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Summary
A routine challenge is that of making inference on parameters in a statistical model of interest
from longitudinal data subject to drop out, which are a special case of the more general setting of
monotonely coarsened data. Considerable recent attention has focused on doubly robust
estimators, which in this context involve positing models for both the missingness (more
generally, coarsening) mechanism and aspects of the distribution of the full data, that have the
appealing property of yielding consistent inferences if only one of these models is correctly
specified. Doubly robust estimators have been criticized for potentially disastrous performance
when both of these models are even only mildly misspecified. We propose a doubly robust
estimator applicable in general monotone coarsening problems that achieves comparable or
improved performance relative to existing doubly robust methods, which we demonstrate via
simulation studies and by application to data from an AIDS clinical trial.
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1. Introduction
Studies in which data are to be collected longitudinally according to a pre-determined
schedule are often complicated by dropout, where some subjects leave the study prematurely
and do not return, so that the intended data from the point of dropout onward are missing.
Ordinarily, interest focuses on questions that can be formalized within a statistical model
describing aspects of the distribution of the full data, the data that would have been collected
on a subject had dropout not occurred. Failure to take dropout into account in analyses based
on the observed data, which are curtailed due to dropout for some participants, can lead to
biased inferences on full data model parameters, and a vast literature exists on methods for
making valid inferences based on the observed data under different assumptions regarding
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the dropout mechanism; e.g., Hogan, Roy, and Korkontzelou (2004), Philipson, Ho, and
Henderson (2008), and Molenberghs and Fitzmaurice (2009) and the references therein.

As a running example, we consider data from AIDS Clinical Trials Group (ACTG) Protocol
175 (Hammer et al., 1996), where subjects infected with human immunodeficiency virus
(HIV) were randomized to four antiretroviral regimens: zidovudine (ZDV), ZDV
+didanosine (ZDV+ddI), ZDV+zalcitabine (ZDV+ddC), and didanosine (ddI). On each,
CD4 T-cell count (cells/mm3 blood), a measure of immunologic status, was measured at
baseline and, ideally, at 20±5, 40±5, 60±5, and 96±5 weeks post-baseline, along with several
baseline covariates. As the latter three regimens showed no differences, we focus on
estimating mean CD4 count at 96±5 weeks for the population of subjects assigned to any of
the three. Of 1838 such participants, 12%, 30%, 38%, and 49% had dropped out by each of
the visit times, respectively. Clearly, the substantial dropout complicates inference on the
population mean.

Missingness due to dropout in a longitudinal study is a special case of monotone coarsening.
Under coarsening, for each subject, one of a set of M + 1 many-to-one functions of the full
data, indexed by r = 1, …, M, ∞, is observed (Heitjan and Rubin, 1991; Gill, van der Laan,
and Robins, 1997; Tsiatis, 2006). With monotone coarsening, the many-to-one function for
any r = 1, …, M is itself a many-to-one function of the (r + 1)th function, so that r = 1
corresponds to the “most coarsened” data and r = M to the least, and ∞ denotes no
coarsening (the full data are observed). Monotone dropout in a longitudinal study fits into
this framework, with r indexing M+1 planned data collection times, where r = 1 corresponds
to baseline. Here, the coarsened data at level r are the data that would be observed on a
subject who is present for the rth visit and then drops out prior to the (r + 1)th visit.

Analogous to the notion of missing at random (MAR), the mechanism leading to coarsening
is coarsening at random (CAR, Heitjan and Rubin, 1991) if, for each r, the probability that,
given the full data, the data are coarsened at level r depends only on the coarsened data (so
not on data not observed at level r). Whether or not the CAR assumption is reasonable must
of course be critically evaluated by the analyst; when it is plausible, a number of approaches
have been proposed for making inference on full data model parameters based on the
observed, coarsened data. These include likelihood methods, where a parametric model for
the entire full data distribution may be posited, from which the likelihood based on the
coarsened data can be deduced without the need to specify the coarsening mechanism (e.g.,
Birmingham, Rotnitzky, and Fitzmaurice, 2003; Little, 2009). These methods will yield
valid inferences as long as the posited full data model is correct, but can lead to bias
otherwise. In contrast, inverse probability weighted methods (IPW) (Robins, Rotnitzky, and
Zhao, 1994, 1995; Rotnitzky, Robins, and Scharfstein, 1998; Rotnitzky, 2009) require
specification of models for the coarsening probabilities, and the resulting estimators are
consistent only if these models are correct and can be unstable in practice if some
probabilities of observing the full data are close to zero, leading to large inverse weights.
Robins et al. (1994) identified a class of “augmented” IPW (AIPW) estimators that, in the
present context, involve (parametric) modeling of both the coarsening probabilities and the
conditional expectations of certain functions of the full data given the coarsened data for
each level of coarsening. The efficient member of this class, with smallest asymptotic
variance, is obtained when both sets of models are correctly specified. Scharfstein,
Rotnitzky, and Robins (1999) noted that estimators in this class are consistent even if one of
the sets of models (but not both) is misspecified. Such estimators are referred to as “doubly
robust” (DR) and have been advocated owing to the protection this feature affords (Bang
and Robins, 2005). Bang and Robins (2005) described a DR estimator in the case of a
longitudinal study with dropout and provided simulation evidence demonstrating the DR
property; see also Seaman and Copas (2009).
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Despite their obvious appeal, DR estimators have been vigorously criticized. Kang and
Schafer (2007) presented simulations in the simple situation of estimation of a population
mean from an iid sample with MAR response showing that the usual DR estimator can
exhibit severe bias when both sets of models are only “slightly” misspecified and/or when
some probabilities of observing full data are close to zero and argued against use of DR
estimators. In this setting, however, Tan (2006, 2007, 2008) and Cao, Tsiatis, and Davidian
(2009) showed how to construct DR estimators that do not have these shortcomings; see also
Goetgeluk, Vansteelandt, and Goetghebeur (2009). Cao et al. (2009) set out expressly to
identify the “best” DR estimator, that with smallest asymptotic variance if the coarsening
probabilities are correctly specified regardless of whether or not the conditional expectation
models are, and demonstrated that these estimators are relatively more efficient and exhibit
superior robustness to slight modeling mishaps relative to other DR estimators.

In this paper, we extend these ideas to the general setting of monotonely coarsened data. In
Section 2, we introduce notation and formalize the CAR assumption. We state the inferential
objectives and describe the general form of DR estimators in Section 3, and in Section 4
propose an improved DR estimator, which we specialize to the case of a longitudinal study
with dropout through application to the ACTG 175 data in Section 5. Simulations presented
in Section 6 exhibit the improved performance of the proposed methods.

2. General Coarsened Data Framework and Coarsening at Random
We follow Tsiatis (2006, Section 7.1). Denote the full data by Z; ideally, then, the data
intended to be collected are realizations of independent and identically distributed (iid) Z1,
…, Zn. Let C be a discrete coarsening variable with possible values 1, …, M, ∞
corresponding to M + 1 levels of coarsening. When C = r, r = 1, …, M, we observe Gr(Z), a
many-to-one function of Z. When C = ∞, we observe G∞(Z) = Z; i.e., there is no
coarsening, and the full data are observed. Under monotone coarsening, Gr(Z) is a many-to-
one function of Gr+1(Z); i.e., Gr(Z) = fr {Gr+1(Z)}, r = 1, …, M, where GM+1(Z) = G∞(Z).
Thus, G1(Z) are the most coarsened data, G2(Z) are less so, and so forth, up to G∞(Z) = Z,
where there is no coarsening. The observed data are realizations of iid {Ci, GCi(Zi)}, i = 1,
…, n.

As is customary in general missing data problems, we assume that there is a positive
probability of observing the full data; i.e., we make the positivity assumption P(C = ∞|Z) ≥
ε > 0 almost everywhere. The CAR assumption may be expressed as

(1)

i.e., the probability of coarsening at level r depends on the full data Z only as a function π{r,
Gr(Z)} of the observed data Gr(Z). As G∞(Z) = Z, write π{∞, G∞(Z)} = π (∞, Z).

We now demonstrate how data from a longitudinal study with dropout fit into this
framework, where we use notation popularized by Robins and colleagues (e.g., Bang and
Robins, 2005). Let Lj be the vector of information collected at visit time tj, j = 1, …, M +1.
Let R be a dropout indicator such that, if R = j, the subject is last seen at the jth visit, and the
observed data are L ̄j = (L1, …, Lj), j = 1, …, M + 1; write L ̄ = L ̄M+1. In the coarsened data
framework, the full data Z are thus Z = G∞(Z) = L ̄; the coarsening indicator C corresponds
to R, C = 1, …, M, ∞, where C = ∞ is the same as R = M + 1; and the coarsened data Gr(Z)
= L ̄r, r = 1, …, M. The observed data from a sample of size n are then iid (Ri, L ̄Ri), i = 1, …,
n. Thus, in ACTG 175, M = 4, t1 = 0 (baseline); (t2, t3, t4, t5) = (20, 40, 60, 96) ± 5 weeks;
L1 = (X, Y1), say, where X are baseline covariates and Y1 is baseline CD4 count; and Lj = Yj,
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j = 2, …, M + 1 = 5, where Yj is CD4 count at tj. The positivity and CAR assumptions (1)
become P (R = M + 1|L ̄) ≥ ε > 0 almost everywhere and P(R = j|L ̄) = π (j, L ̄j), j = 1, …, M, M
+ 1, respectively.

3. Inferential Objective and Doubly Robust Estimators
We suppose that the analyst has specified a semiparametric model for the full data Z
corresponding to density pZ(z; β, η), say, where β (p×1) is the finite dimensional parameter
of interest; here, then, pZ(z; β, η) embodies the features of the full data that the analyst is
willing to assume. The goal is to estimate β based on the sample of observed, monotonely
coarsened data. Ordinarily, η is an infinite dimensional nuisance parameter representing
aspects of the full data distribution about which nothing is assumed. If η were finite
dimensional, pZ(z; β, η) is a fully parametric model, in which case inference on β based on
the observed data under the CAR assumption could be carried out via maximum likelihood
(ML) techniques. We consider estimators for β calculable under a more general
semiparametric model.

For ACTG 175, with Y = Y5 = CD4 count at 96±5 weeks, β = E(Y). With no further
assumptions, pZ(z; β, η) is completely nonparametric except for the restriction of finite β; if
full data were available, the obvious estimator is the sample mean at 96±5 weeks. If instead

one assumed  and interest focused on the “slope” β1, ,
then pZ(z; β, η) would be the semiparametric model imposing this conditional (on X) mean
structure, with all other aspects of the full data distribution unspecified. With full data, β
could be estimated by solving a set of generalized estimating equations (GEEs).

In general, we assume that estimators for β exist based on the full data, defined by (p × 1)
unbiased estimating functions m(Z, β); i.e., such that E {m(Z, β)} = 0 for all β (or at least for

β in a neighborhood of β0, the true value). An estimator would solve  and,
under regularity conditions, would be consistent and asymptotically normal by standard M-
estimator theory (Stefanski and Boos, 2002). For the sample mean at 96±5 weeks in ACTG
175, m(Z, β) = Y − β; for the slope parameter, m(Z, β) would be a GEE estimating function,
perhaps involving nuisance parameters in a “working” correlation structure.

We start with the premise that the analyst has fully specified the coarsening probabilities (1),
so that they involve no unknown parameters, a requirement we relax in Section 4. For
general monotonely coarsened data, the theory of Robins et al. (1994) implies that, under
CAR, if the coarsening probabilities π {r, Gr(Z)} are correctly specified, members of the
class of all regular, asymptotically linear estimators (Tsiatis, 2006, Chapter 3) for β using the
observed data solve estimating equations based on an AIPW estimating function of form

(2)

(Tsiatis, 2006, Chapter 10) where π {r, Gr(Z)} is as in (1); the coarsening discrete hazard λr
{Gr(Z)} = P (C = r|C ≥ r, Z) and survival function Kr {Gr(Z)} = P (C > r|Z) and  {Gr(Z)}
are arbitrary functions of Gr(Z); and dMr {Gr(Z)} = I(C = r)− λr {Gr(Z)} I(C ≥ r), all for r =
1, …, M (Tsiatis, 2006, Theorem 9.2). Under the CAR assumption,

, r = 1, …, M; λ1 {G1(Z)} = π {1, G1(Z)}; and, for r = 2, …,
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M, . If  {Gr(Z)} = 0, r = 1, …, M, (2) reduces
to the simple IPW estimating function depending only on data from the “complete cases,”
subjects for whom full data are observed; thus, the second “augmentation” term in (2) seeks
to improve efficiency of estimation of β by exploiting information from all subjects.

When the π {r, Gr(Z)} are correct, estimators for β solving estimating equations based on (2)
will be consistent and asymptotically normal regardless of the choice of  {Gr(Z)}, r = 1,
…, M, and the optimal choice yielding the estimator for β with smallest asymptotic variance
is E {m(Z, β0)|Gr(Z)} (Tsiatis, 2006, Sections 9.1, 9.2, 10.3). As these conditional
expectations may be unknown, it is natural to model them via functions hr {Gr(Z), ξ}, r = 1,
…, M, where ξ is a finite dimensional parameter, and estimate β by solving

(3)

where ξ ̂ is some estimator for ξ. The method of estimating ξ is key; see Section 4.

Writing m(Z) = m(Z, β0), if the coarsening probabilities are correctly specified and ξ ̂
converges in probability to some ξ*, say, an estimator for β solving (3) will be consistent and
asymptotically normal regardless of whether or not hr {Gr(Z), ξ*} = E {m(Z)|Gr(Z)}, r = 1,
…, M. Moreover, the form of the asymptotic variance of the estimator is identical whether ξ ̂
or the value ξ* is substituted in (3) (Tsiatis, 2006, Theorem 10.3), so that the asymptotic
variance does not depend on the sampling variation of ξ ̂ but depends only on its limit in
probability ξ*. If hr {Gr(Z), ξ*} = E {m(Z)|Gr(Z)}, r = 1, …, M, does hold, then the estimator
for β will be optimal (have smallest asymptotic variance) among all such estimators. If hr
{Gr(Z), ξ*} = E {m(Z)|Gr(Z)}, r = 1, …, M, but the coarsening probabilities are
misspecified, the estimator for β will still be consistent. Accordingly, such estimators are
doubly robust, as only one set of models need be correct to ensure consistency.

In the context of a longitudinal study with dropout, Bang and Robins (2005) described
estimators for β that are solutions to (3); we present details in the next section.

4. Existing and Proposed Doubly Robust Estimators
We continue to assume that the coarsening probabilities π{r, Gr(Z)} are fully specified,
which we relax shortly. Different methods for estimating ξ in the models hr{Gr(Z), ξ} will
lead to different estimators for β solving (3). Bang and Robins (2005) advocate one such
method, described later in this section. We seek to define an estimator ξ ̂opt for ξ in the spirit
of Cao et al. (2009); i.e., that (i) is “optimal” when the π{r, Gr(Z)}, r = 1, …, M, ∞, are
correctly specified, even if the hr{Gz(Z)}, r = 1, …, M, are not, in the sense of yielding an
estimator β ̂opt solving (3) with smallest asymptotic variance; and (ii) β ̂opt is doubly robust.
Moreover, ξ ̂opt requires no further assumptions beyond specification of the models hr{Gr(Z),
ξ}.

Denote the true coarsening probabilities as π0{r, Gr(Z)}, and define the true discrete hazards
and survival functions as λr0{Gr(Z)} and Kr0{Gr(Z)}, where KM {GM (Z)} = π (∞, Z) and
KM0{GM (Z)} = π0(∞, Z); and write dMr0 {Gr(Z)} when λr0{Gr(Z)} is substituted for
λr{Gr(Z)} in dMr {Gr(Z)}. With the coarsening probabilities correct, whether or not the
hr{Gr(Z), ξ} are correct, it is straightforward to deduce that minimizing the variance of an
estimator for β solving (3) involves minimizing in ξ*

Tsiatis et al. Page 5

Biometrics. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(4)

where ξ* is the value to which the estimator ξ ̂ used converges in probability. Denote this
minimizing value by ξopt. If the models hr{Gr(Z), ξ} are correctly specified, so that there is
some ξ0 such that hr{Gr(Z), ξ0} = E{m(Z)|Gr(Z)}, r = 1, …, M, then in fact ξopt = ξ0; if not,
such a ξopt still exists. Accordingly, to satisfy (i), we require that the desired ξ ̂opt converge in
probability to ξopt. To ensure (ii), when the hr{Gr(Z), ξ} are correctly specified but the
coarsening probabilities may not be, ξ ̂opt must converge in probability to ξ0.

From (4), ξopt must satisfy

where hr ξ{Gr(Z), ξ} is the column vector of partial derivatives of hr{Gr(Z)} with respect to
ξ. Using Lemmas 10.1–10.3 of Tsiatis (2006), this expression can be written as

(5)

We now derive an estimator ξ ̂opt for ξ that converges to ξopt satisfying (5) when the
coarsening probabilities are correctly specified but the models hr{Gz(Z), ξ} may not be and
that converges to ξ0 in the converse situation. We propose estimating ξ by solving estimating
equations corresponding to the estimating function

(6)

where qr {Gr(Z), ξ} is a vector of functions with dimension equal to that of ξ, I(C > M ) =
I(C = ∞), and hM+1 {GM+1(Z), ξ} = m(Z); note that (6) is a function of the observed data {C,
GC(Z)}. We show in Web Appendix A that (6) is an unbiased estimating function for ξ when
the coarsening probabilities may not be correctly specified but the models hr{Gz(Z), ξ} are
and that estimators for ξ based on (6) converge in probability to ξ0 for arbitrary choice of the
qr {Gr(Z), ξ}. Thus, the proposed estimator ξ ̂opt, which involves a particular choice of these
functions, converges in probability to ξ0 under these conditions, as required for (ii).

We propose the estimator ξ ̂opt found by taking

(7)
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With (7) substituted, it may be shown (see Web Appendix B) that (6) has expectation zero at
ξ = ξopt, where ξopt solves (5), when the coarsening probabilities are correctly specified but
the functions hr{Gr(Z), ξ} may or may not be and hence is an unbiased estimating function
under these conditions, so that ξ ̂opt converges in probability to ξopt, ensuring (i).

Summarizing, the proposed estimator β ̂opt, found by using (7) in the estimating function (6)
for ξ to obtain ξ ̂opt, will be doubly robust and achieve smallest asymptotic variance among
estimators in class (3) when the coarsening probabilities are correctly specified but the
hr{Gr(Z), ξ} may not be. Bang and Robins (2005) proposed an alternative approach, which
is effectively equivalent to modeling E{m(Z)|Gr(Z)}, r = 1, …, M, by functions 
corresponding to a generalized linear model with canonical link, where the parameter ξr is
specific to the rth level of coarsening; and qr{Gr(Z), ξr} analogous to those in (6) for each r
are dictated by the gradient and variance function of the generalized linear model. The
resulting estimator for β is doubly robust, but, as it does not exploit the “optimal” choice (7)
in estimation of the ξr, it will not in general achieve the minimum asymptotic variance when
the coarsening probabilities are correct unless the  are also correct.

For either estimator, in order to be feasible models for E{m(Z)|Gr(Z)}, r = 1, …, M, the
hr{Gr(Z), ξ} must satisfy E[hr+1{Gr+1(Z), ξ}|Gr(Z)] = hr{Gr(Z), ξ}, and similarly for the

. Accordingly, as demonstrated in Sections 5 and 6, the analyst may specify a
model for the part of the joint distribution of Z that allows one to identify the conditional
expectations E{m(Z)|Gr(Z)} so that they meet this requirement.

The coarsening probabilities are unlikely to be known except in a study where coarsening is
by design. Thus, it is natural to postulate and fit parametric models for the coarsening
mechanism (Tsiatis, 2006, Section 8.2); e.g., model the discrete hazards λr{Gr(Z)}, r = 1, …,
M, in terms of a finite dimensional parameter ψ via logistic regression and write λr{Gr(Z),
ψ}, and estimate ψ by ML. This implies corresponding models π{r, Gr(Z), ψ} and Kr{Gr(Z),
ψ}. Letting λrψ {Gr(Z), ψ} be the column vector of partial derivatives of λr {Gr(Zi), ψ} with
respect to ψ, we show in Web Appendix C that the score vector for ψ is

.

As detailed in Tsiatis (2006, Chapters 8–10), there is an effect on the asymptotic distribution
of an estimator for β solving (3) when the coarsening probabilities are modeled and ψ is
estimated by the maximum likelihood estimator (MLE) ψ ̂. In particular, it follows from
Theorem 9.1 of Tsiatis (2006) that, when the models for the coarsening probabilities are
correctly specified, so that there exists ψ0 such that λr{Gr(Z), ψ0} = λr0{Gr(Z)}, the
estimator for β that solves the estimating equation

(8)

for some ξ ̂ is asymptotically equivalent to that solving
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(9)

Here, ξ* is the limit in probability of ξ ̂, and θproj is the value of θ that minimizes

(10)

when ξ* is substituted for ξ, and

(11)

Referring to (4), which defines ξopt assuming ψ0 is known, and examining (9) suggests that
the “optimal” estimator for ξ for estimators for β in the class given by (8) should converge to
the value ξopt* that minimizes (10) simultaneously in ξ* and θ. Identifying h̃r{Gr(Z), ξ̃} in
(10) with hr {Gr(Z), ξ} in (4) shows that finding ξopt minimizing (4) is analogous to finding
the optimal ξ̃, and hence ξopt*, minimizing (10). We can use this correspondence to propose
an approach to estimating ξ̃ that will lead to ξ ̂opt*, say, such that (i) using ξ ̂opt* in (8) yields
the estimator β ̂opt* with smallest asymptotic variance among estimators solving (8) when the
coarsening probabilities are correctly modeled, and (ii) β ̂opt* is doubly robust.

As, in practice, ψ0 is unknown, write h̃r{Gr(Z), ξ̃, ψ} to denote (11) treating ψ in the
coarsening model as a free parameter. Analogous to (16) of Cao et al. (2009), we propose
estimating ξ̃ by solving estimating equations corresponding to the estimating function

(12)

where q̃r {Gr(Z), ξ̃, ψ} is the extension of (7), namely,

(13)

and h̃jθ{Gj(Z), ξ̃, ψ} = −Kj−1 {Gj(Z), ψ} λj ψ{Gj(Z), ψ}/λj {Gj(Z), ψ} and h̃jξ{Gj(Z), ξ̃, ψ} =
hj ξ{Gj(Z), ξ, ψ} are column vectors of partial derivatives of (11) with respect to θ and ξ.

Noting that ψ ̂ converges in probability to ψ0 when the coarsening probabilities are modeled
correctly, if they are correct but the hr{Gr(Z), ξ} may not be, by an argument analogous to
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that in Web Appendix B, ξ ̂opt* solving the estimating equations defined by (12), jointly in θ,
will converge to ξopt*. Likewise, if ψ ̂ converges to some ψ* when the coarsening
probabilities may not be correct, if this is the case but the models hr{Gr(Z), ξ} are correct,
analogous to Web Appendix A, the expectation of (12) evaluated at ψ* may be shown to be
equal to zero when ξ̃ = (ξ, θ) = (ξ0, 0). Thus, (i) and (ii) are satisfied; i.e., the estimator β ̂opt*
obtained by solving (8) with the MLE ψ ̂ and the estimator ξ ̂opt* solving the estimating
equations implied by (12) substituted is doubly robust and has smallest asymptotic variance
among all estimators solving (8) when the coarsening probabilities are correct but the
models hr{Gr(Z), ξ} may not be. Accordingly, β ̂opt* should be more efficient under the latter
conditions than the doubly robust estimator for β of Bang and Robins (2005) obtained when
the coarsening probabilities are modeled and ψ is estimated by ML, β ̂br*, say.

Because  is an M-estimator, and similarly for β ̂br*, the asymptotic
covariance matrix for each may be approximated by the empirical sandwich method
(Stefanski and Boos, 2002) and will be consistent for the true sampling covariance matrices
regardless of whether or not one or both sets of models is misspecified; see Web Appendix
D.

An alternative approach to estimation of ξ would be to extend the methods of Tan (2006,
2007, 2008) to the setting of monotonely coarsened data. Given that the proposed approach
is optimal when the discrete hazard models are correct, theoretically, such an extension
would be no more efficient in this case. In simulations in Cao et al. (2009), the proposed
approach outperformed that of Tan for estimation of a single population mean under both
correct and incorrect models, and we would expect to see similar relative performance here.

5. Application to ACTG 175
We now demonstrate how the foregoing development is specialized to a longitudinal study
with dropout by application to ACTG 175. Recall that interest focuses on β = E(Y ), where Y
= Y5 = CD4 count at 96±5 weeks, the mean CD4 count for the HIV-infected population if
assigned to regimens ZDV+ddI, ZDV+ddC, or ddI; M = 4; and m(Z, β) = Y − β. The
baseline covariate vector X includes age (years); weight (kg); Karnofsky score (karnof), an
index reflecting ability to perform activities of daily living (0 to 100); days of prior
antiretroviral therapy (antidays); and binary indicator variables for hemophilia (hemo),
homosexual activity (homo), history of intravenous drug use (drug), ZDV within 30 days of
the trial, race (0 = white), gender (0 = female), antiretroviral history (hist; 0 = naive, 1 =
experienced), and symptomatic status (symp; 0 = asymptomatic).

We consider estimation of β by the simple IPW estimator, which corresponds to solving (8)
with all of the hr{Gr(Z), ξ} set equal to zero, β ̂ipw; two versions of the estimator β ̂br* of Bang
and Robins (2005); and two versions of the proposed estimator β ̂opt*. The CAR assumption
(1) is not unreasonable; it is widely acknowledged in longitudinal HIV studies that subjects
with baseline characteristics such as intravenous drug use and/or lower evolving CD4 counts
prior to dropout, reflecting compromised immunologic status, may be more likely to drop
out. Under CAR/MAR, the naive estimator, the sample mean of CD4 counts for the
complete cases at 96±5 weeks, equal to 348.7 cells/mm3 with standard error (SE) 5.76, thus
may be an overestimate if subjects with poorer immunologic status are more likely to drop
out.

Using the notation at the end of Section 2, we represent the models we now present by
replacing C by R and Gr(Z) by L ̄j and indexing visits by j in obvious fashion. For use with all
estimators, logistic regression models for the discrete hazards at each j were developed with
main effects in elements of L ̄j identified via separate ML fits at each j to the data on all
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subjects with R ≥ j using forward selection with entry level of significance 0.15; we also
considered other levels, with no qualitative differences. This yielded models

, j = 1, …, 4, where expit(u) = eu/(1 + eu), , and  is
the subset of L ̄j selected;

, and . Finding the MLE ψ ̂ then reduced to carrying out
individual ML fits of these models for each j.

Noting that E{m(Z)|L ̄j} = E(Y |L ̄j) − β for each j, developing models hj(L ̄j, ξ) and , j
= 1, …, 4, for β ̂opt* and β ̂br*, respectively, corresponds to developing models for the
regression of 96±5 week CD4 count on L ̄j; i.e., for E(Y|Y1, …, Yj, X). To develop models
hj(L ̄j, ξ), we assumed that the longitudinal data follow the linear mixed model

(14)

where αi = (α0i, α1i)T ~ N{(μα0, μα1)T,Σα};  are iid for all i, j; the αi, i = 1, …, n,
are independent of each other and all eij; and X̃ = (weight,karnof,hist,symp) was identified
by fitting (14) by ML with all of X included and retaining only those elements for which the
usual t-test of whether or not the associated coefficient is equal to zero had p-value less than
0.05. Under (14), standard results for the multivariate normal distribution yield the required
conditional expectations E(Y|Y1, …, Yj, X) = E(Y|Y1, …, Yj, X̃), all of which depend on the

common ; see Web Appendix E. To obtain the first version

of β ̂opt*, , say, we estimated ξ in the implied models hj(L ̄j, ξ) using (12). For direct
comparison of the Bang-Robins approach to the proposed method using the same covariate

information, we let  for each j be linear regression models including main effects in
all CD4 counts up through j and X̃ and estimated the ξj by separate ordinary least squares
(OLS) regressions for each j based on the observed data at j; denote the resulting estimator

by . For a second version of β ̂br*, denoted , we instead considered for each j all of Y1,
…, Yj, X as potential main effects in linear models, and developed and fit these separately by

OLS with forward selection on the elements of X. The resulting  contained
(age,karnof,race,gender,hist), (age,hemo,drug,karnof,antidays,gender,symp),
(age,hemo,karnof,gender), and (age,hemo,karnof) for j = 1, 2, 3, 4, respectively, along with

(Y1, …, Yj). We implemented both  and  as described by Bang and Robins (2005,

Section 3). A second version of the proposed estimator, , was derived by, rather than
taking ξ common across j, letting the models implied by (14) for each j have j-specific

parameters ξj. We then let , and estimated ξ using (12). For all estimators, we
obtained SEs via the sandwich technique.

Estimation of ξ by solution of the estimating equations based on (12) may be carried out via
standard techniques, such as a Newton-Raphson updating scheme. Thus, in principle,
implementation is no more complex than for the Bang-Robins approach, where the ξr are
estimated by separate solutions to M sets of estimating equations. Computation of ξ ̂opt* is
likely a higher-dimensional problem than the separate ones; however, here and in Section 6,
we encountered no numerical difficulties with either method.
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For comparison, we also fit the mixed model (14) directly by normal ML using SAS proc
mixed (SAS Institute, 2009) and estimated β by the marginal predicted value β ̂mixed at 96±5
weeks obtained by setting X̃ equal to its sample mean with SE from the associated estimate
statement, which treats the sample mean of X̃ as fixed.

The resulting β ̂ipw = 332.96, (SE 5.10),

. Recognizing
that this is a single data set, it is encouraging to note that the estimates are virtually identical,
and, consistent with the theory, the IPW estimator is inefficient relative to the AIPW
competitors on the basis of estimated SE. Moreover, both versions of the proposed estimator
achieve or surpass the performance of the Bang and Robins estimators, although not
dramatically, and all estimates are indeed smaller than the naive estimate, as expected. We
also obtained β ̂mixed = 346.20 (4.92); in contrast to the AIPW estimates, this estimate is not
appreciably different from the naive.

We deliberately chose the ACTG 175 study to demonstrate the methods because of a unique
feature that highlights the advantage of consideration of the general setting of monotone
coarsening. Although subjects in the study ceased to attend clinic visits and provide CD4
counts after some time point, so effectively did “drop out” of the study with respect to the
response of interest, follow-up of all subjects continued. Thus, additional information on
each subject throughout the entire 96-week period, regardless of whether or not s/he ceased
to attend clinic visits, is available, which we summarize in four time-dependent covariates
disij = I{subject i discontinued study treatment during (tj, tj+1]}, j = 1, …, 4; we did not
include disj in the definitions of Lj in the foregoing analysis for illustrative simplicity,
although we could have done so. Acknowledging these data takes this situation out of the
realm of the standard longitudinal dropout setting and notation at the end of Section 2,
which assumes that no data are available beyond visit j if the subject was last seen at j.
However, the present setting may still be cast as a case of monotone coarsening and these
additional data incorporated in the analysis, as we now demonstrate.

Reverting to the general notation, Z = (X, Y1, Y2, Y3, Y4, Y,dis1,dis2,dis3,dis4); and, with C =
r indicating that the subject last provided a CD4 count at visit r, we observe Gr(Z) = (X, Y1,
…, Yr,dis1,dis2,dis3,dis4), r = 1, …, 4, and G∞(Z) = Z for r = ∞. Clearly, the coarsened data
satisfy the monotonicity requirement. This demonstrates that one need not think strictly
temporally in characterizing monotone coarsening in longitudinal data.

Recall that the goal is to estimate β = mean CD4 count at 96±5 weeks for the population
assigned to ZDV+ddI, ZDV+ddC, or ddI, so regardless of whether or not subjects stayed on
these regimens for the entire 96 weeks. We illustrate by calculating β ̂opt* and β ̂br* as
follows. For both estimators, we derived the discrete hazard models by the same strategy as
in the previous analysis, considering all elements of Gr(Z) as possible main effects in the
linear predictor of a logistic regression model for each r and retaining a subset of these terms
by forward selection. This yielded logistic regression models λr{Gr(Z), ψr) that included
main effects for (Y1,age,drug,karnof,antidays,race,hist,symp),
(Y2,age,homo,drug,antidays,karnof,dis1,dis2), (Y3,dis1,dis2), and
(Y1,Y3,hemo,karnof,race,dis2,dis4) for r = 1, 2, 3, 4, respectively. To derive models
hr{Gr(Z), ξ) for β ̂opt*, we used the form of E(Y|X, Y1, …, Yr,dis1,dis2,dis3,dis4) implied by
the linear mixed model Yir = α0i + α1itir + γTX̃i + φ1I(r ≥ 3)disi2 + φ2I(r = 5)disi4 + eir, where
the random effects and within-subject deviations are normal as above, and now X̃ =
(weight,karnof,symp); see Web Appendix E. The common

 was then estimated via (12). For β ̂br*, we took
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, so , which was
estimated by OLS for each r. Using these estimated discrete hazards to also calculate β ̂ipw,
β ̂ipw = 325.32 (5.80), β ̂opt* = 328.10 (5.05), and β ̂br* = 327.46 (5.49). As before,
performance of the estimators based on estimated SEs is consistent with the theory.

6. Simulation Studies
We carried out several simulations to assess the performance of the proposed methods in the
case of a longitudinal study with dropout, which we describe using the notation at the end of
Section 2. To obtain data for subject i, i = 1, …, n, we generated baseline covariates (t1 = 0)
Xi = (Xi1, Xi2)T, where Xi1 ~ N (5, 1), and Xi2 ~ Bernoulli(0.5). For visit times (t1, t2, t3) = (0,
1, 2), we generated longitudinal responses via the mixed model Yij = α0i+ α1itij+ γTXi+eij,
where (α0i, α1i)T ~ N{(1.0, 2.5)T, Σ}, vech(Σ) = (0.3, 0.1, 0.2)T, γ = (1, −1)T, and eij ~ N(0,
1). Thus, L1 = (X, Y1), L2 = Y2, and L3 = Y3 = Y. As in ACTG 175, we focus on estimation of
β = E(Y ) = 10.5. This setup implies that, in truth, E(Y |L ̄1) = γTX + μ3(X, Y1) + t3μ4(X, Y1)
and E(Y |L ̄2) = γTX + μ1(X, Y1, Y2) + t3μ2(X, Y1, Y2), where the forms of μ1, …, μ4 are given
in Web Appendix F. We considered two dropout scenarios; in both, letting U1 = I(Y1 > 5.8)
and U2 = I(Y2 > 6.2), dropout was induced according to the discrete hazards λ1(L ̄1, ψ) =
expit(ψ0,1 + ψ1,1U1) and λ2(L ̄2, ψ) = expit(ψ0,2 + ψ1,2U1 + ψ2,2U2), so ψ = (ψ0,1, ψ1,1, ψ0,2,
ψ1,2, ψ2,2)T. A concern with methods involving inverse weighting is the influence of
extreme estimated inverse weights. In the “moderate” scenario, ψ = (−2.0, 2.5, −2.0, 2.0,
2.5)T, representing the potential for “moderately large” estimated inverse weights and
resulting in 36% and 70% missing Y2 and Y on average, respectively. In the “extreme”
scenario, ψ = (−3.5, 5.0, −2.1, 2.0, 2.89)T, with 40% and 71% missing Y2 and Y, yielding
more “extreme” inverse weights; see below. For each situation below, we estimated β by
β ̂ipw, β ̂opt*, and β ̂br*, with SEs obtained by the sandwich method; and by β ̂mixed obtained by
fitting the mixed model above, analogous to the approach in Section 5, with SE calculated as
in that section.

For each inverse weight scenario, we considered the four situations of all combinations of

correct or incorrect regression models hj(L ̄j, ξ) and  for E(Y|L ̄j), j = 1, 2, and correct
or incorrect discrete hazard models λj(L ̄j, ψ). Incorrect discrete hazard models were specified
by replacing (U1, U2) in the logistic regressions above by (Y1, Y2). Incorrect models for E(Y|
L ̄j) were obtained by eliminating all terms involving X and replacing (Y1, Y2) by
[exp{(Y1/9)2}, (Y1 +3)/{1 + exp(Y2)}+1] in μ1, …, μ4 above. Correct and incorrect discrete
hazard models were fit by ML. For β ̂opt*, the implied ξ in the correct or incorrect models
was estimated based on (12); for β ̂br*, the implied ξj were estimated by separate OLS
regressions at each j. We considered n = 500, 1000 and n = 500 for the “moderate” and
“extreme” scenarios, with 1000 Monte Carlo data sets for each n-situation combination.

Table 1 summarizes the distributions of estimated inverse weights { π (∞, Z, ψ ̂)}−1 and
[Kr{Gr(Z), ψ ̂}]−1 in (8) for the “moderate” and “extreme” scenarios, showing that, in both,
rather large inverse weights are possible. Results for estimation of β are presented in Tables
2 and 3. When both sets of models are correct, β ̂opt* and β ̂br* exhibit virtually identical
performance and considerable efficiency gains over β ̂ipw in the “moderate” scenario, as
expected; interestingly, β ̂br* compares poorly to both β ̂ipw and β ̂opt* in the “extreme”
scenario, suggesting a possible finite sample effect of more extreme weights. Bias of β ̂ipw,
β ̂br*, and β ̂opt* is inconsequential in all situations for the “moderate” scenario, although
showing a trend consistent with theory when one or both models are incorrect. When the
discrete hazards are correct but the regression models are not, β ̂opt* shows efficiency gains
over β ̂br* in both scenarios, as expected from its construction; β ̂br* performs poorly in the
“extreme” scenario. In the converse situation, performance of the two estimators is
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comparable in the “moderate” scenario, but β ̂br* is highly variable in the “extreme” scenario,
and β ̂ipw is substantially biased, as expected. When both sets of models are incorrect, β ̂opt*
shows a large gain in efficiency over β ̂br* in the “moderate” scenario. Under the “extreme”
scenario, all estimators are biased, but β ̂opt* is considerably more efficient than β ̂ipw or β ̂br*.
In all situations in both scenarios, except when both sets of models are misspecified, leading
to estimated SEs that do not reflect the true sampling variability, confidence intervals based
on all estimators for the most part achieve nominal coverage. Not surprisingly, in both
scenarios, when the mixed model fitted is correctly specified, β ̂mixed exhibits considerably
better precision; however, SEs calculated as conventional in practice lead to coverage that
falls short of the nominal level, reflecting failure to account for the variation in X̃.

These results suggest that the proposed approach may be more stable than competing
methods in situations with extreme estimated inverse weights. The method seeks to obtain as
efficient an estimator of β as possible under correct discrete hazards models, where the
estimator for ξ serves only to increase efficiency and is not of inherent interest. Our
estimator for ξ minimizes the expected squared residual in (4) or (10), where one may think
of the residual as subtracting the augmentation term (involving ξ) from the IPW complete
case term I(C = ∞)m(Z)/π (∞, Z). We conjecture that the resulting choice of ξ acts
automatically to counteract, to the extent possible, the destabilizing effects that large inverse
weights [π (∞, Z)]−1 in particular have on the variance of the estimator for β.

7. Discussion
We have proposed doubly robust estimators for general semiparametric full data model
parameters based on data subject to monotone coarsening at random. A special case is that
of longitudinal data subject to MAR dropout. As for a population mean under MAR
response as in Cao et al. (2009), the methods are designed to equal or exceed the asymptotic
efficiency relative to other doubly robust estimators when models for the coarsening
mechanism are correctly specified, even when regression models incorporated to increase
efficiency are not. In contrast to simulations by Kang and Schafer (2007), our empirical
studies show that doubly robust estimators need not exhibit disastrous performance, even
when both sets of models are incorrectly specified, and that the proposed estimator may
outperform competing methods and be more stable in the presence of very large inverse
weights.

As noted in Section 4, the regression models must be consistent with one another for each
level of coarsening, which may be ensured through specification of a part of the joint
distribution of the full data. The impact of such specification and more generally the role of
model selection for both the regressions and coarsening mechanism merits formal study.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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