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The Euclidean and MAX metrics have been widely used to model cue summation psychophysically and

computationally. Both rules happen to be special cases of a more general Minkowski summation rule

ðCuem
1 þCuem

2 Þ
1=m

, where m ¼ 2 and 1, respectively. In vision research, Minkowski summation with

power m ¼ 3–4 has been shown to be a superior model of how subthreshold components sum to give

an overall detection threshold. Recently, we have previously reported that Minkowski summation with

power m ¼ 2.84 accurately models summation of suprathreshold visual cues in photographs. In four

suprathreshold discrimination experiments, we confirm the previous findings with new visual stimuli

and extend the applicability of this rule to cue combination in auditory stimuli (musical sequences and

phonetic utterances, where m ¼ 2.95 and 2.54, respectively) and cross-modal stimuli (m ¼ 2.56). In all

cases, Minkowski summation with power m ¼ 2.5–3 outperforms the Euclidean and MAX operator

models. We propose that this reflects the summation of neuronal responses that are not entirely

independent but which show some correlation in their magnitudes. Our findings are consistent with elec-

trophysiological research that demonstrates signal correlations (r ¼ 0.1–0.2) between sensory neurons

when these are presented with natural stimuli.
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1. INTRODUCTION
Our interactions with the environment require the

ability to accurately interpret and integrate the surround-

ing perceptual cues [1–4]. In vision, straightforward

combination rules for neural channels have been

proposed in detection (e.g. [5]) and visual search exper-

iments [6–10]. These include classical models such as

linear (city-block) addition, energy (Euclidean) sum-

mation and the maximum (MAX) rule. Of these, the

Euclidean metric has been widely used to define psycho-

logical space (e.g. [6,7]) and has often been the

benchmark against which psychological models of cue

summation are tested. However, the MAX metric has

also been studied computationally and biologically (e.g.

[11–13]). These two rules are therefore particularly

important in the modelling of perception.

However, there is evidence to suggest that cue sum-

mation may diverge systematically from these classical

rules, which are special cases of a more general

Minkowski summation rule:

Minkowski sum ¼ ðCuem
1 þCuem

2 Þ
1=m ð1:1Þ

where m ¼ 1, 2 and 1 result in linear addition, Euclidian

summation and the MAX rule, respectively.

Visual detection experiments using compound stimuli

such as pairs of sinusoidal gratings or even complex
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natural images have shown that a Minkowski rule with

power m ¼ 3–4 (rather than Euclidean or MAX) is a

good model of how subthreshold components sum to

give an overall detection threshold (e.g. [14–18]). Fur-

thermore, we have recently shown in suprathreshold

discrimination experiments that perceptual combination

of features such as colour changes and shape changes in

photographs of natural visual scenes are best modelled

using a Minkowski summation with power m � 3 [19,20].

We are interested in whether such perceptual sum-

mation of suprathreshold cues also occurs when an

observer listens to composite natural sounds, such as

music or speech. In hearing, there has been much debate

on how auditory cues combine in multi-tone stimuli (e.g.

[21]) and more complex sounds like music (e.g. [22]) or

speech (e.g. [23]). Although there exist parallels between

visual and auditory processing, research in auditory feature

integration arises from a different tradition with a different

point of view, so that it is difficult to draw direct compari-

sons between summation models used in vision and

hearing. However, Green [21] did report that two sub-

threshold tones summed to reach threshold with less

summation than expected for power (i.e. Euclidean) sum-

mation, implying that simple auditory cue summation

might also follow a Minkowski rule with m . 2.

The present paper compares cue or feature combination

in different auditory and visual natural stimuli by asking

observers to give magnitude estimation ratings for pairs

of stimuli that differ along a number of different dimen-

sions. Cue combination is studied by considering how

ratings to changes along single dimensions compare with
This journal is q 2010 The Royal Society
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Figure 1. Examples of combination sets used in the (a) music, (b) phonetic and (c) visual scene experiments. Starting from one
reference stimulus, the first pair (component pair) differed in one dimension, the second pair (a second component pair)

differed in a second dimension and the final pair (the composite) differed in both dimensions.
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ratings to changes along a combination of these dimen-

sions. We will consider auditory cue summation in

musical sequences and in phonetic utterances, and we

will show the same kinds of systematic failure of the

Euclidean and MAX models found with cue combination

in photographs of natural scenes. We will also investigate

how visual cues are summed with auditory cues in a

cross-modal situation, where observers are simultaneously

presented with photographs and natural sounds and

where the stimulus changes can be visual, auditory or a

combination of both. Again, our results will demonstrate

that Minkowski summation with power m ¼ 2.5–3 is

most successful in describing feature integration in cross-

modal natural stimuli and a significantly better description

than Euclidean summation and MAX rule. We suggest

that Minkowski summation with power m ¼ 2.5–3

reflects the summation of neuronal responses that are

not entirely independent but that show some correlation

in their magnitudes. This would make sense since

information from the world is correlated [24]. Our con-

clusions are supported by electrophysiological research

that demonstrates consistent signal correlations between

sensory neurons when they are presented with natural

stimuli (see §4).
2. METHODS
(a) Experimental stimuli

(i) Construction of stimuli

In the music experiment (experiment 1), observers were pre-

sented with 160 musical sequence pairs (each lasting 2 s) that

differed in one or two of the following dimensions: intensity
Proc. R. Soc. B (2011)
(by changing the dynamics to pp or ff), timbre (by changing

the instrument), pitch (by transposing the sequence upward

or downward by various chromatic or diatonic intervals) and/

or content (by changing, adding or removing one or more

notes). The magnitudes of these changes varied between

the different parent sequences. There were 16 reference

sequences, each providing four single dimension changes

and six composite changes (see §2a(ii)). All sequences were

generated using a free evaluation copy of Notion Demo

(Notion Music Software, v. 1.5.4.0), a piece of music com-

position and performance software. (Examples of

sequences and differences are shown in figure 1a and in the

electronic supplementary material, figure S1a,b.)

The phonetic experiment (experiment 2) used 320 stimu-

lus pairs (each lasting 1–2 s) made from recordings of single

spoken syllables. All phonetic utterances were recorded and

modified using Audacity (v. 1.3.4—beta software that is

freely downloaded online). The stimuli in the pair could

differ in intensity (increased by 5 dB or decreased by

15 dB), low-pass (roll-off ¼ 18 dB/octave) and high-pass

(roll-off ¼ 24 dB/octave) filtering, tempo (faster or slower)

and pitch (very high, high, low or very low). The magnitudes

of these changes were different for different syllables. A refer-

ence syllable could be paired with one of these variants or

with a different syllable (e.g. ‘ta’ versus ‘na’), and might

change in one (component) or two (composite) ways (see

§2a(ii)). There were 20 reference syllables, each with 15 var-

iants, and a total of 320 phonetic utterances (see electronic

supplementary material, table S1).

In the vision experiment (experiment 3), observers were

presented with a total of 300 pairs of natural image scenes

based on 20 parent images, each matched with 14 variants.
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Some variants were a second photograph of the same scene

taken when, say, an object had moved. In other variants,

using MATLAB, the scene could be blurred or sharpened to

varying degrees, the contrast could be reduced, or the hue

and saturation of the whole scene could be changed while

leaving the brightness relatively unaffected (see examples in

figure 1c here and in the electronic supplementary material,

figure S1d). In total, 20 pairs were identical, 100 pairs dif-

fered only along one of the dimensions described above

and 180 pairs differed in a combination of two dimensions

(see §2a(ii)).

The stimuli in the cross-modal experiment (experiment 4)

were natural images coupled with natural sounds, i.e. a visual

image was presented simultaneously with an auditory

sequence. Observers were presented with a total of 648

pairs of these image-sound combinations and were asked

how different the overall audio-visual ‘experience’ appeared

to them. The stimuli were based on 36 reference photographs

(nine each of animals, musical instruments, objects and

people) and 36 appropriate reference sound effects.

Seventy-two original photographs were purchased from the

website iStockphoto (from various artist members) and then

modified using MATLAB. Each reference image could be

changed in two ways (e.g. blur, contrast or hue) and a

third variant consisted of a second photograph of the same

object or scene taken when a target object had moved or

changed shape. The natural sound sequences were generated

from 36 reference sound effects chosen from a database

called ‘INSTANTSOUNDFX’. Each reference sequence was sub-

sequently modified using the software program Audacity and

cropped to have a duration of 1 s. Three variants from each

reference sound sequence were made by increasing or

decreasing the intensity by values between 3 and 10 dB,

low-pass (roll-off between 6 and 36 dB/octave) and

high-pass (roll-off between 6 and 48 dB/octave) filtering,

and lowering or heightening the pitch by 15–40 dB. In 324

image-sound pairs, the images and sounds were chosen so

that their content was congruous (e.g. bird images–chirping

sounds), but in the other 324 pairs, the images and sounds

were drawn from different categories so that their content

was incongruous (e.g. bird images–telephone ringing

sounds). See the electronic supplementary material online

for examples, and details on how congruous and incongruous

sounds were matched with visual images.

The electronic supplementary material online also con-

tains further details on the construction and presentation of

all the stimuli described above.

(ii) Combination sets

The experiments were based around combination sets of three

stimulus pairs. Starting from one reference stimulus, the first

pair (component pair) differed in one dimension such as

intensity, the second pair (a second component pair) differed

in a second dimension such as pitch, and the final pair (the

composite) differed in both the dimensions. For example,

in the music experiment, a first pair (a component pair)

might differ in one dimension such as dynamics, the

second pair (a second component) might differ in a second

dimension such as scale (transposition), and the final pair

(the composite) would exhibit differences in both dynamics

and scale dimensions (figure 1a). The magnitude of the

two changes in the composite was the same as in the com-

ponent pairs, and each component pair contributed to

more than one combination set. There were in total 96
Proc. R. Soc. B (2011)
musical combination sets in the experiment 1, 200 phonetic

combination sets in experiment 2 and 180 visual scene com-

bination sets in experiment 3. See examples of each in

figure 1.

In the cross-modal experiment (experiment 4), among the

648 image-sound pairs, 216 contained only image changes

(while the sound remained unchanged), 216 contained only

sound changes (while the images remained unchanged) and

216 contained both image and sound changes; i.e. there

were 216 image-sound combination sets. Overall, the 216

combination sets consisted of 108 congruous and 108 incon-

gruous sets. An example of congruous combination set is

presented in the electronic supplementary material, figure

S2b–d).

(b) Experimental procedure

The procedure was the same for all experiments, and the

details of training and experimental design are given in the

electronic supplementary material. Human observers (naive

to the purpose of the experiments) were presented with

pairs of stimuli and asked to make subjective numerical rat-

ings of the perceived difference between the items in each

pair [19]). During the experiments, observers were fre-

quently presented with the same standard stimulus pair

(specific for each experiment, see electronic supplementary

material, figures S1a,c, S2a and table S1), whose magnitude

difference was defined as ‘20’. They were instructed that

their ratings of the subjective difference between any other

test pair should be based on this standard pair: if they per-

ceived the difference between the test pairs to be lesser,

equal or greater than the standard pair, their ratings should

be less, equal or greater than 20, respectively. For the exper-

iments, the presentation sequence of stimulus pairs was

randomized differently for each observer.

(c) Data collation

In each experiment, the magnitude estimation ratings of the

10–15 observers were averaged together for further analysis.

The results for each observer were first divided by their

median value (typically about 20). The scaled rating for

each stimulus was then averaged across observers, and the

average was multiplied by the grand average of all the

observers’ original ratings [25].
3. RESULTS
(a) Cue combination for natural sounds

and natural visual scenes

Figure 2a–c examines whether Euclidean summation can

predict the measured rating (R3) to the composite stimu-

lus in each combination set from the separate ratings

(R1 and R2) given for its two component pairs in the

first three experiments. The figure panels plot the pre-

dicted value of R3 against the measured value of R3. By

analogy with equation (1.1), the predicted rating for the

compound is:

R3predicted ¼ ðR1m þ R2mÞ1=m; ð3:1Þ

where m ¼ 1 for linear summation, m ¼ 2 for Euclidean

summation and m ¼1 for the MAX rule. The predicted

ratings for the composite stimuli (ordinate) are well corre-

lated with the actual ratings (abscissa); Pearson’s r is 0.87,

0.94 and 0.90 for figure 1a (musical sequences), figure 1b

(phonetics) and figure 1c (visual scenes), respectively.

However, there is a systematic failure of the prediction:
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Figure 2. For the separate music, phonetics, visual and cross-modal experiments, predictions of the rating (R3) given to the com-
posite stimulus pair in a combination set calculated from the individual ratings (R1 and R2) for the two separate component
stimuli. Lines of equality are shown. SSE is the summed squared error between predicted and actual R3 divided by the
number of combination pairs in the experiment, and expressed as ‘squared rating units’. The results from experiments 1–4

are presented in the first, second, third and fourth rows, respectively. In (a–d), the Euclidean sum (when m ¼ 2 in equation
(3.1)) of R1 and R2 is plotted against the measured R3. In (e–h), the MAX (when m ¼1 in equation (3.1)) of R1 and R2 is
plotted against the measured R3. In (i– l), the Minkowski sum (equation (3.1)) of R1 and R2 is plotted against R3 (the best-fitting
Minkowski exponents are, m: 2.95, 2.54, 2.97, 2.56 in (i– l), respectively). In (m–p), the Mahalanobis sum (equation (4.1)) of R1
and R2 is plotted against R3 (covariance parameter, r: 0.192, 0.112, 0.186, 0.134 in (m–p), respectively).
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the data points tend to lie above the line of equality

(especially evident in figure 2a,c, where the summed

squared-error per point (SSE) is greater than in

figure 2b), showing that Euclidean summation of the

component ratings has slightly overestimated the rating

given by the observers to the compound stimuli.

The MAX rule (equation (3.1) with m ¼1) also per-

forms poorly; figure 2e–g shows that data points were

mostly below the line of equality, meaning that taking

the maximum of the component ratings mostly underesti-

mated the rating of the combination stimuli. Indeed, we

have previously shown for cue integration in visual stimuli

that the MAX operator model underestimated observers’
Proc. R. Soc. B (2011)
ratings while linear addition dramatically overestimated

them. The same trend was observed in the present

experiments; table 1 shows that the SSE per point for

the linear addition rule was very high and the model is

less acceptable even than the Euclidean model. The

SSE values for the MAX rule were close to but were con-

sistently higher when compared with those for Euclidean

summation.

Euclidean summation and the MAX operator are

special cases of a general Minkowski summation rule

(equation (3.1)), a summation rule frequently used to

model threshold and suprathreshold visual performance

[14–18,25] as well as elsewhere [26]. An iterative



Table 1. The summed squared error per point (SSE) for linear summation, MAX rule, Euclidean summation, Minkowski

summation and Mahalanobis distance are shown. The predictions from the Minkowski and Mahalanobis models were
consistently better than those for the more usually considered linear addition, MAX and Euclidean summation models.

experiment
number of
combination sets

SSE/point

linear
sum

maximum
rule

Euclidean
sum

best Minkowski
sum

best Mahalanobis
distance

1 (music) 96 290.64 25.03 19.85 9.32 9.22
2 (phonetic) 200 64.09 7.39 4.82 3.83 3.97

3 (visual scenes) 180 83.00 7.19 6.48 3.60 3.66
4 (cross-modal) 216 129.27 16.90 6.07 3.47 3.54
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search was used to determine the value of the exponent m

that minimized the sum of squared deviations SSE

between the predicted value of R3 (ordinate, equation

(3.1)) and the measured value on the abscissa; 95 per

cent confidence intervals were obtained by Monte Carlo

bootstrapping. Figure 2i–k show how well Minkowski

summation of the ratings to component stimuli predicts

the rating given to the composite stimulus in the first

three experiments. This serves to compare our present

experiments (particularly with natural sounds) with our

previous visual experiments [19] but, more importantly,

by allowing the summation exponent m to be a free

parameter, it illustrates that there is a systematic failure

of the Euclidean and MAX predictions.

In the two experiments with natural sounds

(figure 2i, j ), the generalized Minkowski summation

rule outperformed the specific Euclidean and MAX

rules, in that the SSE in both cases was reduced signifi-

cantly (table 1). For instance, for the phonetics

experiment where the improved fit is least obvious,

adding the one parameter has caused SSE to fall from

4.81 to 3.83 on average for each data point: F1,199 ¼

50.91, p � 0. The Minkowski summation exponents are

2.95 (95% confidence interval, 2.62–3.36) and 2.54

(95% confidence interval, 2.31–2.78) in the music and

phonetics experiment, respectively (figure 2i,j). The cor-

relation coefficients between predicted and measured

ratings are 0.86 (music) and 0.95 (phonetics).

To examine whether the Minkowski model was equally

successful in modelling cue combination across the differ-

ent feature dimensions (e.g. pitch and timbre versus

intensity and tempo), we first calculated the squared

errors between the averaged observers’ ratings for each

combination stimulus and the corresponding Minkowski

predictions, and then analysed the mean-squared errors

in a one-way repeated measures analysis of variance

(ANOVA) for the different types of combination (listed

in electronic supplementary material, table S3). In both

auditory experiments, the Minkowski summation model

was uniformly efficient in predicting the ratings for all

the different combination types: F5,95 ¼ 1.69, p ¼ 0.14

for music and F9,190 ¼ 0.82, p ¼ 0.60 for phonetics.

Post hoc Bonferroni analyses found no differences in

the SSE between predicted and measured ratings among

the different types of combinations.

Results from the visual experiment (figure 2k) also

showed that Minkowski summation with a very similar

exponent (m ¼ 2.97; 95% confidence interval,

2.78–3.36) was a better model than Euclidean or MAX

summation (table 1), confirming our previous reports on
Proc. R. Soc. B (2011)
a different set of image stimuli [19]. The correlation

between measured and predicted ratings was 0.91, and a

one-way repeated measures ANOVA showed that the Min-

kowski summation model was equally accurate in

modelling all nine types of combinations (electronic sup-

plementary material, table S3): F8,171 ¼ 1.21, p ¼ 0.30.

In addition, a post hoc Bonferroni analysis revealed no

differences in the SSE between predicted and measured

ratings among the nine types of visual combinations.

(b) Combination of audio-visual cues in

bimodal stimuli

In the previous three experiments, observers were pre-

sented either with pairs of sounds or with pairs of visual

scenes so that they could rate perceived differences

either in the sound or in the visual stimulus, respectively.

Here, we show the results of an experiment where each

stimulus in a pair was a natural image visual stimulus

coupled with a natural sound. The stimuli encompassed

216 combination sets, composed of three stimulus pairs:

in the first pair only the images changed, in the second

pair only the sounds changed, and in the third pair both

images and sounds changed.

Figure 2d,h shows that Euclidean and MAX sum-

mations of the auditory cue (or rating) with the visual

cue failed to predict the rating given by observers to the

composite stimuli, where both visual and auditory com-

ponents change. The discrepancy was similar to those

of figure 2a–c,e–g for the separate auditory and visual

cases. Minkowski summation (with power m ¼ 2.56;

95% confidence interval, 2.42–2.67) of the ratings for

the separate visual and auditory changes was a superior

fit to Euclidean or MAX rules (figure 2l; table 1 summar-

izes all the SSE values). The correlation coefficient

between predicted and measured ratings was 0.82.

When combination sets from the congruous and incon-

gruous conditions were analysed separately (see

electronic supplementary material, figure S3), the best

predictions were obtained with the general Minkowski

summation rule with power m ¼ 2.62 and 2.50, respect-

ively. The absence of an effect of congruency suggests a

general rule rather than a stimulus-specific phenomenon.

The remaining parts of figure 2m–p will be discussed

below.
4. DISCUSSION
There has a long-been debate about the arithmetic rules

governing feature integration: that is, the way in which a

person combines multiple sensory or cognitive cues. It
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has been asked whether successful demonstration of a

rule would represent some universal Law of Mentation

[6,7]. The present experiments have focussed on the sum-

mation of perceptual cues in natural auditory and visual

stimuli. We have been able to look more subtly than

many previous studies at the precise applicability of differ-

ent summation rules, and our experiments have revealed

that Minkowski summation with power m in the range

of 2.5–3.0 provides a significantly better fit to the data

than linear addition, Euclidean summation and MAX

rules, where m would exactly be 1, 2 and 1, respectively.

We find systematic deviations from all three classical

models for feature integration in natural auditory, visual

and audio-visual stimuli.
(a) Minkowski summation in feature integration

Minkowski summation with m ¼ 3–4 has long been used

in the study of vision (e.g. [14,15]) to describe how mul-

tiple subthreshold visual stimuli sum towards an overall

detection process. This may be consistent with Green

[21], who found that the summation of pure tones in

auditory experiments was less than expected on a power

summation rule. The same Minkowski rule (typically

with m ¼ 3–4) has been used to model the detection of

changes in natural visual images, when multiple tiny

cues are contributed across very many visual channels

or model neurons [16–18]. Such modelling has been

extended to the perceived magnitudes of suprathreshold

differences in natural images similar to those that we

have described here [18,25]. We have shown here that

the same sort of Minkowski exponent describes the per-

ception of suprathreshold changes in naturalistic

auditory stimuli, as well as visual changes. This suggests

that the combination of cues, whether subthreshold for

detection or suprathreshold for perceived differences or

similarity judgements, follows one general rule (cf. [7]).

We have also shown that the same Minkowski sum-

mation rule describes the summation of auditory cues

with visual ones in cross-modal experiments, for incon-

gruous as well as congruous pairings. There is an

interesting evaluation of multi-sensory integration by

Laurienti et al. [27], who summarize the degree of sum-

mation of auditory and visual responses in the cat

superior colliculus. Here, some neurons respond only to

auditory stimuli, some only to visual stimuli and some

to both (even when they are not necessarily congruous

visual and auditory events). Laurienti et al. [27] estimate

the overall population response of the superior colliculus

(for comparison with functional magnetic resonance ima-

ging studies (fMRI)) and report that the response to an

auditory/visual stimulus combination is greater than the

response to either alone, but is less than the arithmetic

sum. The summing exponent seems to be consistent

with the overall appearance of Euclidean or Minkowski

summation with exponent like those we have fit in figure 2.

Minkowski summation with exponent m of 2.5–3 pro-

vides a convenient numerical description of the results of

our present experiments, but it does not provide a phys-

ical or neural explanation for the cognitive processes

involved. Vision scientists who model detection processes

have called the Minkowski summation rule the ‘prob-

ability summation model’, presuming that the

Minkowski exponent is a parameter associated with the
Proc. R. Soc. B (2011)
steepness of the psychometric function for detection

[15]. On the other hand, for the suprathreshold inte-

gration of binocular and binaural signals, the Minkowski

exponent has been suggested to reflect the strength of

reciprocal inhibition between two neurons prior to sum-

mation [28]. These interpretations do not seem to be

immediately applicable to an overall suprathreshold sen-

sation, in the context described above. In the following

section, we speculate about what neural mechanisms

might lead to the failure of Euclidean summation.
(b) The Mahalanobis distance

Euclidean summation has been widely discussed as a gen-

eral model for cue summation (e.g. [6,7]). However, this

straightforward rule, as well as the MAX operator, is con-

tradicted by our empirical results where Minkowski

summation with power m of 2.5–3 is clearly a better fit

to the experimental data. It is possible that this value of

the Minkowski exponent m is related to the amount of

correlation between different neuronal signals responding

to natural stimuli. Euclidean summation might be appro-

priate if activity is independent, as each neuron would

convey a uniquely important signal. However, if responses

were highly correlated, the information given by only one

neuron would be sufficient and the MAX rule (where m

is 1) would apply. So, if the neuronal signals to natural

stimuli are slightly correlated, then the most appropriate

summating exponent should be only a little greater

than 2. A Minkowski exponent between 2.5 and 3 there-

fore suggests some small degree of signal correlation

between actual neuronal responses.

In this case, an appropriate measure of cue combi-

nation should therefore readily account for potential

correlation in signals, and an adjusted Euclidean measure

of distance between stimuli is needed: the Mahalanobis

distance [29] with covariance parameter r. The Mahala-

nobis distance has one free parameter, like the

Minkowski distance. For the case where we are summing

just two cues, the following formulation for a measure of

feature integration is based on the Mahalanobis distance

[29] and its relation to the Euclidean sum (equation

(3.1) with m ¼ 2) is clear:

Mahalanobis sum ¼ R3predicted

¼ ðR12 þ R22 � 2� r� R1� R2Þ1=2

ð4:1Þ

where r is the correlation between the dimensions

represented by R1 and R2; it is the covariance of the

sensory messages, if the sensory dimensions each

have the same overall variance. The true Mahalanobis dis-

tance would be given by equation (4.1) after division by

(1 2 r2) but we omit this division from our measure

since we would have to apply the same scaling to the

measured values of R3 as well. The term 2r � R1 � R2

is the amount by which Euclidean summation overesti-

mates (figure 2a–d) the rating to R3. For our four

experiments, figure 2m–p plots the value of R3 (ordinate)

predicted (equation (4.1)) by the Mahalanobis sum of R1

and R2 against the actual values of R3; the value of

r shown in each panel was found for each of the four

experiments separately by iteratively searching for the

value that gave the least SSE and the 95 per cent
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confidence intervals for the r values for experiments 1

(music), 2 (phonetic), 3 (visual scenes) and 4 (cross-

modal) are 0.16–0.23, 0.07–0.15, 0.15–0.21 and

0.13–0.17, respectively. (Electronic supplementary

material, figure S3 shows the separate Mahalanobis fits for

the congruous and incongruous conditions in experiment

4.) The Mahalanobis fits are significantly superior to the

Euclidean and MAX operator fits (all F-tests highly signifi-

cant), and are about the same as for the Minkowski fits.

The Mahalanobis distance is closely related to the ‘law

of cosines’ where ‘r’ is replaced by ‘cos t’ (e.g. [28]). In

this case, t is a measure of the interaction between two

non-orthogonal (i.e. correlated) sensory dimensions.

Therefore, the present data might also represent an inter-

action between two sensory dimensions within a non-

orthogonal coordinate system. Although the present

data fit both the Mahalanobis and Minkowski models

nicely, we should bear in mind that there might exist con-

ditions where the behaviour of the Minkowski sum and

the Mahalanobis sum do not overlap; indeed, it is only

for small values of r that a Minkowski exponent can

give a satisfactory alternative fit.
(c) Correlations in neural signals

While a Minkowski exponent m of 2.5–3 has little neural

meaning in cross-dimensional feature integration, the

values (0.11–0.19) of the covariance parameter r for

the Mahalanobis sum do have a potential neurophysiolo-

gical significance. It has long been known that stimulus-

evoked responses and spontaneous activity are correlated

between neurons in the cerebral cortex [30], though

Ecker et al. [31] argue that some of this correlation

could be removed in well-controlled experiments.

Indeed, the idea of widespread correlation is implicit in

our understanding of the origin of the electroencephalo-

gram, and such correlation probably underlies the

spontaneous fluctuations in the BOLD signal seen in

the connected cortical areas during fMRI [32]. Such

widespread correlations might be related to changes in

overall alertness or in attention to a task [33], and changes

in neuronal responsiveness might lead to trial-by-trial

apparent correlation of neural messages about truly-

independent sensory dimensions. If attentional or other

factors operate across large areas of cerebral cortex, we

might even expect such correlations to be cross-modal

and, of course, we have found the same putative corre-

lations in our experiments between natural visual

changes and natural auditory changes. Moreover, such

widespread correlations of neural activity might explain

why the summation of cross-modal stimuli was the

same for incongruous pairings as for congruous ones.

The responses of sensory neurons are also likely to be

correlated for several other, less global reasons. First, sen-

sory input signals are likely to be correlated because

information from the world is correlated. For instance,

when we see a small elongated element in one part of

our visual field, it is very likely that, beyond it and along

its long axis, we may see elongated elements of very similar

orientation [24] since the small elements are all part of one

collinear or slightly curved object. A sharp luminance

boundary will activate multiple visual cortex neurons

whose receptive fields are of different spatial scales [34].

Secondly, visual receptive-field construction is not
Proc. R. Soc. B (2011)
orthogonal and the visual cortex code is redundant

[35,36] so that neurons’ stimulus response-spaces overlap

to some extent with the spaces of other neurons. Neurons

close together within cerebral cortex are likely to respond

to similar stimuli because of the columnar layout of the

cortex [37] and also because nearby neurons share their

(noisy) inputs and modulatory controls.

Thus, there are many reasons why we should expect

the neural signals to paired stimuli to be correlated. Cor-

relations in nearby stimulus features or in the receptive-

field structure of nearby neurons with shared connectivity

might explain why a Mahalanobis rule governs sum-

mation within audition or within vision. It is harder to

see how such correlations explain why the same rule

should govern cross-modal summation between audition

and vision, especially in the incongruous case.

We still have an incomplete understanding of the mag-

nitudes of typical correlation coefficients between neural

responses, especially when the systems are studied with

natural stimuli [38]. There have been many studies, par-

ticularly in various cortical areas of the visual system (e.g.

[38–42]) and other cortical systems (e.g. [43]) that have

measured the correlation in activity of simultaneously

recorded neurons. The correlation coefficients actually

vary widely between pairs of neurons and are generally

highest for neurons recorded very close together. How-

ever, noticeable positive correlations have been reported

even for neurons recorded more than 10 mm apart in

cortex and for neurons that do not respond to the same

visual features [41]. Some studies have tried to distinguish

correlations in the trial-by-trial noise (‘perceptual inde-

pendence’) from correlations in the underlying coded

signals (‘perceptual separability’) by asking whether neur-

onal responses show overall correlations or whether the

correlations are only at a trial-by-trial level of modulation.

Despite the wide variety of behaviours, all these studies

have generally reported typical or average correlations in

the noise and the coded signals of about 0.2 (but see

[31]). A typical inter-neural correlation of about 0.2 com-

pares remarkably well with our estimates (figure 2 and

electronic supplementary material, figure S3) of the

signal correlations implicit in human sensory integration.
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