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Migratory bird species have smaller brains than
non-migratory species. The behavioural flexi-
bility/migratory precursor hypothesis suggests
that sedentary birds have larger brains to allow
the behavioural flexibility required in a season-
ally variable habitat. The energy trade-off
hypothesis proposes that brains are heavy, ener-
getically expensive and therefore, incompatible
with migration. Here, we compared relative
brain, neocortex and hippocampus volume
between migratory and sedentary bats at the
species-level and using phylogenetically indepen-
dent contrasts. We found that migratory bats had
relatively smaller brains and neocortices than
sedentary species. Our results support the
energy trade-off hypothesis because bats do not
exhibit the same degree of flexibility in diet selec-
tion as sedentary birds. Our results also suggest
that bat brain size differences are subtler than
those found in birds, perhaps owing to bats’
shorter migration distances. Conversely, we
found no difference in relative hippocampus
volume between migratory and sedentary
species, underscoring our limited understanding
of the role of the hippocampus in bats.
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1. INTRODUCTION
Several studies have examined avian brain size in
relation to migratory behaviour at the species [1–3]
and sub-species level [4,5]. Two leading hypotheses
to explain observed differences are the behavioural
flexibility/migratory precursor hypothesis [1] and the
energy trade-off hypothesis [6]. The behavioural flexi-
bility hypothesis suggests that sedentary species face
changing environmental conditions over the course
of the year and therefore, must be flexible in foraging
behaviour and dietary breadth. It follows that because
larger brains confer greater behavioural flexibility they
are selected for in sedentary species, while species with
relatively smaller brains are not capable of such
Electronic supplementary material is available at http://dx.doi.org/
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flexibility and instead migrate to remain within
favourable habitat.

Conversely, the energy trade-off hypothesis argues
that because the brain is an energetically expensive
organ to maintain [7], animals should partially offset
its costs through minimizing others, including the
costs of locomotion. Large brains may be particularly
problematic for flying organisms because increased
mass contributes substantially to the energetic costs
of flight [8,9]. The energy required for migration
may limit that available for brains and, inversely,
larger brains may increase migration costs. Migratory
species are thus expected to have smaller brains than
sedentary species [3,6].

Studies have also considered variation in avian hip-
pocampus size (e.g. [10]) and mammalian neocortex
size (e.g. [11]). The hippocampus is involved in spatial
memory in birds and mammals and hence may be
important in bats for recalling landmarks and
migratory routes. Although the role of the hippo-
campus is poorly understood in bats, we might
expect to observe patterns similar to those in birds,
where migratory species have relatively larger hippo-
campi than sedentary species [10]. In mammals,
relative neocortex size correlates with enhanced cogni-
tion [11,12]. In predatory bats, its relative size is
reduced in bats that aerially hawk prey in open
spaces, species that tend to have larger home ranges
than other predatory bats and wings better suited to
long-distance flight [13,14].

Addressing the issue of brain size in relation to
migration in non-avian vertebrates could reveal general
patterns of brain size evolution [1]. Bats and birds are
the only extant vertebrate groups capable of powered
flight and so may be subject to similar selective pres-
sures [15]. Like birds, some bats undertake seasonal
migrations and thus experience similar environmental
conditions throughout the year [16]. However, few
sedentary bats exhibit behavioural flexibility with
respect to seasonal diet change on par with that
which has been observed in many sedentary birds [15].

Furthermore, in temperate zones sedentary birds
often experience dramatic environmental variation,
while many species of bat (migratory and sedentary)
simply hibernate. As a result, in many regions both
sedentary and migratory bats that hibernate experience
limited seasonal variation. Thus, neither sedentary nor
migratory bat species should require as great a degree
of overall behavioural flexibility as do most sedentary
birds. We therefore posit that if migratory bats have
relatively smaller brains than sedentary species this
result would better support the energy trade-off
hypothesis than the behavioural flexibility hypothesis
in flying vertebrates.
2. MATERIAL AND METHODS
(a) Data assembly

Baron et al. [17] includes brain and body mass data for 342 bat
species and specific brain region data for a subset of these species.
We confined ourselves to these species and searched the literature
for those that had been documented to have a migratory or a seden-
tary lifestyle (figure 1 and electronic supplementary material, S1 for
supporting references). Because bats are mostly small and nocturnal,
bat migration has been historically understudied; our list of species is
almost certainly an underestimate. We also found sedentary species
difficult to identify because staying put is the rule in bats and thus
rarely explicitly described. To supplement our list of species explicitly
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Figure 1. Composite phylogeny used to generate phylogenetically independent contrasts (PICs). Migratory species are indicated
in red, sedentary species in black. Species marked with an asterisk had only whole brain, not brain region. Data are available in the
electronic supplementary material S1. For details of phylogeny construction see electronic supplementary material S2.
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described as sedentary, we included those for which there is
no mention of migration and year-round, population-specific
reproduction at the same location has been documented (figure 1
and electronic supplementary material S1).

(b) Comparative analyses

We took the standardized residuals from log–log regressions of brain
volume (converted from brain mass, see electronic supplementary
Biol. Lett. (2011)
material S1) versus body mass, and neocortex and hippocampus
volume versus brain volume remainder. Additionally, we used
medulla oblongata and cerebellum volume versus brain volume
remainder as controls. The cerebellum’s primary function is motor
control and calibration; the medulla oblongata (i.e. the lower portion
of the brainstem) controls several autonomic functions (e.g. heart
rate and respiration). Neither region was expected to differ with
migratory status (electronic supplementary material S1). For
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Figure 2. (a) At the SL, five two-sample t-tests comparing relative brain and brain region volumes (transformed as described in
§2) in migratory bats to those of sedentary bats. (b) Based on PICs (generated as described in §2), five one-sample t-tests com-
paring mean relative brain and region volumes in migratory bats to those for all species pooled (combined mean set to 0 for all).

Data are presented as mean+ s.e. (asterisk indicates p , 0.05). Dark grey boxes, migratory; light grey boxes, sedentary.

Brain size in migratory bats L. P. McGuire & J. M. Ratcliffe 235
analyses at the species-level (SL) and to generate phylogenetically
independent contrasts (PICs), we used these standardized residuals
as data. We conducted two-sample t-tests at the SL. For those
using PICs (generated by Brunch procedure in CAIC v. 2.6.9), we
conducted one-sample t-tests [18]. For CAIC analyses, we con-
structed a composite phylogeny (figure 1; see electronic
supplementary material S2 for details of phylogeny construction).
At both levels of analysis, all tests were two-tailed.
3. RESULTS
Log brain volume was positively related to log body
mass (F1,62 ¼ 774.2, r2 ¼ 0.93, p , 0.001), as were
log brain region volumes to their respective log brain
volume remainders (hippocampus: F1,50 ¼ 605, r2 ¼

0.92, p , 0.001; neocortex: F1,50 ¼ 1835.2, r2 ¼

0.97, p , 0.001; medulla oblongata: F1,50 ¼ 1085.2,
r2 ¼ 0.96, p , 0.001; cerebellum: F1,50 ¼ 770.5, r2 ¼

0.94, p , 0.001).
Absolute and log-transformed body mass values did

not differ significantly between migratory and seden-
tary species (two two-sample t-tests: p . 0.05 for
both; electronic supplementary material S1).

At the SL and for PICs, relative brain size was sig-
nificantly greater in sedentary species than in
migratory species (SL: t ¼ 2.26, p ¼ 0.027; PICs:
F1,16 ¼ 7.27, p ¼ 0.016; figure 2). Similarly, at both
levels of analysis, relative neocortex size was signifi-
cantly greater in sedentary species (SL: t ¼ 2.94, p ,

0.006; PICs: F1,14 ¼ 4.6, p ¼ 0.049; figure 2). Relative
hippocampus (SL: t ¼ 20.39, p ¼ 0.7; PICs: F1,14 ¼

0.59, p ¼ 0.453), medulla oblongata (SL: t ¼ 21.42,
p¼ 0.16; PICs: F1,14¼ 3.48, p¼ 0.083) and cerebellum
(SL: t ¼ 20.99, p ¼ 0.325; PICs: F1,14 ¼ 2.83,
p ¼ 0.11) volumes did not differ between categories
(figure 2).
Biol. Lett. (2011)
4. DISCUSSION
Our comparative analyses suggest that migrating bats
have relatively smaller brains and neocortices than
sedentary species (figure 2) but do not differ signifi-
cantly in body mass, supporting the energy trade-off
hypothesis. In both bats and birds, two distantly
related vertebrate groups with divergent life histories,
migratory species have relatively smaller brains than
do sedentary species, suggesting a general incompat-
ibility between the high energy demands of migration
and those of maintaining and carrying a large brain.
In bats, however, the effect appears not to be as pro-
found as in birds. In some bird species, brain size is
negatively related to migration distance [3]. Few bat
species are, relative to birds, long-distance migrants
and this discrepancy may account, in part, for the
apparently smaller effect size in bats.

By contrast, we found no difference in relative hip-
pocampus size between migratory and sedentary bats
(figure 2). In birds, an enlarged hippocampus has
been linked to migration [10], but also to smaller
scale spatial memory [19]. While the role of the hippo-
campus in bats remains unclear, it may function in
migratory navigation [20] and, in frugivorous and nec-
tarivorous species, for the relocation of food [21].
Confoundingly, among phyllostomids, gleaners have
relatively larger hippocampi than even frugivores and
nectarivores [22]. Currently, limited data and the
potential for multiple roles preclude making clear pre-
dictions about hippocampus size and bat migration.

Brain and brain region size variation in bats has
been considered in relation to several behavioural,
physiological and ecological factors (see [12] for
review). While a variety of factors will influence
observed phenotype, our results suggest that energetic



236 L. P. McGuire & J. M. Ratcliffe Brain size in migratory bats
limitations play a major role in determining brain size
in migrating bats. Further support for the energy
trade-off hypothesis comes from studies of brain size
and foraging strategies in bats. Brain and neocortex
size is smallest in obligate aerially hawking bats fora-
ging primarily in open spaces [13,14], consistent
with the idea that the energetic requirements of high-
powered fast flight (open space aerial-hawking and/
or migratory flight) negatively impact brain size.
Whether a bat species’ relative brain and brain region
size reflects a migratory or sedentary evolutionary his-
tory, as our data suggest, or waxes and wanes as a
result of individual experience, as in some migratory
birds (e.g. [2,19]), are among a number of possibilities.
Indeed, research into migration and brain development
in birds has revealed many unexpected and puzzling
factors (e.g. species-specific, latitudinal effects, basal
metabolic rate, diet, developmental constraints) and
we caution that ours is a preliminary study, demon-
strating a correlative, not causal, relationship (see
Dechmann & Safi [12] for review). Furthermore, it
should be noted that migration is a characteristic of
individuals, not species. Differential and partial
migration are both common among bats with many
examples of sex-biased migration, and migratory
and non-migratory populations within species.
Whatever the underlying and interacting selective
forces, future studies comparing bat and birds should
yield further insight into the processes of vertebrate
brain evolution.
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