age groups within the population; and
we consider whether vaccination should be deployed
randomly or if there are benefits from geographical tar-
geting. Throughout, our aim is to develop relatively
simple models, where assumptions and parameters are
transparent, and where it is feasible to rapidly perform
large sweeps over parameter space. Therefore, while all
results are formulated based on the UK experience of
the 2009 H1N1 pandemic (assuming R0 ¼ 1.4 and a
doubling time of around one week [16]), the model
structure is sufficiently flexible that the qualitative
results could pertain to a range of novel infections.
(We believe that the methodology and results outlined
here are likely to hold for any rapidly transmitted infec-
tion, with a short infected period and life-long
immunity, and where a vaccine can be rapidly devel-
oped and manufactured.) Obviously, once a new
infectious disease is identified, specialist models are
required that can accurately capture the known
dynamics and can incorporate the appropriate econ-
omic and logistical facets [8]. Producing accurate
results from all types of model (including the very com-
plex and relatively simple) relies on the availability of
high-quality surveillance and detailed case records. In
the initial stages of an epidemic, before these data are
available, policy-makers need to know what range of
scenarios are consistent with the initial data. Addition-
ally, for many parts of the world, detailed data are
never available. For simple models with fewer basic par-
ameters, a more comprehensive sweep of parameter
space is feasible allowing the rapid assessment of var-
ious targeting vaccination strategies for ranges of
parameters that are broadly consistent with early quali-
tative information. We therefore believe that the results
developed here provide generic insights into the
optimization of vaccine deployment during a novel out-
break of a directly transmitted pathogen with lifelong
immunity.
2. BASIC MODEL OF VACCINATION

We first introduce the most basic model of vaccination
in response to an infection that conforms to the simple
SIR-type (susceptible–infectious–recovered) paradigm
([17–19]); this model will form the basic template for
all the work that follows. We assume that the uncon-
trolled epidemic obeys the simple SIR model
dynamics, such that susceptible individuals (of which
there are S) can become infected and infectious by
interaction with infected individuals (of which there
J. R. Soc. Interface (2011)
are I), infected individuals recover at a constant rate
and enter the recovered class (of which there are R)
after which they are assumed immune for life. (We
stress that all results presented are qualitatively invar-
iant to the precise model formulation, in particular
using a model with gamma-distributed exposed and
infectious classes more reminiscent of the 2009 H1N1
pandemic [16].) In all the models that follow, we
assume frequency-dependent mixing (such that the
number of epidemiologically relevant contacts is inde-
pendent of population size) and ignore the
demographics of birth and death [17]—a reasonable
assumption given the rapid time-frame of an epidemic.
To this simple model, we add vaccination at a constant
rate, v; we assume that individuals are vaccinated inde-
pendently of their disease status but individuals are
only vaccinated once, vaccination begins at time T,
and a proportion p of vaccinated individuals are
successfully immunized.

dS
dt
¼ �b SI

N
� pwðtÞ S

N � V
;

dI
dt
¼ b

SI
N
� gI ;

dR
dt
¼ gI

and
dV
dt
¼ wðtÞ

where wðtÞ ¼
0 if t , T or t . T þ N=v

v otherwise:

�

ð2:1Þ

where N is the total population size. The precise way in
which vaccination is implemented within the model
ensures that a fixed number of individuals (v) are
vaccinated per day, of which a fraction p are completely
protected, and assumes that each person only receives
one course of vaccine. If multiple doses of vaccine
are required, or if protection only develops some
time after vaccination, these can be included by
delaying the time, T, at which immunization begins to
take effect.

Even this simplest of models confirms two simple
rules-of-thumb regarding successful vaccination cam-
paigns that seek to minimize the number of cases
(figure 1). Firstly, that vaccination should begin as
early as possible, so that susceptibles are depleted by
vaccination before many cases arise; and secondly,
that vaccination should be performed as rapidly as
possible—both of which have been discussed before
for a range of control measures [20,21]. From figure 1
it is also clear that an early start to a vaccination cam-
paign is far more beneficial than faster vaccination of
the population. It should be stressed that when consid-
ering an ongoing epidemic, the critical vaccination
threshold for the elimination of an endemic infection
or prevention of epidemic invasion (¼1 2 1/R0) [17]
no longer plays such a clear role. Instead, the primary
aim should be to immunize many people in as short a
time as possible, subject to trade-offs from economic
costs or adverse effects of vaccination (such as that
observed for smallpox [12,20]). Here, and in all the
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Figure 1. Results from the simple single homogeneous popu-
lation model for vaccination (equation (2.1)). (a) Number of
infected cases, with the time plotted relative to the peak inci-
dence. (b) Contours of total number of cases (relatively to the
unvaccinated maximum) when vaccination is begun at differ-
ent times, and when the time to complete vaccination of the
population varies between 1 and 200 days. (We set R0 ¼ 1.4
and 1/g ¼ 4 days, to match the known epidemiological
behaviour for pandemic influenza in England in 2009 [16].)
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figures that follow, we have considered a wide range of
vaccination speeds (y-axis in figure 1, line colours in
figure 2, x-axes in figure 4); while some of these are
extremely rapid and may be practically unachievable,
the associated results are shown to provide a clearer
picture of the most optimistic control scenario.

Given this absence of clear epidemiological trade-offs
in this simple model, we need to consider a range of
more structured models in which we can consider the
trade-offs involved with the prioritization of different
groups for vaccination.
3. WHO TO VACCINATE: HIGH HEALTH
RISK OR HIGH TRANSMISSION
GROUPS?

When targeting a vaccination campaign (especially
against the 2009 H1N1 influenza strain), there are
often two competing priorities: minimization of trans-
mission by immunizing those individuals that are
most epidemiologically important; and minimization
of the effects of the disease by immunizing those indi-
viduals that have the most severe health consequences
when infected. (We note that for other infections
these two groups may strongly overlap, in which
case there is no conflict of priorities to resolve.) To
J. R. Soc. Interface (2011)
tease apart these conflicting ideals, we extend the
simple model above by having three groups
[18,19,22,23]: the dominant transmitter group (denoted
by a subscript D), the group at highest risk of severe
health complications if they become infected (denoted
by a subscript H ) and the rest of the general population
(denoted by a subscript G). These groups obey the
basic equation (2.1) with two main modifications:
firstly, the transmission dynamics are coupled through
a ‘who acquires infection from whom’ matrix (b); and
secondly, vaccination is prioritized so that either the
dominant transmitter group (D) or the severe health
risk group (H ) is vaccinated first, followed by the
other group (either H or D), finally followed by the gen-
eral population (G), (see electronic supplementary
material). Here we have ignored the possibility that
there is a group that are both dominant transmitters
and at high risk of complications—obviously if such a
group exists then it should be prioritized for vaccination
before all others.

Obviously, an epidemiological model with three
interacting groups has a large number of associated par-
ameters, making a comprehensive sweep of the entire
parameter space impractical and difficult to visualize.
Instead, we show results from a relatively restricted
scenario, but comment that these results are representa-
tive of all plausible scenarios that have been considered.
In particular, we constrain the number of individuals
in the three groups to be ND ¼ NH ¼ 0.1 N and HG ¼
0.8 N, and constrain the transmission rates between
all groups, except within the epidemiologically impor-
tant group, to be equal (bXY ¼ g, except when X ¼
Y ¼ D). We note that different forms and parameters
within this transmission matrix can potentially lead to
different optimizations of vaccine [22].

We now consider the optimal prioritization (either
group D first or group H first), as four key parameters
are varied: the transmission rate within the dominant
transmitter group, bDD; the relative adverse conse-
quences of infection for the three groups, sH . sD ¼

sG; the timing for the start of the vaccination pro-
gramme, T; and the speed with which the population
is vaccinated, v. Here the consequences of infection
could capture a variety of measures, from risk of symp-
toms if infected, to concepts such as loss of QALYs
(auality-adjusted life years), to risk of hospitalization,
to risk of mortality associated with infection. The
curves shown in figure 2 separate regions of parameter
space where one form of prioritization is optimal, in
terms of minimizing the total consequences of infection
over the entire epidemic and across all three groups;
regions above and to the left of the curves are where
it is best to initially target vaccination towards the
group with potentially severe health complications.

Two clear conclusions can be drawn. More rapid
vaccination (larger v) generally favours prioritizing
vaccination towards the group with potential health
consequences, as does a later onset of vaccination
(larger T ). However, it should be noted that for
either extremely rapid or extremely slow vaccination
(or extremely late start of the vaccination pro-
gramme), the differences between the two
prioritization schemes will be minimal. We can
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obtain some estimate of consequences by examining
the figures released by the Chief Medical Officer
for England [9]: of 342 confirmed deaths in England
from H1N1 by the middle of March 2010, 52 per
J. R. Soc. Interface (2011)
cent had severe underlying health problems while
only 18 per cent were classified as previously healthy;
similarly nearly 50 per cent of hospitalized patients
were considered to have underlying conditions. These
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1.4, 1/g¼ 4 days, bd¼ R0g exp(Hjd); where jd is a random variable, normally distributed with mean 0 and a variance of 1.)
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percentages, together with the fact that only 10 per
cent of the general population are considered to have
health problems, lead to estimates of sH :sG of atleast
9 : 1. Therefore, while there are a range of scenarios in
which it would be optimal to target the dominant
transmitters first, these tend to be in relatively
extreme portions of parameter space, when the trans-
mission rate bDD is very high and vaccination begins
very early in the epidemic; for the vast majority of
realistic scenarios, it is generally optimal to target vac-
cination towards those members of the population
with underlying health problems first, before tackling
the dominant transmitters and the rest of the general
population.
J. R. Soc. Interface (2011)
4. WHO ARE THE EPIDEMIOLOGICALLY
IMPORTANT GROUP?

Analysis of the 2009 pandemic to date in Britain, and
elsewhere, indicates that there are some strong age-
dependent signatures. Most notably, school children
have suffered the greatest per capita burden of infection
as recorded by surveillance systems, whereas pre-school
children have experienced the greatest per capita level
of severe infection (as measured by hospital admis-
sions), while the over 65 age group were most likely to
suffer severe problems if they became infected [9,16].
These different age-dependent effects are due to several
interacting and conflicting factors: the highly struc-
tured mixing between age groups, the age-related
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susceptibility to infection and the age-dependent risk of
severe symptoms following infection. To combine these
factors require a mathematical model based on the
available age-structured information. Here we use data
from the POLYMOD study [24] to parametrize age-
related mixing patterns, where Pa,b captures the
estimated contact rate between individuals of ages
a and b. In the electronic supplementary material we
also show that an age-dependent susceptibility vector
(qa) can be estimated such that the early dynamics,
as predicted by the dominant eigenvector of the
transmission matrix, agree with the observed early
age-structured distribution of infection. However, for
greater generality, we set q ¼ 1 in figure 3, although
even using the estimated age-dependent susceptibility
from the 2009 pandemic, together with the impact of
school holidays, does not dramatically change the
predictions (see electronic supplementary material).

We use the age-dependent transmission matrix b to
determine an optimal priority for a rapid age-dependent
vaccination programme [23,25–27] (figure 3). The
methodology is as follows: for each single dose of
vaccine, we consider which age class should be immu-
nized such that the resultant growth-rate (as
predicted by the dominant eigenvalue) is minimized;
repeating this process successively generates a vacci-
nation strategy that should rapidly control the
epidemic for any given level of vaccine coverage. (We
note that [27] provide an alternative, more analytical
method of minimizing the eigenvalue, which is equival-
ent to our approach once the total level of vaccine
exceeds a threshold.) The vaccination strategies given
in figure 3 therefore inform about the instantaneous epi-
demiological significance of each age group at a
particular point during an epidemic. We do not claim
that these strategies are truly optimal (in terms of mini-
mizing the predicted total number of cases across all
possible distributions of vaccine), nor that such strat-
egies are entirely relevant if vaccination is slow
relative to the epidemic timescales (owing to the
changes in the priorities we observe as the epidemic pro-
gresses, as shown in the sub-graphs). However, these
age-specific vaccination profiles do provide an intuitive
means of sequentially and efficiently increasing the vac-
cination coverage at any given point in the epidemic
and have been found to agree with the optimal distri-
bution of a fixed quantity of vaccine that minimizes
the dominant eigenvalue [27]. What is crucial to note
in these plots is that they represent a theoretical ideal
when vaccine supply is limited rather than an achiev-
able goal. If vaccine is not in short supply then it is
clearly always better (both in terms of reducing
growth rate and total epidemic size) to vaccinate some-
one than not, even if this leads to substantial deviation
away from the optimal age profile. Therefore, these
plots inform about possible prioritization of the vaccine
campaign.

In the early stages of the epidemic, before there has
been significant depletion of susceptibles, the predicted
vaccination strategy initially targets the 5–14 and 15–
24 year old age groups; vaccination should then begin in
the 25–44 age group, with older ages (greater than 45)
and the younger ages (under 5) not being targeted until
J. R. Soc. Interface (2011)
vaccine coverage exceeds 50 per cent. What is somewhat
counterintuitive is that the optimal deployment of vac-
cine could be partial in many age classes. For example,
if 50 per cent of the population can be vaccinated, then
the optimal strategy would be to attain highest levels of
coverage in the 25–44 year old age group and less in
the ages 5–24, despite the fact that the 5–24 year old
age groups are favoured for early vaccination before
the 25–44 year old age group. A second feature emerges
as vaccination is begun later in the epidemic. Because
the epidemic process has already depleted much of the
susceptible population in the most epidemiologically
active age classes (namely the 5–14 year olds and
15–24 year olds), there is a decreased benefit from
large-scale vaccination of these age groups. It should
be stressed that both the distribution of optimal vacci-
nation at a given time, and the way this changes as the
epidemic progresses, are critically dependent on the
number of individuals in each age group, the mixing
matrix (ba,b) and hence the age-dependent suscepti-
bility (qa). This means that precise details will depend
on the detailed epidemiology of the infection under
investigation, and are therefore likely to vary between
different strains of influenza—for example, with
models parametrized to match the 2009 pandemic in
England (see electronic supplementary material), the
1–4 year old age group plays a far more dominant role.
5. WHERE SHOULD VACCINATION
BE TARGETED?

The final important question to address when delivering
a vaccination programme, is whether there are any
advantages in spatially targeting its deployment
[28,29]. Obvious choices could be to target regions
with a high immediate burden (targeting based on cur-
rent proportion of infectious cases), or to target regions
that are likely to have many cases in the future (target-
ing based on current proportion of susceptibles), or
simply to vaccinate randomly with a fixed per captia
rate. Determining the optimal spatial targeting of vac-
cination is difficult because the impact of vaccination
is long-lasting, cumulative and nonlinear, meaning
that a generic understanding cannot be generated by
considering the impact of low vaccination levels, nor
can the action of vaccination be considered piece-wise
as it was above. The only viable option is to simulate
the dynamics with a variety of strategies and ascertain
which performs the best numerically, however the issue
now becomes the number of possible ways in which the
vaccine could be distributed.

We use a deterministic metapopulation model of the
progress of an influenza-like infection in the 408 dis-
tricts of Great Britain, linked by the commuter
movements recorded in the 2001 census, and consider
a wide range of epidemiological scenarios; with different
onset times for the start of vaccination (T ), different
numbers of districts initially infected and different
levels of transmission heterogeneity, as captured by
different bd in each district ( see electronic supplemen-
tary material). (Because of the added complexity of
dealing with an explicitly spatial model, other forms
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of heterogeneity such as age or risk structure have been
ignored, although their inclusion could be formulated in
a similar manner to that described above. We have
focused on modelling at the district scale as targeting
could be practically achieved as such a resolution;
finer scale targeting such as at the ward level would
lead to a enhanced vaccination scheme but is unlikely
to be practical.) The vaccination level in district d
is given as a function of the current epidemiological
conditions in that district:

wdðtÞ ¼ vðtÞ f ðSd ; Id ;Rd ;VdÞðNd � VdÞ
where vðtÞ is such that

P
d

wd ¼
0 if t , T or t . T þ N=v
v otherwise:

� ð5:1Þ

As with equation (2.1), this formulation ensures the
vaccination of a constant number (v) of (previously
unvaccinated) individuals each day, targeting unvacci-
nated individuals in each subpopulation at a per
capita rate proportional to f. We have adopted the con-
vention that variables and parameters with subscripts
refer to specific districts, while those without subscripts
refer to the entire population.

The initial assessment was to consider targeting ( f )
that was proportional to one of the standard model
variables (Sd/Nd, Id/Nd, Rd/Nd, Vd/Nd) or purely
random ( f ¼ 1); results are shown in figure 4. (Alterna-
tive more complex methods of targeting are shown in
the see electronic supplementary material.) Each
square is colour-coded and labelled according to which
targeting consistently generates the lowest number of
cases (from 100 replicate simulations with random
initial distribution of infection). When there is no
regional heterogeneity in epidemiological parameters
(bd ¼ b, top row), then the best strategy depends on
the speed of vaccination (x-axis), the time when the
vaccination campaign begins (column) and to a
lesser extent the number of districts initially infected
(y-axis). Early vaccination (begun as soon as cases are
detected) generally favours targeting of vaccination
proportional to the current proportion of infected
cases ( fd ¼ Id/Nd); if vaccination takes more than
three weeks to complete, then a later start to the vacci-
nation programme (begun when 10% of the population
have been infected and therefore approx. 20% of the
way through the uncontrolled epidemic) favours target-
ing proportional to the proportion of remaining
susceptibles in the population ( fd ¼ Sd/Nd)—therefore,
areas that have seen relatively less infection are
favoured. Finally, if vaccination is implemented, even
later (begun when 20% of the population have been
infected and therefore approx. 40% of the way through
the uncontrolled epidemic) targeting according to the
proportion of susceptibles is again favoured when the
epidemic is relatively dispersed and vaccination is
relatively prompt.

The top row of figure 4 corresponds to the unlikely
scenario when each spatial district has identical par-
ameters; in reality, there is likely to be significant
heterogeneity in transmission between different areas
owing to social and demographic factors. In the 2009
influenza pandemic in the UK, it was observed that
J. R. Soc. Interface (2011)
the epidemic grew more rapidly in London and the
West Midlands, possibly owing to such a mixture of
socio-demographic factors. Unfortunately, the degree
of such heterogeneity is difficult to estimate and is
likely to vary between outbreaks; we therefore force
the transmission rate within each district to be log-
normally distributed about the mean, with the variance
of the distribution controlled by the spatial heterogen-
eity (H ). (In particular, the transmission rate is given
by bd ¼ b exp(Hjd), where jd is a random variable, nor-
mally distributed with mean zero and a variance of
one.) When such heterogeneity is added, in the over-
whelming majority of scenarios (and certainly when
H � 0.2), targeting in terms of the proportion of indi-
viduals currently infectious ( fd ¼ Id/Nd) is the best
strategy. This advantage for targeting in terms of cur-
rent infectious cases is due to two main reasons:
firstly, when there is significant heterogeneity in
growth rates it will naturally target vaccination at
those regions likely to suffer larger epidemics;
secondly, by controlling infection in the worst affected
area, the spread of infection to other areas is reduced
and therefore more time is gained to vaccinate the
remaining areas. (As a further refinement to targeting
in the electronic supplementary material, we consider
f ¼ (Id/Nd)

a and seek the exponent, a*, that minimizes
the predicted number of cases.)
6. DISCUSSION

The mass use of an effective vaccine clearly has the
potential to provide major health benefits in terms of
a reduction in the total number of infected cases, and
therefore a reduction in the total number of adverse
effects [1,3,7]. However, when used against an ongoing
epidemic, the logistical constraints in terms of the
speed with which vaccine can be manufactured and
administered means that its deployment must be care-
fully targeted [8,11–15,23,26,27]. Many of these have
focused on particular aspects of targeted vaccination
(such as age- or risk-based) or have developed approxi-
mate [26] or analytical [27] methods for optimal
targeting. Here, using standard differential equation
models augmented to reflect particular heterogeneities,
we have attempted to provide a relatively general
framework that will be familiar with public-health
epidemiologists and other non-specialist modellers. In
general, our results agree with those of earlier studies
although we have often attempted to consider a far-
wider parameter space, with the aim of spanning
much of the parameter uncertainty that is likely to
arise during the early stages of an epidemic.

Three forms of targeting have been considered, in
terms of risk groups, age structure and spatial location,
to derive general insights into the benefits of targeted
vaccination. Throughout we have focussed on the
development of highly parsimonious models, where
assumptions and parameterization are relatively trans-
parent; however, even for these models the parameter
space is often too large to be visualized, in such cases
model parameters are based on observations from the
2009 influenza pandemic in Great Britain. Despite
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this large parameter space, several generic conclusions
can be drawn about the optimal deployment of vaccine:

— as predicted by even the simplest models, vacci-
nation campaigns are most effective when they are
applied rapidly and early in an epidemic before
many cases arise. In fact, figure 1 shows that an
early start to the vaccination campaign (and there-
fore rapid development of the vaccine) is of more
advantage than administering the vaccine quickly;

— owing to the natural levels of heterogeneity dis-
played within the population, it is generally better
to initially target vaccination towards those groups
likely to have severe symptoms rather than those
groups that are most responsible for transmission
(figure 2). To some extent, this is due to the ease
with which those groups that are likely to suffer
complications can be identified. The parameter
regime in which it is better to initially vaccinate
the severe risk groups, is extended when the vacci-
nation campaign begins later, or when the
population can be vaccinated more rapidly;

— once the groups with severe health risks have been
protected (or it has been deemed better to target
other groups), attention naturally focuses on
which elements of the population are the most epi-
demiologically active and the benefits associated
from vaccinating these individuals. Two main
results emerge (figure 3); firstly, any one group
should not be targeted to the exclusion of all
others, the best strategy is generally a mixed strat-
egy. Therefore, while it is generally predicted
(conditional upon age-dependent susceptibility)
that school-age children should be the initial focus
of vaccination, the optimal strategy does not con-
centrate on achieving complete coverage of this
group, instead it is best to target other groups
simultaneously;

— in addition, the best groups to target for vaccination
vary as the epidemic progresses. Most notably, age
groups that play the dominant epidemiological role
are rapidly depleted and therefore their importance
wanes as the epidemic progresses, and hence the
advantages of targeted vaccination compared with
random vaccination also decline; and

— although it is difficult (if not completely
impractical) to calculate the true optimal spatially
targeted vaccination policy, instigating at least
some measure of targeting has significant advan-
tages. Depending on the level of spatial
heterogeneity in transmission within the population
(which could reflect underlying demographic hetero-
geneity), targeting of vaccination towards regions
that are currently experiencing high levels of infec-
tion generally reduces the total number of cases.
The intuitive reason for this targeting is that by con-
centrating on centres of infections (and reducing the
immediate growth rate), it buys extra time to vacci-
nate other regions. Achieving such a targeting in
practice would require health services to be able to
rapidly shift resources around the country, and
only applies when there is a national limit to the
deployment of vaccine. However, these results
J. R. Soc. Interface (2011)
indicate two important points: firstly, that even
when vaccination schemes are administered locally,
there are likely to be strong advantages in spatially
targeting any additional national resources; and sec-
ondly that the likely human reaction for there to be
a greater demand for vaccine in regions with a
higher proportion of cases would assist in control.

Because of the relatively simplistic nature of the models
developed in this paper, several caveats should be made
regarding the results. The first is that vaccination cam-
paigns are unlikely to achieve a constant level of uptake
over time; a more realistic assumption is that vacci-
nation initially begins slowly due to logistical issues,
builds to a plateau, but may finally decline if the epi-
demic begins to wane during the period of the
vaccination programme and there is less incentive for
individuals to be vaccinated. Associated with this is
the fact that not all individuals are prepared to be vac-
cinated, and in particular parents in the UK are often
anxious about vaccinating children; therefore, the opti-
mal targeting of vaccination is unlikely to be possible
and it may simply be better to vaccinate any individ-
uals who wish to be vaccinated. The second issue,
which applies to figures 2 and 3, is that it may not
always be possible to identify or target relevant risk
groups. For example, there may be considerable overlap
between the age groups used in figure 3, and the groups
at risk of severe symptoms defined in figure 2; this was
undoubtedly the case in 2009 (as well as previous pan-
demics), where age was often a key contributing factor
to both the risk of infection and the risk of compli-
cations. Throughout, we have assumed a perfect
vaccine, which offers 100 per cent protection to all
those vaccinated. In practice, this is never realized, all
vaccines fail to some degree; however, there are two
ways in which this failure can be modelled. The first
is an all or nothing approach in which a fraction of all
vaccinations fails to generate any protection, while the
remaining offers full protection; in this case, the results
of our model natural extrapolate based on considering
the numbers protected. The second approachis to con-
sider ‘leaky’ vaccines that offer partial protection
reducing either susceptibility or onward transmission;
given the relatively low reproductive ratios considered
within this paper, we believe that our results are likely
to generalize to this case. A further issue related to
figure 2 is the ethics of vaccinating the epidemiologi-
cally important groups in order to protect the group
with severe health risks. While for influenza the vaccine
has little associated risk and therefore it may be argued
that the health benefits to the epidemiologically impor-
tant (but healthy) groups outweigh the dangers, the
same may not be true for other pathogens and the
associated vaccine. Additionally, we have generally
used deterministic models and hence assumed that vac-
cine would be used to mitigate the impact of infection
rather than to prevent an epidemic occurring. This is
particularly pertinent to the metapopulation model
(figure 4) when we neglect the possibility of using vac-
cine to eradicate infection in the early stages and
prevent its spread to the remainder of the country as
exemplified in Ferguson et al. [11]. We feel this is a
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reasonable assumption given that most novel infections
will be seeded continually by imports from abroad,
and vaccine is unlikely to be available at the start of
the epidemic. Finally, throughout we have assumed
that there is a strong public demand for vaccine.
Clearly, demand will vary both with disease severity
and public perception of the infection; for example,
the relatively mild nature of the 2009 pandemic
meant that demand and uptake of the vaccine was
low. However, if the infection has severe health impli-
cations, and therefore there is a clear need to optimize
control measures, then demand for vaccination is
likely to be substantial.

The models in this paper, and therefore the results
generated, are not designed to replace very detailed
simulations parametrized to match epidemiological
data from a given outbreak; however, they do provide
a high degree of generality that is difficult to obtain
with more case-specific simulations and hence provide
a rapid assessment of conflicting methods of targeting
vaccination. Often public-health action has to be
taken in the absence of critical information: levels of
prior immunity in the population affect the trans-
mission patterns, but it takes time to develop the
appropriate serological test; parameters such as case-
fatality ratios or the probability of hospitalization are
difficult to estimate in real time as an epidemic pro-
gresses; and although clinical trials can measure the
theoretical vaccine efficacy, vaccine effectiveness in
practice can only be determined once the vaccination
programme has begun. Given this range of uncertain-
ties, models can be best used to assist policy-makers
by examining a range of scenarios ahead of time; so
decisions can be taken based on the range of scenarios
that are consistent with the available data at the time
that the decision has to be taken. Simple models often
allow us to partition parameter space into clearly
defined regions where a particular strategy is optimal;
and while precise parameters may be difficult to esti-
mate early in an epidemic, there may be sufficient
evidence to suggest that the infection parameters lie
within one of these prescribed regions. As such, the
simple models developed here provide useful policy gui-
dance before or during the early stages of an epidemic
before there are sufficient data to parametrize more
detailed simulations.
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