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Madagascar and the Seychelles are Gondwanan
remnants currently isolated in the Indian Ocean.
In the Late Cretaceous, these islands were joined
with India to form the Indigascar landmass,
which itself then split into its three component
parts around the start of the Tertiary. This history
is reflected in the biota of the Seychelles, which
appears to contain examples of both vicariance-
and dispersal-mediated divergence from
Malagasy or Indian sister taxa. One lineage for
which this has been assumed but never thoroughly
tested is the Seychellean tiger chameleon, a
species assigned to the otherwise Madagascar-
endemic genus Calumma. We present a
multi-locus phylogenetic study of chameleons,
and find that the Seychellean species is actually
the sister taxon of a southern African clade and
requires accomodation in its own genus as Arch-
aius tigris. Divergence dating and biogeographic
analyses indicate an origin by transoceanic dis-
persal from Africa to the Seychelles in the
Eocene–Oligocene, providing, to our knowledge,
the first such well-documented example and
supporting novel palaeocurrent reconstructions.
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1. INTRODUCTION
Once forming the eastern half of the southern super-
continent Gondwana, the landmasses of Madagascar,
Seychelles, India, Antarctica and Australia had com-
pletely separated en bloc from Africa and South
America by the start of the Cretaceous [1]. Although
there is recent debate on the length of contact between
Indigascar (India, Madagascar and Seychelles [2]; also
see electronic supplementary material) and South
America via Antarctica [3,4], by the start of the Late
Electronic supplementary material is available at http://dx.doi.org/
10.1098/rsbl.2010.0701 or via http://rsbl.royalsocietypublishing.org.
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Cretaceous South America and Africa were separated,
thus severing all subaerial connections between Indi-
gascar and Africa. India–Seychelles completed a
gradual separation from Madagascar around 88 Ma
[1], and India and the Seychelles separated about
65 Ma [5]. This left the Seychelles as a string of grani-
tic and coral islands centred off the northeast coast of
Madagascar approximately 1600 km east of Africa.

The famously endemic biota of Madagascar, pre-
viously ascribed largely to Gondwanan vicariance,
appears in fact to owe much to overseas dispersal
from Africa [6]. Along with some Asian and African
ties, the equally endemic Seychelles biota is character-
ized by multiple affinities to both India and
Madagascar. Based on data from partly dated molecu-
lar phylogenies (see electronic supplementary
material), several taxa show clear signatures of
Gondwanan vicariance with their sister species occur-
ring in India (caecilians, sooglossid frogs). Other taxa
have originated possibly by vicariance (aplocheiloid
fishes) or probably by dispersal (hyperoliid frogs, day
geckos) from Madagascar.

Chameleons are a lizard group almost entirely con-
fined to Old World Gondwanan fragments, with
centres of diversity in East Africa and Madagascar.
Although their distribution superficially suggests Gond-
wanan vicariance, shallow molecular divergences among
the major clades are instead most compatible with mul-
tiple overseas dispersals [7–10]. Seychelles harbours
one species of chameleon, Calumma tigris, on the
three largest granitic islands (Mahé, Praslin and Silhou-
ette). As the name implies, non-molecular phylogenetic
analyses place this species within the otherwise Mada-
gascar-endemic genus Calumma [8]. This placement
dictates a solidly Tertiary divergence from its Malagasy
congeners [10] and thus suggests trans-oceanic disper-
sal northward to Seychelles. However, molecular data
needed to test this hypothesis are lacking. Using a
dated phylogenetic analysis of chameleons based on
sequence data from multiple mitochondrial and nuclear
loci, we recovered an unexpected sister-taxon relation-
ship of this species to the African genus Rieppeleon,
thus providing evidence for overseas dispersal from
Africa to Seychelles that was probably favoured by
currents and river discharges in the Palaeogene.
2. MATERIAL AND METHODS
Taxon sampling comprised 42 species (43 individuals) of chame-
leons, spanning at least the deepest divergences within all
previously recognized major clades, and including the type species
of each genus. To provide calibration nodes for divergence-dating
analyses, we also included as outgroups the tuatara (Sphenodon punc-
tatus) and 13 extra-chamaeleonid squamate reptiles (see electronic
supplementary material). We obtained DNA sequence data for the
mitochondrial genes 16S, ND2 and ND4, and the three nuclear
protein-coding genes CMOS, PRLR and RAG1, for a total alignment
length of 5129 base pairs (bp) and 147 new sequences, deposited in
GenBank under the numbers HQ130509–HQ130655. See
electronic supplementary material for voucher information and
GenBank numbers of all sequences used in our analyses. We per-
formed maximum-likelihood (ML) best-tree and bootstrap analyses
using RAxML v.7.2.5 [11,12], and unrooted Bayesian (UB) analyses
using MRBAYES v.3.1.2 [13]. We also used a relaxed-clock Bayesian
(RCB) approach using BEAST v.1.5.3 [14] with fossil constraints to
estimate divergence times. Tests of alternative topologies were per-
formed in an ML framework using the Shimodaira–Hasegawa test
[15]. Biogeographic analyses were conducted in an ML framework
using ancestral state reconstruction in MESQUITE [16] and
dispersal-extinction-cladogenesis analysis in LAGRANGE [17]. See
electronic supplementary material for all analysis details.
This journal is q 2010 The Royal Society
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Figure 1. Bayesian chronogram of chameleon phylogenetic relationships inferred from the full dataset (5129 bp). For clarity,

only the two nearest outgroups are pictured. Type species of genera and subgenera are marked with a (T). Branch colours
reflect distribution of taxa: blue, Madagascar; red, Africa; green, Seychelles. Black circles represent Bayesian posterior prob-
abilities (PP) �95% and maximum-likelihood bootstrap (MLBS) values greater than 90%. Grey circles represent PP � 95%
and MLBS �70%, and white circles represent PP � 95%. Bars represent 95% highest probability densities on divergence
times. Top left, relevant Palaeogene oceanic currents and major eastward drainages from the Late Cretaceous-Palaeogene of

Africa, modified from Ali & Huber [22] and Markwick & Valdes [25], respectively. Note that these studies are based on inde-
pendent data, and the freshwater outflow has no causative influence on depicted ocean currents. Bottom left, present-day
oceanic currents and major eastward-flowing African rivers. Shaded mainland area denotes approximate distribution of
Rieppeleon, and shaded box encompasses distribution of A. tigris.
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3. RESULTS AND DISCUSSION
Our topology is consistent with results of recent DNA
sequence-based studies [7–10,18–20] vis à vis assign-
ment of species to major clades within
Chamaeleonidae. The ML topology is generally simi-
lar to the UB and RCB topologies, which have
greater support across most nodes; no conflicting
nodes receive bootstrap support less than 31 per
cent. In all analyses, the Seychelles-endemic C. tigris
is maximally supported as the sister taxon of the
southern African genus Rieppeleon (figure 1). Tests of
several alternative topologies (e.g. monophyly of
African ground chameleons, monophyly of Calumma)
rejected all alternatives at the p ¼ 0.01 level (see
electronic supplementary material). The estimated
mean divergence time between C. tigris and Rieppeleon
is 38.4 Myr, with a 95 per cent highest probability den-
sity of 28.7–48.5 Myr, thus placing the split sometime
Biol. Lett. (2011)
in the Middle Eocene to Early Oligocene. The biogeo-
graphic analyses reconstructed Africa as the ancestral
area for the Rieppeleon–Archaius clade with probabil-
ities of 94 per cent (MESQUITE) and 87 per cent
(LAGRANGE) (see electronic supplementary material).

The genetic results are compatible with morpho-
logical evidence. Although the Seychelles chameleon
shares with other Calumma two long, flexible bifid
papillae on the hemipenis, no other morphological
synapomorphies are known [21]. Calumma tigris differs
strikingly from its closest relatives, Rieppeleon, in
microhabitat usage (arboreal versus ground-shrub
dwelling), tail length (long versus short) and general
appearance (larger and more colourful versus small
and drab) (figure 1, electronic supplementary
material). However, it shares with one representative
of Rieppeleon (Rieppeleon brevicaudatus), the presence
of scaly skin flaps on the chin. Given the ecological,
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biogeographic and morphological distinctiveness of
C. tigris and Rieppeleon, and because the phylogenetic
depth of the separation between these two taxa is com-
parable to that between other chameleon genera, we
propose to resurrect the genus Archaius Gray 1865,
and designate the Seychellean species as A. tigris (see
electronic supplementary material).

Evidence from fossils and molecular-dating studies
clearly indicate repeated Caenozoic dispersals east-
ward from Africa to Madagascar in invertebrates,
amphibians, reptiles and most famously, mammals
[6]. This general pattern predicts dispersal eastward
to the Seychelles as well, and chameleons provide, to
our knowledge, the first documented example of such
a colonization event. One perplexing aspect of this
‘eastward from Africa’ scenario is that present-day
ocean currents flow decidedly westward from
Madagascar and Seychelles (figure 1). The key to this
incongruence apparently lies in the changing position
of Madagascar and other landmasses relative to the
large Indian Ocean gyre (rotating current) over time.
Ali & Huber [22] used palaeo-oceanographic modelling
to demonstrate that throughout the Palaeogene, the pre-
vailing current was actually eastward towards
Madagascar and the Seychelles and should have thus
facilitated colonization of the islands (figure 1).

Another factor that may facilitate overseas dispersal
is the presence of large freshwater outflows. Such sys-
tems are known to create large reduced-salinity
plumes that can extend considerable distances from
the mainland and even strengthen offshore currents
(e.g. [23]), thus enhancing opportunities for coloniza-
tion of oceanic islands via rafting [24]. The
southeastern African coast is drained by the large Lim-
popo and Zambezi systems; at present, the central
coast (i.e. northern Mozambique, Tanzania, Kenya)
lacks a comparable system (figure 1). However, Late
Cretaceous African palaeodrainage reconstructions
[25] show that a large area now drained to the north
via the Nile formerly drained to the east through
what is now Kenya (figure 1), thus providing another
major freshwater outflow. Although this specific recon-
struction predates the Seychelles chameleon
colonization, this outflow tract should have remained
basically stable until the Miocene uplift of the East
African Rift System led to the formation of the
southern Nile tributaries [26].

Vicariance seems the best explanation for relation-
ships among some groups with Gondwanan
distributions. However, recent studies show that dis-
persal, especially from Africa, has played a major role
in assembling the terrestrial biota of the western
Indian Ocean. Improvements to palaeogeological and
palaeoclimatic models are now helping to explain just
how these seemingly unlikely events have occurred.
The synergistic effects of eastern-directed oceanic cur-
rents and a large freshwater outflow during the
Palaeogene probably facilitated oceanic dispersal of
multiple taxa, including the Seychelles chameleon.

We are indebted to the Malagasy ministry for environment,
water and forests for issuing permits for research and
export of specimens and samples.
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