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Rhabdomyosarcomas (RMS) are a heterogeneous group of tumors that share features of skeletal myogenesis and represent the most
common pediatric soft tissue sarcoma. Even though significant advances have been achieved in RMS treatment, prognosis remains
very poor for many patients. Several elements of the Insulin-like Growth Factor (IGF) pathway are involved in sarcomas, including
RMS. The IGF2 ligand is highly expressed in most, if not all, RMS, and frequent overexpression of the receptor IGFIR is also found.
This is confirmed here through mining expression profiling data of a large series of RMS samples. IGF signaling is implicated in
the genesis, growth, proliferation, and metastasis of RMS. Blockade of this pathway is therefore a potential therapeutic strategy
for the treatment of RMS. In this paper we examine the biological rationale for targeting the IGF pathway in RMS as well as the

current associated preclinical and clinical experience.

1. Introduction

Rhabdomyosarcomas (RMS) are the most common soft
tissue sarcoma of childhood [1, 2] with an incidence of
4.5 cases per million children/adolescents per year in the
United States [3]. They are divided in two main histological
variants: Embryonal (ERMS, 60-70% of all RMS cases)
and Alveolar (ARMS, approximately 30%). Other minor
variants include botryoid RMS, considered a subgroup of
ERMS, and pleomorphic RMS, that occur in adults [1, 2, 4].
ERMS are predominant in younger patients and are generally
associated with a good outcome in nonmetastatic cases, while
ARMS are considered to be a tumor of adolescents and
young adults that generally have a worse prognosis [2, 3,
5, 6]. The majority of ARMS are characterized by specific
translocations between the DNA binding encoding domain
of either the PAX3 or PAX7 genes and the transactivation
encoding domain of FOXOI [7-9]. Rare variants involve
fusion of the PAX3 gene to members of the nuclear
receptor transcriptional coactivator family of genes [10].
An estimated 30% of all histopathologically defined ARMS
do not have these fusion transcripts [11] and recent gene

expression profiling studies have indicated that these tumors
biologically and clinically are more similar to ERMS than
fusion gene positive ARMS [12, 13]. Other genetic events are
associated with these tumors including those considered to
cooperate with the fusion gene product in ARMS such as
MYCN amplification and overexpression, and mutation of
TP53 [14-19]. ERMS are not characterized by specific fusion
genes but are aneuploid with frequent gain of chromosome
8 and have activating mutations of RAS genes [20, 21].
Another frequent genetic alteration present in RMS is loss
of heterozygosity (LOH) at the 11p15.5 locus. The region
includes the genes IGF2, HI19, and CDKNI1IC that are all
subject to parental imprinting which can be aberrant in
RMS and result in loss of imprinting (LOI) [22, 23]. In
both ARMS and ERMS loss of heterozygosity or imprinting
is thought to lead to overexpression of the gene encod-
ing the insulin-like growth factor 2 (IGF2). Furthermore,
overexpression of a receptor for this growth factor, IGFIR,
is frequently found in RMS, occasionally associated with
genomic amplification events [24]. Evidence supports IGF1R
signaling in the genesis, growth, proliferation and metastatic
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behavior of RMS [25-27]. As the prognosis of RMS patients
with metastatic or recurrent disease is still very poor, with
only 30-40% achieving a cure, there is an urgent need
to develop better therapies to treat these patients. In this
paper we describe the evidence that implicates components
of the IGF pathway in RMS development and examine
the biological rationale for therapeutically targeting this
pathway. We also consider the current preclinical and clinical
experience with targeted approaches for treating RMS and
suggest potential improvements that may be possible with
combination strategies.

2. IGF Signaling in RMS

Components of the IGF pathway consist of 3 ligand
molecules (IGF1, IGF2 and insulin), 6 binding proteins
(IGFBP1 through to IGFBP6), and 4 receptors (IGFIR,
IGF2R, IR and hybrid receptors). These orchestrate a cascade
of signals (Figure 1) involved in numerous developmental
and mitogenic pathways that lead to cellular processes such
as activation of cell proliferation, invasion, and angiogenesis
as well as inhibition of apoptosis [28, 29]. IGF2 and IGF1R
are two components of the signaling pathway that are known
to play a significant role in RMS oncogenesis.

2.1. IGF2 in RMS. 1GF2 is normally expressed in the liver
and other extrahepatic sites, similar to IGF1. Unlike IGF1,
IGF2 expression in mammals is not just regulated by growth
hormone (GH). However, the mechanisms regulating IGF2
expression remain uncertain. IGF2 is the predominant
circulating IGF, with plasma levels 3- to 7-fold higher than
IGF1 [31, 32].

In RMS, several studies have shown overexpression of
IGF2 in both cell lines and primary tumors [25, 33]. This
is confirmed by our analysis of expression profiling data for
a panel of RMS patient samples (Figure 2). LOH and LOI are
the principal mechanisms underlying these IGF2 expression
levels [22, 34]. In most nonmalignant tissues, IGF2 is
transcribed from the paternal allele, with the maternal allele
being imprinted and consequently silenced by methylation.
The imprinting of IGF2 is influenced by the product of
the downstream HI9 gene, with these two genes showing
opposite imprinting patterns and transcription from HI9
occurring from the maternal allele. The process of LOI leads
to biallelic expression (both paternal and maternal alleles) of
the IGF2 gene and IGF2 overexpression [23, 35]. LOH has
been shown for ERMS in particular, with loss of the maternal
11p15.5 locus and duplication of the paternal IGF2 allele
(paternal isodisomy) that results in expression from the two
paternal genes [36].

It has also been shown that increased IGF2 expression
could be due to enhanced expression of transcriptional
initiators such as AP-2 [37]. Potential AP-2-binding sites
have been identified in the promoters of both the IGF2
and IGFIR genes with an increase in AP-2-dependent IGF2
mRNA expression found in RMS cases compared to normal
skeletal muscle. In addition, loss of p53 has been shown to be
associated with increased expression of IGF2 in RMS, even
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though the mechanisms supporting this are not fully eluci-
dated [38]. The consistent overexpression of IGF2 in both
ERMS and ARMS [25, 39] has led to the suggestion that IGF2
could be used as a marker for their differential diagnosis [25].

El-Badry and colleagues first demonstrated that IGF2
was acting as an autocrine and paracrine growth factor
stimulating cell line growth and motility in RMS [27]. Later
on, the same group investigated the potential of IGF2 to
activate IGFI1R and IGF2R and showed that the mitogenic
response was primarily mediated though IGF1R [26].

Based on the fact that PAX3, PAX7, and IGF2 are involved
in growth and differentiation, Wang and colleague’s investi-
gated the potential oncogenic cooperation between IGF2 and
PAX3 or the PAX3-FOXO1 fusion protein. Mouse myoblasts
transfected to express IGF2 alone or cotransfected to also
express either PAX3 or PAX3-FOXO1 were transformed
in vitro and could form tumors in vivo [40]. Only cells
expressing both IGF2 and PAX3-FOXO1 developed invasive,
poorly differentiated tumors with low rate of apoptosis. It
has also been shown that the PAX3-FOXO1 fusion protein
can induce both IGF2 and IGF1R expression that results in
enhanced IGF signalling [41, 42].

IGF2 appears to be consistently overexpressed and acts
as an autocrine/paracrine growth factor signaling through
IGFIR in RMS. Its likely key role in the development and
progression of both ARMS and ERMS is consistent with
therapeutically targeting this pathway for the treatment of
patients with RMS.

2.2. IGFIR in RMS. IGFIR is a transmembrane receptor
with two extracellular ligand-binding a-subunits and two -
subunits forming the transmembrane and tyrosine kinase
catalytic domains that are linked by disulfide bonds. It is
primarily activated by its cognate ligands, IGF1 and IGF2
(IGF2 with 2- to 15-fold lower affinity) and by insulin with
a lower affinity [28, 43-45]. The binding of the ligands
to the cysteine-rich domain of the a-subunits leads to a
conformational change of the f-subunit, stimulating the
tyrosine kinase activity. This is followed by autophospho-
rylation of a cluster of tyrosine residues on the f-subunits
of the intracellular domains. Subsequently, insulin receptor
substrates (IRSs) 1 to 4 and the Src homology collagen-like
adaptor proteins (Shc) bind to the juxtamembrane domain
of the B-subunit, initiating alternative intracellular signaling
cascades [46—48]. One of these pathways leads to PI3K-AKT-
mTOR activation, while another results in MAPKs (Mitogen-
Activated Protein Kinases) activation (Figure 1). Depending
on the cellular context, the activation of these pathways
results in cell proliferation, protein synthesis, and/or inhibi-
tion of apoptosis. IGF1R signaling can also lead to disregula-
tion of cellular adhesion and motility, and the stimulation of
myogenic differentiation in RMS [26, 27, 49, 50].

Both RMS tumors and cell lines express IGFIR [27], with
IGF1R protein detected in more than 80% of all RMS cases
without significant differences between ARMS and ERMS
[51]. This is consistent with expression at the RNA level
in our analysis of primary RMS patient data (Figure 3). An
elevated level of receptor expression has been found to be
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FIGURE 1: A simple schema of the IGF pathway and approaches to its inhibition. Insulin, IGF2 and IGF1 bind to their specific receptors
including IGFIR, IGF2R, IR and hybrid receptors. Ligand binding results in the autophosphorylation of the tyrosine residues on each
receptor, leading to recruitment of the adaptor proteins IRS and Shc to the receptor -subunits intracellular domains. This process activates
different signaling cascades through the PI3K-AKT and the RAS/RAF/MEK/ERK pathways resulting in stimulation of translation and cell
cycle progression, increased proliferation and growth and inhibition of apoptosis. The dashed arrows indicate potential feedback mechanisms
and points for strategic intervention to inhibit IGFIR signaling using anti-IGFIR mAbs or tyrosine kinase inhibitors (TKIs). Relevant
downstream intracellular tyrosine kinase proteins to inhibit include PI3K, AKT, RAF, MEK and mTOR.
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FiGure 2: Levels of RNA expression for IGF2 derived from
expression profiling data (Affymetrix HGU133plus2) in a panel
of different tissues samples. These include normal skeletal muscle
(Skeletal muscle), mesenchymal stem cells (MSC), ERMS, ARMS
(PAX3-FOXOI and PAX7-FOXOI1 fusion positive, ARMS_P3F and
ARMS_P7F and fusion gene negative ARMS_NEG) cases [13] and
RMS cell lines (RH3, SCMC, RMS, RH30, RD, RMS-YM, RH18,
Ruch3, T91-95, RH41, TE617T, Hs729T, T174, TE441T, Ruch2, and
RH4) [30].

associated with inferior survival rates [52] and has been
used as biomarker for response to targeting the pathway in
RMS preclinical models [53]. In this work it has been shown
that, even though IGF1R was expressed in almost all samples
studied, there was a large variation in expression levels that
correlated with different levels of dependence on IGF1R
prosurvival signaling. This led to proposing the notion of
addiction to IGF1R in some tumor cells.

2.3. IR-A in RMS. The Insulin Receptor (IR) and IGF1R have
evolved from a common ancestral gene encoding proteins
with related functions and a very similar tetrameric struc-
ture; 2 a-subunits containing ligand-binding domains and
2 B-subunits with tyrosine-kinase domains [54, 55]. Cells
and tissues coexpress both receptors and hybrid receptors
can be formed by one a- and one f-subunit IR heterodimer,
and one a- and one B-subunit IGFIR heterodimer [56, 57].
Furthermore, IR has two different isoforms: IR-A (or fetal)
and IR-B (classic), which are determined by alternative
splicing mechanisms (IR-A lacks exon 11) [58, 59]. Even
though IR-A expression in adult cells is much lower than IR-
B, this is not the case for cancer cells [60], but the factors
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FIGURE 3: Levels of RNA expression of IGFIR and INSR (both isoforms of the insulin receptor combined) derived from Affymetrix
HGU133plus2 expression profiling data of a panel of different tissues samples. These include normal muscle (Skeletal muscle), mesenchymal
stem cells (MSC), ERMS, ARMS (PAX3-FOXOI and PAX7-FOXOI fusion positive, ARMS_P3F and ARMS_P7F and fusion gene negative
ARMS_NEG) cases [13] and RMS cell lines (RH3, SCMC, RMS, RH30, RD, RMS-YM, RH18, Ruch3, T91-95, RH41, TE617T, Hs729T, T174,

TE441T, Ruch2, and RH4) [30].

contributing to the switch from isoform B to A expression in
cancer are poorly understood [59, 61]. Increased expression
of IR-A has been reported in carcinomas of breast, colon,
lung, thyroid, and ovary [59]. Similarly, an elevated level
of IR-A expression has been seen in osteosarcoma [62] and
leiomyosarcoma [63] cell lines although the situation in
RMS is currently unknown. In addition, IR-A is frequently
expressed in solitary fibrous tumors samples (whilst IGF1R is
not usually detected) [64] and is essential for virus-induced
malignant transformation in Kaposi’s sarcoma [65].
Phosphorylated IR in RMS has been described in vitro
[66]. An increase in tyrosine phosphorylation of the insulin
receptor substrate-1 (IRS-1) has also been reported in RMS.
In poor prognosis patients this IRS-1 activation seems
refractory to a negative feedback loop mediated by increased
phosphorylated mTOR and 70S6 levels [52] which are
observed in normal cells and RMS with a favourable progno-
sis. Thus, these facts support a persistent activation of the IR-
IGF1R-mediated survival signaling in RMS patients, which
may contribute to a worse prognosis in this malignancy.

3. Targeting the IGF Pathway in RMS

IGF1R has been acknowledged as a biologically relevant
target in pediatric sarcomas for some time, but it has been
difficult to, target it therapeutically due to its similarity
to the IR and the toxicities associated with nonspecific
inhibition. Nevertheless, in the last few years, new agents
have emerged and have shown promising results. Essentially,
the strategies for blocking or disrupting IGFIR include (a)
the reduction of ligand levels or bioactivity, (b) the inhibition
of receptor function using receptor-specific antibodies or
small-molecule tyrosine kinase inhibitors (TKIs), or (c)
inhibition of its downstream signaling molecules [67].

3.1. Targeting the Ligands. The disruption of the hypothal-
amus-hypophysis axis, and thus the clinical inhibition of
GH release, can result in a decrease of circulating levels of
IGE. Thus the disruption of this axis has been proposed
as a potential strategy to reduce IGF in those cases where
there is a background of elevated endocrine IGF release
such as Beckwith-Wiedemann Syndrome which is associated
with high rate of tumors in childhood, including RMS [68].
Another approach consists in reducing the concentrations
of free active ligands using monoclonal antibodies against
IGFs. DX-2647 is an antiligand monoclonal antibody which
blocks IGF2, and also, but with less affinity, IGF1. Recently,
this antibody has shown potential antitumor activity in
human hepatocarcinomas xenografts [69], a tumor where
upregulation of IGF2 expression is a common alteration.
Even though there is not yet data available in sarcomas,
this seems a plausible option for investigation in RMS
where IGF2 is commonly upregulated. Other novel strategies
to lower the ligand bioactivity may include recombinant
IGFBPs [70]. In vivo experiments using the RMS cell line
RH30 have shown that IGFBP-6 overexpression resulted in a
marked delay in tumor growth in nude mice [71]. IGFBP-6 is
unique among other binding proteins because of its binding
specificity for IGF2. IGF2 has a higher affinity for IGFBP-
6 than for IGFIR [72] suggesting that IGFBP-6 can reduce
the levels of free active IGF2, preventing its binding to the
receptor.

3.2. Targeting IGFIR. At the time of this paper, mAbs against
IGFIR represent the most tangible clinical option, but there
are also numerous small molecule tyrosine kinase inhibitors
(TKIs) against IGF1R currently undergoing clinical evalua-
tion [73]. Some of these small molecules also inhibit IR-A
[74].
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RMS cell lines secreting IGF2 have been shown to be able
to grow in serum-free media. Under the same conditions,
treatment of these cells with an antibody against IGF1IR
significantly inhibited cell growth suggesting that IGF2
functions as an autocrine and paracrine growth factor in
RMS [27].

Overall, inhibition ligand binding using competitive
antibodies and TKI have both been shown to block IGF1R
activity resulting in inhibition of RMS cell proliferation,
increased apoptosis, and cell cycle arrest [75, 76]. Further-
more suppression of vasculogenesis has also been demon-
strated in vitro and in vivo xenograft models [77]. In vivo,
tumor formation and growth of RMS cells was inhibited by
treating mice with an antibody antagonistic against IGF1IR
[53, 78, 79] or with TKIs [75, 76, 80]. The most effective
antibodies against IGF1R include aIR3, which detects the a-
subunit of IGFIR [78], and IMCA-12 [81]. The latter has
shown promising results in the Pediatric Preclinical Testing
Program [81]. Regarding the TKIs, we can highlight NVP-
AEW541 [75, 76] and BMS-754807 [80] as two promising
molecules to move towards testing at the clinical level.

Other approaches for investigating the role of IGF1R have
also been optimized recently, including using antisense RNA
to reduce levels of expression and expression of a kinase-
deficient form of this receptor [82, 83]. Both approaches
resulted in tumor suppression.

3.3. Targeting Pathways Downstream of IGFIR. Recently, it
has been shown, both in vitro and in vivo, that IGFIR
survival signaling in RMS is primarily maintained through
the AKT pathway, and that effective disruption of the IGFIR
survival signaling results in decreased AKT activation [84].
However, activation of the PI3K pathway downstream of
IGFIR and IR is subject to a negative feedback loop by
mTOR through inhibition of IRS1 [85] (Figure 1). This is
especially important in view of the fact that the combination
of an antibody targeting IGF1R combined with an mTOR
inhibitor, such as rapamycin, is predicted to inhibit RMS cell
growth more effectively than either agent used alone. Indeed,
an increase in AKT activation was found in RMS cells after
rapamycin treatment with a more efficient inhibition of RMS
growth both in vitro and in vivo when combined with an
IGF1R antagonistic antibody [86, 87]. It has been described
that patients with an increased phosphorylation of AKT, that
result from a disruption in the feedback mechanism between
mTOR and IRS, have a poorer survival [52]. Preclinical
studies have also recently shown that targeting MEK/ERK
(using the MEK/ERK inhibitor U0126) also leads to growth
arrest of RMS tumors in an in vivo xenograft model [88]. All
of these results provide preclinical evidence to support the
use of signal transduction-based targeting of AKT/MEK in
strategies for treating RMS.

4. Clinical Targeting of IGF1R in RMS:
Evidence and Trends

In recent years, several agents against IGF1R have entered
clinical trials of various tumor types, including sarcomas

and RMS. A small number of clinical responses in patients
with sarcomas have been reported across the different phase I
clinical trials using IGF1R antibodies [89-91] and have raised
hope for the success of this therapeutic modality. However,
objective radiological responses were generally limited to
patients with Ewing’s sarcoma [89-91], with occasional
prolonged (>6 months) disease stabilisation and clinical
benefit in other sarcomas subtypes [89]. To our knowledge,
only 2 patients with RMS were enrolled in these early trials.
Both cases were heavily pretreated metastatic ARMS and
both progressed within 6 weeks of starting treatment on
figitumumab (a monoclonal antibody against IGF1R) [89].
More recently, in a preliminary report of the SARCO11, a
phase II trial in multiple sarcoma types, described 3 objective
radiological responses in patients with RMS treated with
the anti-IGF1R antibody R1507 [92]. However, more mature
data in Ewing’s sarcoma has shown that many responses only
lasted for a finite period of time [93, 94].

Despite the difficulties of drawing conclusions from
small numbers of RMS patients treated with anti-IGF1R
antibodies, it is plausible to suggest that such single agent
therapy in RMS might be insufficient to cause a clinically
significant and persistent disruption in the IGF-mediated
survival signalling, as seen in other neoplasias where IGF2
plays a relevant role [95]. Some preclinical studies have
indicated that there are different binding epitopes on
IGFIR that have differing biological activities [96] and
different antibodies with distinct mechanisms of action to
these epitopes [97]. Furthermore, combination strategies
focused on blocking both IGF1 and IGF2 with two different
inhibitory antibodies which resulted in enhanced inhibition
of intracellular signalling through the IGFIR axis in vitro
and in vivo, when compared to the activity of either single
antibody alone. This effect was even more evident at high
ligand concentrations where efficacy of monotherapy was
relatively reduced [98]. A similar effect could be achieved
by small molecule TKIs although few are currently in
clinical development [73]. However, only prolonged disease
stabilisation is reported in sarcoma patients treated within
the OSI 906 (a TKI) phase I trial, although RMS patients were
not included [99].

The efficacy of clinical strategies targeting IGFIR alone
in RMS may be compromised due to the potential of cells to
bypass the requirement for IGF2. Recently, it has been shown
that IGF2 signaling can directly promote carcinogenesis in
transgenic pancreatic neuroendocrine xenograft (an IGF2
dependent model) through IR binding [100]. Thus, RMS
clinical alternatives could include the inhibition of both
IGFIR and IR, using TKIs such as OSI-906 with activity
against both IGF1R and IR-A [99]. However, this would
potentially result in a higher metabolic toxicity.

An alternative approach is to inhibit the IGFIR/IR down-
stream signaling cascade with PI3K/AKT/mTOR and/or
Raf/Ras/MEK/ERK inhibitors. There are several molecules
against these targets that have been recently tested in patients
with various tumor types. Some of these, as single or com-
binations of agents, are currently undergoing pivotal phase
II trials for regulatory approval in solid tumors other than
sarcoma [101, 102]. Many agents have shown an adequate



toxicity profile in phase I dose-finding studies and phase
II trials, but to date, the clinical results with novel drugs
in sarcomas, and specifically RMS in children, are limited.
The largest experience in sarcomas has been provided with
the study of mTOR inhibitors, particularly with compounds
similar to rapamycin such as ridaforolimus, everolimus, and
temsirolimus. These have shown some activity in adult soft
tissue sarcomas [103]. Combining inhibitors of IGF1R/IR
downstream signaling cascades, such as mTOR inhibitors,
with an inhibitor of IGFIR also represents an attractive
approach. A preliminary phase I trial report for figitumumab
in combination with the mTOR inhibitor everolimus has
shown activity in various sarcomas, including solitary fibrous
tumors [104], which are characterised by the expression and
secretion of high molecular weight proforms of IGF2 (“big”-
IGF2) [105, 106] and constitutive activation of IR-A but
not IGFIR [64]. Similar trials that include RMS are either
ongoing or planned.

Another strategy to consider is decreasing the levels
of bioactive ligands using anti-IGF antibodies. Reducing
circulating IGF has been unsuccessfully with somatostain
analogues such as octreotide [107]. Recently, a human
recombinant GH receptor antagonist, called pegvisomant,
has been successful in tests for the treatment of acromegaly
[108]. This pegylated recombinant human analogue of GH
can decrease production and release of both IGF ligands
[109]. Neither octreotide nor pegvisomant would impact
on the paracrine IGF2 levels when they are genetically
upregulated within the tumor—which is the case in RMS,
but there is epidemiological evidence to support a role
of the GH-regulated IGFs secretion in the promotion,
progression, and maintenance of tumors in childhood and
adolescence. Currently, a phase I clinical trial of figitumumab
in combination with pegvisomant (NCT00976508) [110] is
active in adults patients with solid tumors, but it will also
enroll patients 10 years or older with refractory sarcomas.

A final clinical strategy in RMS could be sequential or
parallel IGFIR pathway blockade combined with inhibition
of the Erb2 [53] or PDGFR« [111] axes, that are potentially
involved in resistance to IGFIR therapies. These pathways
in themselves may also be of therapeutic benefit to inhibit
in some RMS [112-116]. One way to address the issue of
controlling drug sensitivity, as well as pathway cross talk,
is to control the response to stress response mechanisms
associated with drug treatment. Heat shock stress is a cellular
response to stress induced by drug treatment in which the
cell increases the expression of several key molecules, called
heat shock proteins (HSPs), in order to protect against the
effects of treatment. HSPs are chaperone proteins that help
to maintain protein stability, renature unfolded proteins, or
target their degradation [117, 118]. Several of these HSP
client proteins are involved in signal transduction pathways
that lead to proliferation, apoptosis, or cell cycle progression
in several cancers, which is precisely the case for IGFIR [119,
120]. Therefore, HSP inhibition is a therapeutic strategy to
inhibit multiple receptor pathways. IGFIR chaperoning by
HSP90 and its possible relationship with resistance to IGF1R
targeting has been shown in Ewing’s sarcoma. HSP90 was
differentially expressed between Ewing’s sarcoma cell lines
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sensitive versus resistant to treatment and HSP90 inhibition
reduced Ewing’s sarcoma cell line growth and survival,
especially in the cell lines resistant to IGF1R inhibitors [121].
An analogous situation may be the case for RMS. It has
been shown that HSP90 inhibitors, geldanamycin, and its
analogs, can profoundly affect the proliferation of RMS
cells, including inducing apoptosis and downregulating the
expression of AKT [122].

5. Conclusions

There is a large amount of preclinical, clinical, and epi-
demiological data supporting targeting the IGF1R pathway
in sarcomas, and specifically RMS. The activity of IGF1R
monoclonal antibodies has been confirmed by the early
reports of clinical activity in Ewing sarcoma [89-91, 94].
However, in RMS patients, despite some responses observed
with R1507 [92], targeting IGF1R alone does not seem
the optimal strategy due to the complexity of this pathway
and the key role of IGF2 in this pathology. To extend
the benefits of these therapeutic approaches there is an
urgent need to identify predictive biomarkers to improve
patient selection and facilitate the development of rational
combination regimens. It is likely that a suite of biomarkers,
both in the host and tumor [73] will be required rather than
single biomarker selection, with some candidates for study
in RMS including IGF2, pIGF1R/IGFIR, IGF1, pIRS-1/IRS-
1, pIR-A/IR-A, IGFBP-6, and maybe others such as HSPs,
PDGEFR and Erb2.
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