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The lens was the first tissue in which the concept of embryonic induction was demonstrated. For
many years lens induction was thought to occur at the time the optic vesicle and lens placode
came in contact. Since then, studies have revealed that lens placodal progenitor cells are specified
already at gastrula stages, much earlier than previously believed, and independent of optic vesicle
interactions. In this review, I will focus on how individual signalling molecules, in particular
BMP, FGF, Wnt and Shh, regulate the initial specification of lens placodal cells and the progressive
development of lens cells. I will discuss recent work that has shed light on the combination of signal-
ling molecules and the molecular interactions that affect lens specification and proper lens
formation. I will also discuss proposed tissue interactions important for lens development. A greater
knowledge of the molecular interactions during lens induction is likely to have practical benefits in
understanding the causes and consequences of lens diseases. Moreover, knowledge regarding lens
induction is providing fundamental important insights into inductive processes in development
in general.
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1. INTRODUCTION

One of the fundamental goals in developmental
biology is to understand the molecular mechanisms
that regulate the induction and patterning of different
tissues and organs. In the beginning of the twentieth
century Hans Spemann introduced the concept of
inductive interactions by studying lens development
[1], in which induction is a process by which one
group of cells or tissue regulates the development of
another group of cells or tissue. Since then several
studies have used the lens as a developmental model
system to better understand the role of specific signal-
ling molecules, the interplay of different signals and
tissue interactions in regulating lens induction and pat-
terning events. The acquired knowledge is not only
important for understanding normal lens develop-
ment, but also key to defining general mechanisms in
cell specification, as well as to better understanding
of lens function and lens diseases.

The lens is a component of the peripheral nervous
system, which arises from the neural plate border.
Lens development is morphologically first visualized
by the thickening of the ectoderm into the lens placode,
in the vicinity of the prospective optic vesicle
(figure 1la,b) [3]. In higher vertebrates, including
chick, mouse and humans, the lens placode invaginates
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and forms the lens pit (figure 1¢). Subsequently, the
lens pit deepens and the connection with the overlying
surface ectoderm, the prospective cornea, is aboli-
shed resulting in the formation of the lens vesicle
(figure 1d). In lower vertebrates, such as fish and frog,
lens formation proceeds via delamination of the lens
placodal cells [4,5]. After formation of the lens vesicle,
cells at the centre of the posterior side of the lens will
elongate and differentiate into primary lens fibre cells,
whereas cells of the lens epithelium at the anterior side
of the lens retain their ability to proliferate and will
generate fibre cells throughout life (figure 1e¢) [3].

Induction of a tissue or organ seldom occurs in one
signalling step, but rather as a result of multi-step pro-
cesses. Subsequently, it can be difficult to point out a
single developmental stage for the initiation of induc-
tion of a tissue or organ, including lens induction.
Thus, it is often more informative to describe ‘specifi-
cation’ of cell fates, which denotes the step whereby
cells have received a signal that will instruct the cells
to become a specific cell type unless exposed to signals
that divert them to alternative fates. In this review,
I will highlight known signalling events that control
the initial specification of lens placodal cells and pro-
gressive development of lens cells between late
blastula to lens vesicle stages, and also discuss pro-
posed tissue interactions important for lens
development during these stages. I will not address
the role of various transcription factors in early lens
specification, since this topic has been reviewed in
detail elsewhere [6—9].
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Figure 1. Morphological changes during early lens development. Immunohistochemistry performed on sections of developing
chick lens. (a) The prospective lens ectoderm (PLE) lies close to the optic vesicle (OV), and (b) will subsequently thicken and
form the lens placode (LP). (¢) Next the lens placode invaginates, leading to the formation of the lens pit (LPi). (d) The lens
pit deepens and the connection with the overlying surface ectoderm, the prospective cornea (PC), is lost, shaping the lens vesicle
(LV). (e) Lens cells in the posterior part of the lens will elongate and differentiate into primary lens fibre cells (LF), whereas cells at
the anterior side consist of lens epithelial cells (LE). (d,e) Differentiated primary lens fibre cells upregulate crystallin proteins, here
detected by d-crystallin [2] shown in green. Nuclei in white are detected with DAPI staining.

2. LENS CELLS ARE INITIALLY SPECIFIED AT
GASTRULA STAGES

Specification can be defined under experimental set-
tings (explants assays), such that specified cells will
maintain their fate if removed from the embryo and
cultured 2 vitro in the absence of exogenous factors.
After specification to a particular cell fate, cells most
often have the ability to respond to external signals
to acquire another cell identity, before cell fate
commitment. Thus, it is important that these exper-
iments are conducted in serum-free conditions in the
absence of surrounding tissues to avoid uncontrolled
addition of signalling molecules or other components
that may affect cell fate.

Early in development, neural plate border cells
develop at the junction between the neural and epider-
mal ectoderm and give rise to placodal and neural crest
cells [10—13]. Besides the lens placode, the hypophy-
seal and olfactory placodes are generated in the rostral
part of the neural plate border, whereas the otic, tri-
geminal and epibranchial placodes, as well as neural
crest cells, are formed at a more caudal position of
the neural plate border region [14,15]. The well-
known rotation transplantation experiment performed
by Jacobson in amphibians, in which the neural plate
border region was rotated along its rostrocaudal axis
at neural plate and late neurula stages, analysed the
competence and commitment of the olfactory, lens
and otic placodes [16]. The main finding in this
paper is that at the neural plate stage, prospective pla-
codal cells are competent to acquire an olfactory, lens
and otic placode in response to specific external sig-
nals, whereas at the late neurula stage, the different
placodal cells appear to be committed to their respect-
ive fate. In agreement, transplantation studies in
Xenopus also suggest that lens cells are committed to
a lens fate at the end of neurulation [17]. Moreover,
another study in Xenopus embryos suggests that at gas-
trula stages the head ectoderm has a ‘lens-forming
bias’ [18], however, in this study ‘lens bias’ is defined
as the ability of the head ectoderm to respond to exter-
nal signals from the optic vesicle to acquire lens
identity, indicating that these studies actually address
competence similar to Jacobson’s study. Neither of
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these studies, however, address when lens cells initially
are specified.

A recent study using explant assays in chick has pro-
vided evidence that the specification of neural plate
border cells is initiated at the late blastula stage [12].
However, at this stage independent of rostrocaudal
position, prospective neural plate border cells are
specified as neural crest cells, but no placodal cells
are detected [12], indicating that at the late blastula
stage lens cells are not yet specified. Shortly thereafter,
at the late gastrula stage, rostral neural plate border
explants cultured in vitro generate cells of lens charac-
ter, providing evidence that the initial specification of
lens cells occurs at the late gastrula stage [19]. In con-
trast, in Xenopus embryos, lens cells are suggested to
be specified as the neural tube closes [20], which can
be due to differences in experimental settings or a
species-specific difference. Using markers of both dif-
ferentiated lens and olfactory epithelial cells in
specification maps, the study of Sjodal er al. has
shown that late gastrula stage and head fold stage ros-
tral neural plate border explants generate both lens
and olfactory placodal cells in a non-overlapping
manner (figure 2a) [19]. This is consistent with fate
maps of gastrula stage chick and zebrafish embryos
showing that prospective lens and olfactory placodal
cells are intermingled in a domain of the rostral
neural plate border [10,11], whereas cells in the
caudal neural plate border region are fated to give
rise to neural crest and caudal placodal cells [13]. At
the late gastrula stage to head fold stages caudal
neural plate border explants give rise to neural crest,
but no placodal cells ([21,22]; M. Sjodal, C. Patthey,
L. Gunhaga 2007, unpublished results), indicating
that caudal placodal cells are specified at later stages,
and strengthen the argument that lens progenitors are
situated in the rostral neural plate border. In contrast
to these findings, a study of Bailey er al. [23], using
explant assays of head fold stage chick embryos, has
suggested that lens specification is the ‘default’ state
of all sensory placodes and neural crest cells. However,
in this study prospective neural plate border explants
from different rostrocaudal regions were analysed by
using only lens, but no olfactory placodal or neural
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Figure 2. Sustained BMP activity is critical for lens development. (@) Specification maps of gastrula stage chick embryos; lens
(blue circles) and olfactory (orange circles) placodal progenitors are situated in the rostral neural plate border. (a,b) Blue/
orange, green, orange and blue boxes indicate regions of explants. (@) Gastrula stage lens/olfactory explants (blue/orange
box) generate cells of lens and olfactory character when cultured alone, and cells of neural character if cultured together
with Noggin. Gastrula stage forebrain explants (green box) generate cells of lens and olfactory character when cultured
together with BMP4. (b) Neural fold stage lens explants (blue box) generate cells of lens character when cultured alone,
and cells of olfactory character if cultured together with Noggin. Neural fold stage olfactory explants (orange box) generate

cells of lens character when cultured together with BMP4. Modified from [19].

N, neural plate; NF, neural fold. See text for more details.

Figure 3. Model of the initial specification of lens cells.
Proposed signalling events at gastrula to head fold stages in
the rostral neural plate border during the initial specification
of lens cells. (@) From gastrula stages, FGF activity represses
the generation of epidermal cells. BMP signals inhibit neural
formation, and in the context of FGF activity induce lens/
olfactory placodal progenitor cells. Wnt activity restricts
caudal expansion. (b) From head fold stages, Shh emanating
from the underlying mesoderm (grey domain) restricts rostral
expansion of lens formation. (a,b) The broken lines indicate
that there is not a strict boundary, but actually an overlap
between prospective neural, rostral placodal and epidermal
cells [10,13]. E, epidermal; B, neural plate border; N, neural
plate; blue circles, prospective lens placodal cells. See text for
more details.

crest markers, and although cells of non-lens fate were
detected they were not further characterized [23].

3. DIRECTED OR RANDOM MIGRATION

Since prospective lens and olfactory placodal cells are
intermingled at gastrula stages [10], it still remains
unclear whether the differential specification of lens
and olfactory cells occurs in the rostral neural plate
border or at their final spatial destinations. Fate and
specification maps have shown that at neural fold
stages, olfactory and lens placodal progenitor cells
are spatially separated (figure 2b6) [10,19,24]. This

Phil. Trans. R. Soc. B (2011)

E, epidermal; B, neural plate border;

process strongly resembles the development of the
eye and the odour-detecting antenna in Drosophila,
where the visual and olfactory cells arise from a
common imaginal disc, and at later stages separate
and acquire their distinct identities [25]. In Drosophila,
it has been suggested that the transcription factors
Eyeless (Ey) (Pax6 homologue) and Distalless (DIl)
(DIx homologue), in which Ey negatively regulates
DIl [26], play a role in the differential specification of
eye and antennal cells, respectively [25]. In chick,
Pax6 and DIx5 remain co-expressed until the lens
and olfactory placodes are morphologically visualized,
and the differential expression of Pax6 in the lens and
DIx5 in the olfactory placode occurs only at later
stages [10], indicating that these molecular cues
cannot be involved in restricted cell migration. How-
ever, lens cells forced to maintain DIx5 expression in
chick [10] and Pax6—/— cells in mouse chimeras
[27] are expelled from the developing lens, implicating
these transcription factors in regulation of cell sorting
during lens development.

It is possible that cells in the rostral neural plate
border are specified as rostral placodal progenitor
cells, and retain the capacity to adopt either lens or
olfactory placodal fate until exposed to additional mol-
ecular signals from the surrounding environment.
At neural fold stages, Pax6, DIx5, Six1 and Sox2, are
expressed in both lens and olfactory placodal precur-
sor cells [10,19,28]. In addition, at this stage no
molecular marker has been shown to distinguish the
morphologically separated lens and olfactory placodal
precursors, supporting the idea that rostral placodal
precursors may initially comprise a common fate.
Nevertheless, at the neural fold stage, presumptive
lens placodal cells cultured iz vitro acquire lens but
not olfactory placodal character [19,23], providing evi-
dence that at this stage lens placodal precursors have
been exposed to signals that direct them towards a
lens fate. Thus, the question of whether the differential
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specification of lens and olfactory placodal cells
occurs in the rostral neural plate border followed by
a cell restricted migration, or at their final spatial
destinations remains to be determined.

4. TISSUE INTERACTIONS

Without doubt the development of mature lens cells
from presumptive lens ectodermal cells requires tissue
interactions. When and how specific tissues might regu-
late lens development has also been discussed elsewhere
[29-31]. Spemann’s classical studies in 1901 suggested
that the optic vesicle, which will give rise to the retina, is
required for the development of the lens [1]. This state-
ment was later challenged by findings that a lens or
lens-like structures can form even in the absence of reti-
nal tissue [32,33]. These first studies concerning lens
induction were based exclusively on morphology.
Since then, accumulating results using cytological cri-
teria and molecular markers indicate that structures
resembling a lens develop independent of interactions
with the neural retina [19,23,34]. However, at later
developmental stages the optic vesicle appears to play
an important role for further maturation of the
lens [35-38].

Explant assays in chick have provided evidence that
gastrula stage prospective lens placodal cells cultured
alone, without interactions of the neuroectoderm,
epidermal ectoderm or underlying mesoderm, generate
cells of lens character [19,22,23], suggesting that the
initial specification of lens cells is independent of
tissue interactions. In Xenopus the situation is somewhat
different, since both rostral neural tissue and meso-
derm are suggested to be required and/or enhance
lens induction [20], once again pointing towards a
difference in experimental settings or species-specific
difference in lens induction. In chick, it has been
shown that in the absence of the underlying mesoderm
prospective adenohypophyseal placodal cells gene-
rate cells of lens character ([23]; D. Gustavsson and
L. Gunhaga 2007, unpublished results), suggesting
that the mesoderm underlying adenohypophyseal pla-
codal progenitors restricts lens fate in prospective
hypophyseal placodal ectoderm. Consistently, prospec-
tive hypophyseal placodal explants cultured in contact
with the underlying head mesoderm generate cells of
adenohypophyseal character, and under these con-
ditions no lens cells are detected (D. Gustavsson
and L. Gunhaga 2007, unpublished results). Taken
together, in chick, the initial specification of lens cells
does not require interactions with the underlying head
mesoderm, but rather the reverse; the most rostro-
medial part of the head mesoderm appears to restrict
specification of lens fate.

The restriction of lens fate in the caudal part of
the embryo is regulated by neural crest cells [23]. At
neural fold stage, prospective lens ectodermal explants
cultured together with prospective, pre-migratory or
migratory neural crest cells all fail to generate cells of
lens character, analysed by Pax6 and &-crystallin
expression [23]. Moreover, partial ablation of prospec-
tive neural crest cells from fore- and midbrain levels at
neural fold stage in chick [23] and amphibians [39],
resulted in ectopic lens formation in a fraction of the
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studied embryos. Why all embryos did not generate
ectopic lenses could be due to the fact that cells are
exposed to other lens-repressing signals together with
lack of lens-promoting signals in the caudal region of
the embryo. Taken together, the initial specification
of lens cells appears to depend on planar signals
within the ectoderm, and one major challenge has
been to define when and how different signals regulate
this process.

5. BONE MORPHOGENETIC PROTEIN SIGNALS
PLAY A KEY ROLE IN THE SPECIFICATION OF
LENS PLACODAL CELLS

Bone morphogenetic protein (BMP) signals have been
shown to play important roles during lens formation.
Already at gastrula stages Bmp2 and Bmp4, as well as
the BMP downstream activator, p-Smad-1/5/8, are
detected in the rostral neural plate border, where
both prospective lens and olfactory placodal cells are
positioned [40,41]. Recent results using chick explants
and intact embryo assays have provided evidence that
at this stage, BMP activity is both required and suffi-
cient to induce lens and olfactory placodal cells, and
that sustained exposure of placodal progenitors to
BMP signals is required for lens induction [19].
Prospective olfactory/lens placodal explants from gas-
trula stage chick embryos cultured together with
the BMP inhibitor Noggin generate cells of neural
character (figure 2a) [19]. Vice versa, prospective fore-
brain explants cultured in the presence of BMP4
generate cells of lens and olfactory placodal character
(figure 2a) [19]. Thus, chick explant assays provide
evidence that at gastrula stages, BMP activity inhibits
neural fate and regulates the initial specification of
lens placodal cells (figure 3a). Consistently, Bmp4
knockout mouse embryos lack morphological lens pla-
codes, but the expression of Pax6 and Six3 is detected
in prospective lens ectoderm [42]. These observations
indicate that lens placodal progenitor cells are induced
in Bmp4 mutant mice, which might reflect functional
redundancy between Bmp members, as Bmp2 is also
expressed in the neural plate border region at gastrula
stages [40].

A useful tool to study the roles of signalling molecules
in early lens development in mice is the Lens-Cre con-
struct. In this construct the Cre recombinase is driven
by a lens-specific enhancer of Pax6, expressed in the
prospective lens ectoderm and the surface ectoderm
near the presumptive lens, generating lens-specific
transgenes [43]. By using the Lens-Cre construct to
delete either the two type I BMP receptors Alk2/Alk3,
or Smadl/Smad5 or Smad4, a recent study has shown
that BMP activity regulates lens formation in mice
[44], supporting previous findings in chick [19]. This
study suggests that lens placodal invagination and upre-
gulation of the lens markers FoxE3 and aA-crystallin is
mediated by BMP signalling in a Smad-independent
manner, while cell proliferation in the lens is mediated
by the Smad pathway [44]. However, in the study of
Rajagopal ez al., no data for an alternative downstream
BMP pathway regulating lens specification was pre-
sented, and it is unclear why the significant increase in
cell death in Smadl/Smad5 deficient lens cells does



Review. Lens induction L. Gunhaga 1197

not prevent or cause disturbed lens formation. Thus,
further studies have to be performed to define in detail
the downstream pathway(s) of BMP receptor activation
that regulate the formation and invagination of the lens
placode, and the initial upregulation of lens markers.

Atthe neural fold stages in chick, pSmad-1/5/8 is pre-
ferentially detected in the prospective lens ectoderm
compared to the prospective olfactory placodal region
[19]. At this stage using prospective lens and olfactory
placodal explants, cells can switch between lens and
olfactory placodal fate in response to changes in BMP
activity, providing evidence that at neural fold stages
BMP signals promote the generation of lens cells at
the expense of olfactory placodal cells (figure 25) [19].
Furthermore, in intact neural fold stage chick embryos,
inhibition of BMP signals in prospective lens cells com-
pletely abolishes lens placodal formation and inhibits
the onset of L-Maf and &-crystallin expression [19].
Consistently in Bmp4 mutant embryos, where rostral
placodal progenitor cells are generated, although lens
placodes fail to develop the olfactory placodes appear
normal [42]. At later stages, Bmp7 is expressed in the
lens ectoderm and optic vesicle, while Bmp4 is
expressed in the optic vesicle [45,46]. Since both
Bmp7 — /— and Bmp4 — /— mice embryos exhibit dis-
turbed lens formation [42,46], it appears that both
Bmp4 and Bmp7 are required for lens development,
and that these Bmp family members cannot subsidize
for one another. Collectively, these results indicate
that sustained BMP activity regulates the specification
and formation of the lens placode. What specific role,
if any, BMP signals play in the differentiation of lens
fibre cells has, however, not been determined.

6. THE ROLE OF FIBROBLAST GROWTH FACTOR
SIGNALLING IN LENS PLACODAL CELL FATE
Many studies have shown that fibroblast growth
factor (FGF) signals play an important role in lens
development, primarily in secondary lens fibre cell differ-
entiation [6,47,48]. In support of this, several members
of the FGF family are expressed in the eye region and
all four FGF receptors (FGFR1-4) are expressed in the
developing vertebrate lens [48]. Thus, the requirement
of FGF signals during lens formation is apparent, but
how does FGF activity regulate early lens specification?
A recent study has provided evidence that at the late
gastrula stage, when lens placodal cells are initially
specified, FGF activity prevents prospective lens/olfac-
tory placodal cells in the rostral neural plate border
from acquiring epidermal fate [19]. However, at this
stage, FGF8 is not sufficient to induce cells of lens
character in either prospective neural or epidermal
cells [19]. The above results, taken together with the
role BMP signals play at gastrula stages, suggest a
possible model of early lens specification (figure 3a),
in which FGF and BMP signals act in the neural
plate border region in an opposing manner, to restrict
neural and epidermal cell fate, respectively. Thus, in
the context of FGF signals, which prevent the gener-
ation of epidermal cell fate, BMP activity specifies
lens/olfactory placodal progenitor cells in the rostral
neural plate border (figure 3). In the light of this
model previous results can be interpreted in new
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ways. Mis-expression of Fgf8 in the chick head ecto-
derm at early neural tube stages ectopically induces
expression of the early lens marker L-Maf [49].
Rather than a direct lens-inducing role of FGF signals,
these results indicate that mis-expression of Fgf8 in the
ectoderm inhibits the generation of epidermal cells,
thereby enabling BMP signals to ectopically induce
cells of lens character. Similar results are observed in
Xenopus embryos, where placodal Six! expression is
induced by a combination of FGF8 and low levels of
BMP activity, but not by FGF8 alone [50].

Neither at the gastrula stage nor at the neural fold
stage do FGF signals contribute to the differential spe-
cification of lens and olfactory placodal cells [19,23].
Although Baliley er al. proposed that FGF signalling
represses lens specification and induces olfactory
fate, both their studies and another study reveal that
at the neural fold stage, lens progenitor cells do not
upregulate olfactory markers when exposed to FGF8
[19,23]. In addition, in the presence of FGF activity,
presumptive lens cells still generate L-Maf and
d-crystallin positive cells [19]. Moreover, at this stage
inhibition of FGF signalling does not induce lens
character in prospective olfactory cells [19,23]. Thus,
at early stages of development changes in FGF acti-
vity are not sufficient to switch between a lens and
olfactory placodal fate.

In embryonic day (E) 8.5-E9.5 mouse eye explants,
inhibition of FGF signals reduces Pax6 expression in
the lens placode and the size of the lens pits formed
in culture [51]. Moreover, blocking FGF activity in
the presumptive lens by expressing a dominant-
negative FgfR1 using the Lens-Cre construct results
in reduced Pax6 expression, decrease in placodal
thickness and delayed placodal invagination, but
nevertheless a lens, although smaller, develops [51].
This phenotype resembles the disrupted lens for-
mation in Frs2a?¥?F mice mutants [52]. Frs2a?F is a
docking protein mediating FGF signalling via the
ERK pathway, and in Frs2¢®™?F mice mutants Pax6
and Six3 expression are decreased in the presumptive
lens ectoderm, the placodal thickness is reduced and
approximately 70 per cent of the mutants have smaller
lenses [52]. At lens pit stages, both a- and B-crystallins
are induced in the lens in Lens-Cre;FgfR1/2/3-defi-
cient mouse embryos [53]. Consistently, in chick, the
induction of &-crystallin expression is not directly
regulated by FGF signals, whereas the induction of
Caprin2 expression and further differentiation of lens
fibre cells requires FGF activity [36]. In summary,
although FGF activity is required at early stages for
preventing lens progenitor cells from acquiring an epi-
dermal fate and for proper lens placodal formation, the
initial differentiation of primary lens fibre cells and
onset of early lens-specific markers are not dependent
on FGF signals.

7. CAUDAL RESTRICTION OF LENS CELLS BY
WNT ACTIVITY

Though, at gastrula stages, the importance of BMP and
FGF signalling in ensuring a correct medial—lateral
restriction of lens placodal cell character is clear,
other signals provide rostral and caudal suppression
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of lens fate. Several studies have provided evidence
that Wnt signals play a key role in suppressing lens for-
mation in the caudal part of the neural plate border
region. As previously described in this review, at the
late gastrula stage cells in the rostral neural plate
border are specified as lens/olfactory placodal cells,
while cells in the caudal border are specified as
neural crest cells [19,21,22]. At this stage, Wnt activity
imposes caudal character on neural plate border cells,
thereby inhibiting lens and olfactory placodal specifi-
cation, while promoting the generation of neural
crest cells (figure 3a) [22,54]. Moreover, gain-and-
loss of Wnt activity studies in chick explant assays
have provided evidence that cells can switch between
a lens/olfactory placodal and neural crest fate in
response to changes in Wnt activity [22]. Prospective
neural crest cells cultured in the presence of soluble
Frizzled receptor, acting as a Wnt inhibitor, acquire
lens and olfactory placodal character. On the other
hand, prospective lens/olfactory placodal cells cultured
together with Wnt3 conditioned medium acquire
neural crest fate [22]. Consistently, Masterblind and
headless zebrafish mutant embryos, which exhibit exag-
gerated Wnt signalling in the rostral neural plate
border, lack or have reduced lens and olfactory pla-
codes, while trigeminal placodal and neural crest
cells have expanded into the rostral part of the
embryo [55-57]. Similarly, in the Drosophila eye-
antennal imaginal disc, the expression of Ey (the
Pax6 homolog) is suppressed by Wingless signals [58].

The findings that Wnt signals inhibit the specifica-
tion of lens cells indicates that prospective lens cells
need to develop in a Wnt-free domain. These results
are supported by findings in chick and mouse, showing
that the Wnt antagonist, Secreted frizzled-related protein
2 (Sfrp2) is expressed in the lens placode of mice and
chick [46,59]. Moreover, in Xenopus, Dickkopfl
(Dkk1), another Wnt inhibitor, is required for the
exclusion of neural crest formation in the rostral
neural plate border region [60]. In LacZ reporter
mouse lines, which express LacZ in response to acti-
vation of the canonical Wnt pathway [61,62] there is
no indication of X-gal staining, i.e. Wnt activity, in
the lens region at E8.5-E15.5 [63,64]. Consistently,
even in the presence of Wnt inhibitors prospective
lens cells in chick explants still upregulate the lens
markers L-Maf and d-crystallin (Sjodal and Gunhaga
2006, unpublished data). Finally, in mice, individual
deletions of two Wnt co-receptors, Lrp5 and Lrp6
required for Wnt canonical signalling, do not perturb
lens fate determination [64—66]. Although, a double
knock-out of Lrp5 and Lrp6 would determine whether
these co-receptors may act redundantly during early
lens specification, it seems unlikely that such double
mutants would exhibit a lens phenotype, since the
above results clearly provide evidence that Wnt signals
are not required for lens fate specification.

Also at lens placodal stages, several functional
studies in mice have provided evidence that Wnt
activity through the canonical pathway represses lens
formation. In mice, gain of B-catenin activity through
the Lens-Cre system prevents lens formation, sup-
presses Pax6 expression and upregulates Tujl
expression [64,67]. Smith and colleagues argue that
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surface ectodermal cells have acquired a neural fate,
but since studies performed at earlier stages have
shown that prospective lens cells can switch to neural
crest fate in response to Wnt activity [22], it is also poss-
ible that Tujl positive neural crest derived neurons are
generated. Analyses of specific neural crest and neuro-
ectoderm markers would reveal this uncertainty. In
agreement, loss of B-catenin activity in the presumptive
lens and extraocular ectoderm using the Lens-Cre con-
struct does not perturb lens fate decision, but leads to
formation of small ectopic lentoids expressing Pax6
and crystallin proteins in the extraocular ectoderm
[63,64]. The overall conclusion is that between gastrula
stages and lens placodal stages Wnt activity restricts
caudal expansion of lens formation (figure 3).

8. WNT INDEPENDENT B-CATENIN SIGNALLING
AFFECTS LENS MORPHOGENESIS

Although no activation of the canonical Wnt pathway
has been detected in the developing lens [63,64], B-cate-
nin is expressed in the lens placode at E9.5 [64],
suggesting that Wnt independent B-catenin activity
plays a role in lens formation. B-catenin is known to
affect cell adhesion and morphogenesis, and is a central
component of the cadherin—catenin adhesion complex,
which anchors the adhesion complex to the actin cyto-
skeleton. Conditional deletion of B-catenin, using the
Lens-Cre construct, results in breaks in the continuous
curve of the epithelium. These breaks corresponds to
disruption of cytoskeletal and/or junctional complexes,
detected by F-actin and ZO1 labelling, respectively
[63,64]. These results indicate that Wnt independent
B-catenin activity is required, not for lens fate decision
or initial lens placodal invagination, but for further lens
morphogenesis.

9. ROSTRAL RESTRICTION OF LENS CELLS BY
SONIC HEDGEHOG ACTIVITY
Fate maps in chick and zebrafish at gastrula to neural
fold stages have shown that lens precursor cells are
located in a more caudal—distal domain compared to
adenohypophysis progenitors, which arise from the
most rostral-medial region of the neural plate border
[10,11,68]. Several studies have provided evidence that
Hedgehog (Hh) signals play a major role in the develop-
ment of the adenohypophysis, and have suggested that
Hh activity promotes the generation of adenohypophy-
seal cells, while inhibiting lens formation [69-71]. In
agreement with these results, a recent study has observed
that at the head fold stage in chick, Sonic Hedgehog (Shh)
is expressed in the mesoderm underlying the prospective
hypophyseal placode, which expresses Prc2, a receptor
for Shh signalling [72]. In contrast, at this stage, the
mesoderm underlying the prospective lens placode
does not express Shh, and prospective lens placodal
cells do not express Prc2 [72]. Thus, the expression pat-
terns of members of the Shh signalling pathway support
the idea that Hh signals suppress lens fate and promote
the specification of adenohypophyseal cells.
Convincing studies of different vertebrate mutants
with disturbed Hh activity have provided evidence that
Hh signals direct the choice between adenohypophyseal
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and lens fate. Talpid® chicken mutants, which have a
defective activation of the Shh pathway, develop ectopic
lenses usually located in the midline deriving from or
connected to the hypophyseal duct [69,70]. Similarly,
several zebrafish mutants with disturbed Hh-signalling
have ectopic lenses at the expense of the adenohypophy-
sis [71,73,74]. In these mutants, the head ectoderm
that normally forms the hypophyseal placode instead
develops into a lens indicated by the repression of adeno-
hypophyseal markers together with upregulation of
lens-specific markers [71,73,74]. In addition, transgenic
mice that over-express the Shh inhibitor Hip (Hunting-
tin interacting protein) in the oral ectoderm and in the
adenohypophyseal placode only develop a rudimentary
Rathke’s pouch [75]. In agreement with these studies,
in chick explant assays when Shh signals are blocked
prospective adenohypophyseal placodal cells generate
cells of lens and olfactory epithelial fate (Gustavsson
and Gunhaga 2007, unpublished data). Consistently,
over-expression of Hh in zebrafish suppresses lens for-
mation [11,76]. In Xenopus, Xhip (Xenopus hipl) is
expressed in the prospective lens ectoderm, and loss of
Xhip, leading to exaggerated Hh activity, results in the
suppression of lens placode formation [77]. These
observations indicate that the absence or presence of
Shh activity in the rostral part of the surface ectoderm
mediates a switch between lens and adenohypophyseal
placodal cell identity. In summary, at the head fold
stage, Shh signals from the underlying mesoderm act
on the most rostral neural plate border cells, thereby
inhibiting lens specification and inducing adenohypo-
physeal placodal cell fate. Thus, from head fold stages,
Shh activity in the neural plate border region regulates
the rostral restriction of lens specification (figure 35).
In zebrafish, the Nodal signalling pathway, belonging
to the transforming growth factor (T'GF)B-family, has
been implicated in directly activating transcription of

Phil. Trans. R. Soc. B (2011)

the Shh gene [78]. Subsequently, in zebrafish embryos
with mutations in the c¢yclops gene, encoding for
nodal-related protein2, midline expression of Sih is
lost in the ventral central nervous system [79,80]. Con-
sistently, mutations affecting components of the Nodal
signalling pathway result in severe axial defects with two
lens placodes in close proximity or a single median eye
and lens formed at the expense of the adenohypophysis
[79,81,82]. Taken together, as seen in both Hh and
Nodal mutants, Hh signals play a key role in generating
two separated lens domains via the formation of a
medial located hypophyseal placode.

At later stages of development, the characteristic
protein of chick lens fibre cells, 8-crystallin, is also
transiently expressed in the adenohypophysis, as first
demonstrated by Barabanov and Fedtsova [83].
Although the adenohypophysis expresses d-crystallin,
this expression is very weak compared with the ©o-
crystallin expression in the lens (figure 4), and an
estimated concentration of d-crystallin in the stage
22 chick adenohypophysis is only approximately
1/3000 of the detected amount in the lens [84]. More-
over, lens fibre cells, but not the adenohypophysis,
express L-Maf, an early lens marker first expressed in
the prospective lens ectoderm (figure 4) [85], and
the morphological cell elongation characteristic of
lens fibre cells is not detected in adenohypophyseal
cells [84,86]. These results imply that high levels of
d-crystallin expression in cells of chick is characteristic
of lens fibre cells.

10. RETINOIC ACID AND NOTCH ACTIVITY

IN EARLY LENS FORMATION

In the last 10 years, several studies concerning how reti-
noic acid (RA) regulates lens development have been
reported, and recently reviewed [87]. RA activity is first
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observed in the lens placode around neural fold stage and
at later stages in the lens pit and lens vesicle, using i vivo
reporter systems to visualize RA signalling [88,89]. The
invagination of the lens placode appears to depend on
RA activity, while inhibition of RA signals using antisense
oligonucleotides against cellular retinal-binding protein
(CRBP) in early neural fold to early neural tube stages
in mouse results in disturbed invagination of the lens pla-
code [90]. A similar phenotype, with failure of lens
placodal invagination, is also observed in Pax65%/S®Y
mice mutants, which interestingly exhibit reduced RA
activity in the lens placode [88]. Since, mice mutants sup-
pressed in BMP or FGF activity, also exhibit reduced or
completely blocked Pax6 expression [46,52,91], it is
possible that several signalling molecules regulate Pax6
expression, which in turn is critical for proper lens
placodal invagination and further lens development.

Notch signalling is known to promote proliferation
and inhibit cell differentiation in many embryonic tissues.
When the intracellular domain of Notch (Notch©) trans-
locates to the nucleus it acts in a transcriptional complex
with the DNA-binding transcription factor Rbpj and
Mastermind to promote transcription. Loss of Notch sig-
nalling in the lens of mice, by using a Lens-Cre;Rbpy
construct, results in premature exit from the cell cycle
and subsequently accelerated primary lens fibre cell
differentiation [92,93]. Consistently, mice with constitu-
tive Notch activity, through Lens-Cre;NozchC, exhibit
delayed primary fibre cell differentiation [92]. However,
the overall conclusion from studies using the Lens-
Cre construct to suppress Notch activity is that Notch
signals are not essential for lens formation, but are
primarily required during secondary lens fibre cell
differentiation [92—95].

To date, studies regarding how Notch signals affect
lens development at earlier stages are few. The first
direct evidence that Notch activity plays a role in lens
induction is that inhibition of the Notch ligand, Delta2,
in Xenopus results in loss or severe reduction of FoxE3
expression followed by failure of placodal formation and
reduced or absent yI-crystallin expression [96]. Interest-
ingly, the FoxE3 promoter includes a target sequence
for Su(H)-binding motif for Notch signalling and
also for Smadl-binding motif for BMP signalling, and
both are suggested to be required for proper upregula-
tion of FoxE3 [96]. This finding beautifully highlights
the general knowledge that a combination of signal-
ling factors affects lens specification and proper lens
formation.

11. CONCLUDING REMARKS

A model that describes how specific signalling mol-
ecules regulate the initial specification of lens cells in
vertebrates at gastrula stages has emerged (figure 3).
At this stage, planar BMP, FGF and Wnt signal(s)
within the ectoderm regulate lens induction. In the
context of FGF signals, which repress epidermal ecto-
derm formation, BMP activity specifies lens/olfactory
placodal progenitor cells in the rostral neural plate
border region. Wnt activity restricts caudal expansion
of lens formation. From head fold stages, Shh activity
derived from the underlying mesoderm restricts lens
formation in the most rostral part of the neural plate
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border. Taken together, around gastrula to head fold
stages the activities of BMP, FGF, Shh and Wnt
appear to choreograph the patterning of the neural
plate border and subsequently restrict the ectoderm
fated to become the future lens (figure 3).

I thank Michael Wride, the referees and group members of
L.G. for their comments on the manuscript. L.G. is
supported by Umea University, Sweden.
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