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To recover the sources giving rise to electro- and magnetoencephalography in individual measurements, realistic physiological
modeling is required, and accurate numerical solutions must be computed. We present OpenMEEG, which solves the
electromagnetic forward problem in the quasistatic regime, for head models with piecewise constant conductivity. The core of
OpenMEEG consists of the symmetric Boundary Element Method, which is based on an extended Green Representation theorem.
OpenMEEG is able to provide lead fields for four different electromagnetic forward problems: Electroencephalography (EEG),
Magnetoencephalography (MEG), Electrical Impedance Tomography (EIT), and intracranial electric potentials (IPs). OpenMEEG
is open source and multiplatform. It can be used from Python and Matlab in conjunction with toolboxes that solve the inverse
problem; its integration within FieldTrip is operational since release 2.0.

1. Introduction

It is well recognized that conductivity models and forward
solutions play an important role in accurate source localiza-
tion from EEG [1, 2]. This is also true for MEG, though to a
lesser degree [3].

Despite the simple mathematical nature of the equations
giving rise to the electric potential and the magnetic field,
these equations are not trivial to solve numerically, because
of large conductivity ratios arising between neighboring
tissues of the head. The field of forward modeling in EEG and
MEG dates back to Barnard, who derived integral equations
for electrocardiography [4, 5] and to Geselowitz [6]. After
these seminal papers, several groups proposed Boundary
Element solutions to these problems (as well as other types of
solutions, notably Finite Elements, that are beyond the scope
of this paper) [7–9].

The difficulty in the numerical resolution of the forward
problem arises when electric sources are close to the
boundary between two such tissues, in which case the
solvers face accuracy problems [8]. Such source positions
are not rare occurrences: indeed the gray matter, where the
electric dipoles representing brain activity may be assumed

to reside, is quite close to the cerebrospinal fluid (CSF)
and to the skull. An accuracy correction method, called
Isolated Skull Approach (ISA), was proposed to alleviate
these accuracy issues [10]. Although the accuracy was
improved in most cases, it was sometimes degraded [8]. Until
recently, no acceptable solution was available that did not use
the ISA.

For these reasons, a research program on forward mod-
eling for EEG and MEG was conducted at INRIA, leading
to the development of the symmetric BEM [11–13]. The
OpenMEEG software package makes this new development
available to the MEG/EEG community.

The thrust of OpenMEEG is to propose accurate forward
problems, in several instances. The most classical instances
are EEG and MEG, but OpenMEEG also allows to compute
the electric potential due to boundary current injection (as
occurs in Electrical Impedance Tomography or in Functional
Electrical Stimulation) and to compute the electric potential
measured within the brain (as occurs in stereographic EEG).

For each of these instances, the result of the forward
problem is expressed as a lead field, that is, the matrix
representing the linear relation between sources and mea-
surements, a.k.a. “Gain matrix.”

mailto:alexandre.gramfort@inria.fr


2 Computational Intelligence and Neuroscience

The modeling assumptions of OpenMEEG are explained
in Section 2. Section 3 then details the four instances
of forward computation: EEG, MEG, EIT, and Internal
Potential (IP), from the physical model to the OpenMEEG
commands. Section 4 provides practical information on
OpenMEEG usage. The accuracy of OpenMEEG is assessed
in a benchmark comparison test in Section 5, and the paper
ends with a conclusion. The material presented here refers to
releases 2.1 and later.

2. Modeling Assumptions

The quasistatic regime of Maxwell’s equations is valid at the
frequencies of interest in EEG and MEG, and also for EIT and
functional electrical stimulation, at stimulation frequencies
below 1 kHz. In this regime, the electrical potential V is
governed by the law of electrostatics

∇ · (σ∇V) = ∇ · Jp, (1)

where σ is the conductivity field and Jp is the source
distribution. The brain sources are modeled as dipoles,
representing average postsynaptic currents within pyramidal
cortical neurons. A boundary condition fixes the value of the
normal current on the domain boundary

σ∇V · n = j. (2)

In EEG and MEG, the value of the normal current on the
scalp is j = 0, but in electrical impedance tomography, j
takes the values of the current injected on the scalp.

2.1. Head Model. OpenMEEG is based on a Boundary
Element representation of physical fields, implying that the
conductivity model, describing the conductivity field σ ,
must be piecewise constant. The physical fields are thus
represented on the boundaries of the regions of constant
conductivity. More precisely, OpenMEEG is restricted to
nested conductivity models, that is, in which there are
successive layers of constant conductivity (see Figure 1(a)).
This model is generally well suited to the head, as it
can handle the brain, CSF, skull, and scalp conductivities.
Extensions of the symmetric BEM have been proposed to
handle nonnested regions as in Figure 1(b) but are not yet
handled by OpenMEEG [13]. Regarding the conductivity
field, the only theoretical restriction for using Boundary
Element methods is that the conductivity field must be
translation invariant in each domain. Thus, for complex
3D domains as the head, anisotropic conductivity cannot
be handled with a BEM, and other solvers using volumic
approaches must be used (e.g., Finite Element methods).

2.2. Source Models. The primary current within the brain
Jp in (1) is represented as a distribution of dipoles. This
distribution may be either pointwise or surfacic. A pointwise
source distribution is a collection of pointwise dipoles,
defined by their positions and moments. A surfacic source
distribution is defined over a surfacic mesh, as

Jp(r) =
∑

i

φi(r)Jin(r), (3)

where the sum runs over all vertices, φi is the piecewise linear
function equal to 1 on vertex i and 0 on all others, and n(r) is
the normal to the surface at position r. The source intensity
is linear on each triangle and equal to Ji on vertex i.

Note that the pointwise source distribution is the most
commonly used, because it is difficult to define a surface sup-
porting the sources—hence matching the gyri and sulci—on
which the orientations are sufficiently smooth.

Another type of source that can be considered is the
normal component of the boundary current: j in (2). This
normal current is modeled as piecewise constant on the
mesh, that is,

j(r) =
∑

k

ψk(r) jk , (4)

where the sum here runs over all triangles and ψk is the
piecewise constant function equal to 1 on triangle k and 0
on all others.

2.3. Sensor Models. Four types of modalities are considered:
EEG electrodes, MEG sensors, current injection electrodes,
and intracranial electrodes for measuring the potential. In
each case, the sensor model considered by OpenMEEG is
very basic, that is, it does not model capacitive effects, nor
electrode extension.

EEG and intracranial electrodes are assumed punctual
and defined by their 3D coordinates. In the case of EEG,
the 3D electrode position is projected orthogonally onto the
scalp surface. Each MEG sensor is defined by a collection of
points and weights, thus modeling magneto- or gradiome-
ters, possibly with the shape of the coil wiring. Current
injection electrodes are defined by their 3D coordinates, and
the current injection model is a uniform current over the
closest triangle to the injection electrode.

3. Forward Field Computation

For the models explained above, OpenMEEG is equipped to
compute four different types of lead fields. We now detail
the computations for each of them. In addition, the reader
can refer to a global flowchart in Figure 5, which explains
the structure of the commands and of the input/output
arguments. Information on input/output format is provided
in Section 4.

3.1. EEG Lead Field. Computing an EEG lead field amounts
to computing the potential V on electrodes, due to a set
of dipolar sources at prescribed positions and orientations.
(For simplicity, our description considers a pointwise source
distribution, but the method also applies to a surfacic source
distribution) The potential V is defined, up to an additive
constant, as the solution of (1) with a boundary condition
(2) in which no current flows across the scalp. Considering a
nested conductivity model as in Figure 1(a), the symmetric
Boundary Element expresses the solution of this problem,
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Figure 1: Boundary Elements are well suited for piecewise constant isotropic conductivity models. OpenMEEG handles nested regions (a)
and could in principle be extended to more general, disjoint regions (b) [13].

restricted to the domain boundaries, as the solution of the
set of equations

���������	 ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

VS1

(σ∂nV)S1

VS2

(σ∂nV)S2

...

VSN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 
���
������	 ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J1

J2

...

Jp

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

for a set of p source intensities corresponding to p prescribed
dipoles [11]. Both the potential VSi and the normal current
(σ∂nV)Si are discretized on each boundary Si (except the
scalp where only the potential needs to be discretized since
the normal current vanishes). The potential is represented
with piecewise linear boundary elements, while the normal
current is represented with piecewise constant boundary
elements.

The two matrices ���������	 and 
���
������	

involve Boundary Integral operators which OpenMEEG
is equipped to compute. Computing the EEG lead field
LEEG amounts to solving the symmetric linear system (The
denomination “Symmetric BEM” is due to the symmetric
nature of the ���������	):

���������	 · X = 
���
������	 (6)

and applying to the result X an interpolation operator to
infer the potential at the scalp electrode positions

LEEG = �������������	 ·X. (7)

Matrices are assembled in OpenMEEG by invoking the
command

�� �������� ������ ���������� �����	. (8)

���������	 is assembled with the -������� option
and Parameters containing the geometry and conductivity
description.

�������������	 is assembled with the -�����������
option, and the same ����������.


���
������	 is assembled with the -���
���
����
or -
���
���
����option, depending on the source model
(Section 2.2), and ���������� containing the geometry,
conductivity, and source description (positions and orienta-
tions, or surface supporting a surfacic source).

Finally, (6) and (7) are solved by successively

(i) inverting matrix ���������	:

�� ��������� ���������	 ���������	���; (9)

(ii) applying the interpolation and the inverse matrix to
the 
���
������	:

�� ���� -��� ���������	���


���
������	 �������������	 ���������	.
(10)

The EEG lead field is the output of the previous
command.

3.2. MEG Lead Field. The magnetic field B depends both
on the electric potential V and on the current source
distribution Jp, through the Biot and Savart law

B(r) = μ0

4π

∫
(Jp(r′)− σ∇V(r′))× r− r′

‖r− r′‖3 dr′, (11)

when j = 0 on the boundary.
The magnetic field B can be split into two contributions,

the primary field generated by the primary current and
the ohmic field. The primary field is computed as a linear
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Figure 2: MEG simulation: visualization on a surface interpolating
the sensors (radial magnetometers) of the field induced by a dipolar
source on the left temporal cortex (in red). Computation is done
with OpenMEEG and a 3-layer head model.

relation between sources and measurements, via a matrix

���
����������	. The Ohmic field is computed as a lin-
ear relation between electrical potential and measurements.
Computing this Ohmic lead field amounts to solving (6)
(as when computing LEEG) and applying to the result X an
operator �������������	. Finally the MEG lead field LMEG

is equal to:

LMEG = �������������	 · X + 
���
����������	.
(12)

���������	 and 
���
������	 are identical to
those of the EEG lead field, and their assembly has been
explained in Section 3.1. Matrices �������������	 and

���
����������	 are obtained through the �� ������

��� command. �������������	 is assembled with the
option -����������� and with ���������� describing the
geometry, conductivity, and sensors; 
���
����������	 is
assembled with the option -���
���
�������� (pointwise
source) or -
���
���
�������� (surfacic source), and
with the previously listed parameters, plus the source
description (discrete points and orientations, or a surface).
Finally, the MEG lead field LMEG is computed by invoking
�� ���� with the option -���, and input matrices
���������	���, 
���
������	, �������������	,

���
����������	.

Figure 2 displays a magnetic field corresponding to a
single dipole and interpolated on a surface containing the
magnetometer positions.

3.3. EIT Lead Field. OpenMEEG also allows to compute
the electric potential due to an applied current on the
boundary of the domain. This occurs in electrical impedance
tomography, and also in functional electrical stimulation.
We will denote this type of problem “EIT,” bearing in
mind that it may also concern other application fields.

Electrical Impedance Tomography (EIT) seeks to estimate
the conductivities of the model, by analyzing the potential
resulting from the application of a current on the boundary.
In EIT, the conductivities must then be adjusted to match
the measured current potential correspondence [14–16].
OpenMEEG allows to compute this current potential cor-
respondence, for fixed values of conductivity. This amounts
to solving (1) and (2), for prescribed injected current j, and
selecting the values of the potential on the electrodes as for
EEG in (7).

It is interesting to note that only the right-hand side of
(6) must be changed when EIT is being solved instead of
EEG. The source matrix for EIT is computed by invoking
�� �������� with the -���
���
���� option and as
parameters the geometry file, conductivity file, and the file
describing the EIT electrodes.

After inverting the left-hand side matrix in (6) (yielding
���������	���) and computing the electrode interpola-
tion matrix �������������	, the EIT lead field is com-
puted using �� ���� with the -��� option

�� ���� -��� ���������	��� ���
���
������	

�������������	 ���������	.
(13)

Figure 3 displays the scalp potential corresponding to a
current injection between two electrodes.

Note that, for a new set of conductivity values, the
computation of the ���������	 is immediate, because of
the form of the ���������	 (14) (refer to [11] for a proof).
This makes the EIT inverse problem quite tractable using
OpenMEEG [17]:

���������	=
N∑

i=1

(
σiAi + σ−1

i Bi
)
. (14)

3.4. Internal Potential (IP) Lead Field. In certain clinical
settings, the potential may be measured within the brain
(intracranial EEG or stereotaxic EEG). Given a distribution
of current generators within the head, OpenMEEG is able
to compute the potential at any position within the head
(brain, skull, scalp). This may appear surprising, because
OpenMEEG is based on a Boundary Element Method that,
by definition, only represents the potential on the interfaces
between domains. But computing the potential within a
domain from the knowledge of the potential and normal
current on the surrounding interfaces is only a matter of
applying a Green harmonic representation theorem.

In practise, this relation is provided by a matrix
������������	. One must also take into account a contri-
bution from the sources belonging to the same domain as the
electrodes.

Computing the internal potential lead field LIP proceeds
by solving for X, as for the computation of LEEG,

���������	. X = 
���
������	, (15)
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Figure 3: EIT simulation: visualization on a surface interpolating
EEG electrodes of the electric potential when a current flows from
one electrode (in yellow) to another (in orange). Computation is
done with OpenMEEG and a 3-layer head model.

and then computing

LIP = ������������	 · X + 
���
���������	.
(16)

������������	 is assembled with the �� ��������

command with option -������������������� and the
usual parameters (geometry and conductivity description)
along with the internal points. 
���
���������	 is
assembled with the same command with option -����

���
���������������� and, in addition to the previous
parameters, the source description. Finally, LIP is computed
by invoking �� ����with the option -�����������������
and input matrices ���������	���, 
���
������	,
������������	 and 
���
���������	.

Figure 4 displays the internal potential due to a single
dipole.

4. Usage of OpenMEEG

4.1. I/O File Formats. OpenMEEG handles several file for-
mats corresponding to several types of objects: vectors,
matrices, head geometries, meshes, dipoles, conductivities,
and sensors.

By default, matrices and vectors are stored on disk using
a Matlab file format. Symmetric matrices, for which Matlab
does not propose a format, are represented as a Matlab
structure. Alternatively OpenMEEG handles plain ASCII
files (usually used for sensors and dipole descriptions) and
BrainVisa textures.

OpenMEEG geometrical models are described via several
files. Note that OpenMEEG considers SI units (point coor-
dinates should be expressed in meters (m), conductivities
in S/m, etc.). The top level file (with the extension !����)
describes the nested structure of the different domains

Dipole

Figure 4: Internal Potential simulation: visualization of the internal
potential computed using OpenMEEG in a 3-layer head model. A
dipolar source (red cone) is located in the left hemisphere of the
cortex (not represented), and the curved lines are isopotential lines.
A bending of the isopotentials near the skull can be observed.

(see Figure 6). An associated conductivity file (with exten-
sion !
���) contains the conductivities of the domains (see
Figure 7).

Mesh formats supported are BrainVisa !��� files
(default) and ASA !��� files.

4.2. Example Scripts and Demos. Much effort has been
devoted to facilitating the use of OpenMEEG by the
M/EEG community. OpenMEEG can be invoked either via
a command line interface (see Figure 5) or via higher-
level languages. OpenMEEG can be used from Python
or from Matlab via the FieldTrip Toolbox, where it is
fully integrated in the forward modeling routines. Within
FieldTrip, OpenMEEG can compute lead fields for head
models with 1, 2, 3, or 4 nested layers.

Algorithms 1 and 2 provide sample Python and FieldTrip
scripts.

4.3. Technical Details. OpenMEEG is distributed under the
French open source license CeCILL-B, intended to give users
the freedom to modify and redistribute the software. It is
therefore compatible with popular open source licenses such
as the GPL and BSD licenses. Due to the CeCILL-B license,
anybody distributing a software incorporating OpenMEEG
has an obligation to give credits by citing the appropriate
publications. (The references to be cited to comply with
the license can be found on the OpenMEEG webpage
http://openmeeg.gforge.inria.fr.)

OpenMEEG is implemented in C/C++ with limited
external dependencies. It uses the Intel MKL libraries on
Windows and ATLAS (BLAS/LAPACK) on Unix systems

http://openmeeg.gforge.inria.fr.
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Figure 5: Flowchart describing the OpenMEEG procedure for computing EIT, EEG, MEG, and IP lead fields.

for fast and accurate linear algebra. A modified version of
the MATIO library (http://sourceforge.net/projects/matio)
has been integrated in OpenMEEG for Matlab com-
patibility. The source code of OpenMEEG is hosted
on the INRIA GForge platform and is accessible from
http://openmeeg.gforge.inria.fr.

OpenMEEG is available as precompiled binaries for
GNU-Linux systems, Mac OS, and Windows (32 and 64
bits). OpenMEEG’s build and packaging system is based on
CMake/CPack (http://www.cmake.org) allowing easy devel-
opment and deployment on all architectures.

To accelerate the computations, OpenMEEG can be
compiled with OpenMP, a technology that enables parallel

computation at limited cost in terms of software design. The
numerical integration, on which most of the computation
time is spent, can then be run in parallel. Figure 8 presents
observed computation times for the computation of an EEG
lead field with the head model of Figure 4 (approximately
700 vertices per layer, 3 layers and 15000 dipoles). It
can be observed that with 4 threads, the computation is
almost 3 times faster. The memory requirement for this
example is 770 MB. The computation time of a forward field
computation with OpenMEEG can be roughly broken down
into three main components: the Head Matrix assembly, its
inversion, and the Source Matrix assembly (identified as HM,
HMINV, and DSM in Figure 8).

http://sourceforge.net/projects/matio
http://openmeeg.gforge.inria.fr
http://www.cmake.org
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Algorithm 1: Demo script for computing the 4 types of lead fields with OpenMEEG in python.

%% ��	 ��
����
	 ��
 ��	  �� !���
	 ���������� 
��	�

% !��"����#�"���$ !	
���	� �� ��	 
	�� �� ��%	
 &#&

% !��"����#�"�
�$ �
�����	� �� ��	 
	�� �� ��%	
 &#&

% !��"���� $ ��������!���	� �� 	��� ��%	


%% ��� 	�	��
��	�

% �	��"��� $ ��������� �� ��	 ��� 	�	��
��	�

%% ��������� �� ��	 �����	�

% ��� $ ��������� �� ��	 �����	�

%% ��
���	 ��	  ��

% �����	 �
��	
	������� �'�	�����(  ���� �
 )������

�&	
������ � ��������	�)
% ��
���	 ��	  �� 
��
�*

��� � &� ����
�� *���������&	� ����)
�&	
��� � ���)
�&	
	���
��� � ���)
�&	
���� � ����)

% �	� ��	 ��
���	� �	����	��

�& �������	 � &� ����
�� ��
�&������&	�)

Algorithm 2: Demo script for computing an EEG lead field with OpenMEEG in FieldTrip.
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∗.geom-geometry description file

# domain description

Interfaces 3 mesh

/home/meshes/brain surface.tri

/home/meshes/skull surface.tri

/home/meshes/head surface.tri

Domains 4

Domain brain -1

Domain skull -2 1

Domain skin -3 2

Domain air 3

Header

3 interfaces of type mesh

4 domains
(describe head geometry)

Domain names

Cortex domain is:
- internal to surface 1 (-1)

Skin domain is:
- internal to surface 3 (-3)
- external to surface 2 (2)

Air domain is:
- external to surface 3 (2)

Meshes path

Figure 6: Sample geometry file. The %����&
��� section provides
the meshes, while the section "��
��� informs of the physical
model.

# properties description 1.0 (conductivities)

Brain 1

Skin 1

Air 0

Skull 0.0125

∗.cond-Conductivity description file

Figure 7: Sample conductivity file associated to the geometry file in
Figure 6.

Deployment on multiple architectures with heteroge-
nous hardware and software environments requires testing
procedures to assess the stability of the solutions provided
by compiled binaries. This testing procedure, based on
CMake/CTest, guarantees the integrity of the results, in
particular by comparison with analytical results on spherical
models.

5. EEG and MEG Comparison Study

5.1. Benchmark Presentation. When the head model consists
of nested concentric spheres, the accuracy of EEG and MEG
forward computations can be assessed by comparing the
computed solution with the analytical solution. We here
present an excerpt of the benchmark study presented in [18].

The precision of a forward solution is tested with two
measures: the Relative Difference Measure (RDM) and the
magnitude ratio (MAG) [19].

The RDM between the forward field given by a numerical
solver gn and the analytical solution ga is defined as

RDM
(
gn, ga

) =
∥∥∥∥∥
gn∥∥gn
∥∥ −

ga∥∥ga
∥∥

∥∥∥∥∥ ∈ [0, 2], (17)

1 2 4
0

100

200

300

400

500

600

Number of threads

C
om

pu
ta

ti
on

ti
m

e
(s

)

HM

HMINV

DSM

Figure 8: Computation time of an EEG lead field with the head
model of Figure 4 (approximately 700 vertices per layer, 3 layers and
15000 dipoles). With 4 threads, the computation is almost 3 times
faster. These results were obtained on a quad-core Intel Xeon CPU
working at 3.20 GHz.

Figure 9: The 3D mesh used in FEM computations. The 3 layers are
shown in red, green, and yellow, respectively.

while the MAG between the two forward fields is defined as

MAG
(
gn, ga

) =
∥∥gn
∥∥

∥∥ga
∥∥ . (18)

In both of these expressions, the norm is the Euclidian �2

norm over the set of sensor measurements.

Geometrical Models. The comparisons were made both on
classic regular sphere meshes as in Figure 10, and on random
meshes [18]. The BEM solvers are tested with three-layer
head models which model the inner and outer skull, and the
skin. The radii of the 3 layers are set to 88, 92, and 100, while
the conductivities of the 3 homogeneous volumes are set to
standard values: 1, 1/80 (skull) and 1. For every head model,
solvers are tested with the same 5 dipoles positioned on the
z-axis with orientation (1,0,1) and various distances to the
inner layer (cf. Figure 10).
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(a) 3-layer spherical head model (b) Zoom

Figure 10: Head model made of 3 nested regularly meshed spheres with 5 dipoles close to the inner layer.

Results: Accuracy of the Electric Potential Simulations. Alter-
native BEM software available to the community are all based
on the Geselowitz formulation [6]. From this formulation,
different implementations may be derived. The potential
may be modeled either with constant elements (i.e., the
potential is piecewise constant over each mesh) or, for
more precision, with linear elements (i.e., the potential
is piecewise linear over each mesh). The computation
may then be achieved with a Galerkin method involving
numerical integration, as in OpenMEEG, or with a more
simple collocation method (see [8] for a detailed study of
Galerkin versus collocation methods). The linear collocation
(LC) method is implemented by BEMCP [20] which is
available from FieldTrip and is the default forward solver
in SPM. In order to improve the accuracy of LC methods,
the Isolated Skull Approach (ISA) has been proposed
[10]. It is used by SimBio [21], Dipoli [22], and the
Helsinki BEM [23], which implements both a simple LC
and an LC with ISA (LCISA). Within SimBio, we only
consider here its BEM solver, referred to as SimBio-BEM
[24], as opposed to SimBio-FEM [25, 26] that focuses on
inhomogeneous and anisotropic head volume conductor
models.

The Helsinki BEM is the implementation used in this
benchmark. However all the aforementioned solvers have
been tested, and it has been confirmed that all LCISA solvers
tested provide almost the same results, as do all the LC solvers
tested [18]. One of the features of OpenMEEG is to use an
adaptive numerical integration method. To demonstrate its
influence on the results, we have also tested a nonadaptive
version of OpenMEEG (OMNA).

For the sake of completeness, let us mention that the
BEM solver implemented in the MNE (http://www.nmr.mgh
.harvard.edu/martinos/userInfo/data/sofMNE.php) software
package is also LCISA based.

Furthermore, as a crude comparison, a basic finite
element method with P1 basis elements on a tetrahedral
mesh (TFEM) has also been run. It is a classical FEM, with a
preconditioned conjugated gradient as solver (Jacobi precon-
ditioner), and the dipole source is modeled through partial
integration. Such a model approximates the dipole with a
continuous distribution of sources supported over a small

region, which introduces a source approximation error
which does not exist for BEM models. Note that there are
solutions to better model dipole sources with FEM such as
the subtraction method or the Venant direct approach [27].
Such methods are beyond the scope of this contribution. The
mesh (427,000 vertices, with 43,768 vertices on the outer
surface) was generated with CGAL (CGAL, Computational
Geometry Algorithms Library, http://www.cgal.org.) A view
of this mesh is shown in Figure 9.

Results: Accuracy of the Magnetic Field Simulations. Magnetic
fields are commonly computed, in the MEG community,
using analytical solutions on spheres. While (Ohmic) volume
currents do not contribute to the radial component of the
magnetic field on a nested spherical model; they do on a
realistic geometry and must then be computed. OpenMEEG
and SimBio-BEM are two freely available software projects
that provide a computation of the magnetic field depending
on the electrical potential.

5.2. Results

5.2.1. Regularly Meshed Spheres. Results on regularly meshed
spheres are presented in Figure 11, for 3 different point
samplings on each interface. The coarsest sampling has only
42 vertices per layer and 42 EEG electrodes, the intermediate
one has 162 points per layer and 162 EEG electrodes, and
the finest sampling has 642 points per layer and 642 EEG
electrodes.

From these simulations the following can be observed.

(i) The simple linear collocation method is clearly the
least accurate.

(ii) The linear collocation method with ISA correction is
more accurate.

(iii) OpenMEEG provides the most accurate solutions
even when no adaptive integration is used. The
adaptive integration further improves the results,
particularly when the meshes are coarsely sampled
(42 and 162 vertices per layer).

http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php
http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php
http://www.cgal.org
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Figure 11: Forward EEG: accuracy comparison of different BEM solvers with three-layer sphere head models. We observe that the symmetric
BEM outperforms the other BEM methods in term of precision. The TFEM was run on a mesh with 427,000 vertices, and the results were
interpolated to 162 points in (c) and (d) and 642 points in (e) and (f).

(iv) Despite the high resolution of the mesh used with
the FEM, OpenMEEG is more accurate for the model
with 642 vertices per layer.

5.2.2. Randomly Meshed Spheres. Simulations have also been
run on a large number of randomly meshed spherical
meshes, in order to study the robustness of the solvers.
Please refer to [18] for the meshing procedure. The results

are obtained by testing each solver on 100 random head
models. The mean accuracy measures (RDM and MAG) are
represented using box plots.

EEG Results. Figure 12 presents the box plots obtained
by running the solvers on random head models with
either 600 or 800 vertices per layer. The mean results
follow the ranking of Figure 11. However the variances
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Figure 12: Forward EEG: RDM and MAG box plots obtained on 100 random 3-layer sphere models. Each layer contains 600 or 800 random
vertices.

tell us that OM is not only very accurate, but also
very precise because of its very small variance. (For
the distinction between accuracy and precision, refer to
http://en.wikipedia.org/wiki/Accuracy and precision.). The
OMNA solver is also accurate but less precise: it has a
larger variance, demonstrating that the adaptive integration
improves robustness to the meshing. Linear collocation
with ISA gives intermediate results. Also observe that linear
collocation without ISA has significantly larger variance than
the other solvers, meaning that it is very sensitive to the
meshing.

MEG Results. As explained in Section 3.2, the magnetic field
depends on the electric potential, thus its accuracy follows
from that of EEG. Although MEG machines generally only
provide radially oriented sensors with respect to the helmet
(except for some reference channels), we have, in the follow-
ing experiments, computed the nonradial magnetic field in
order to validate the Ohmic field contribution. Indeed, in
spherical geometry, for radial sensors, the magnetic field does
not depend on the Ohmic contribution—which is no longer
true for more realistic head models. Two types of sensors
were thus considered: a set of magnetometers oriented in
the Cartesian direction (1,0,1) and located at a distance

120 from the center of the model and one set of radially
oriented sensors at the same locations. Figure 13 presents,
for both types of sensors, the results of OpenMEEG on a
3-layer model, with and without adaptive integration (OM
and OMNA), OpenMEEG on a one-layer model (OM1l),
and LCISA (SimBio-BEM implementation) on a one-layer
model. The use of a 3-layer model with OpenMEEG slightly
improves the results obtained with only one layer. For
radial magnetometers, one notices a slight advantage to
LCISA both for accuracy and precision, but for nonradially
oriented sensors, OpenMEEG outperforms both OMNA and
LCISA. Performances of LCISA can however be significantly
improved by increasing the number of vertices in each layer.
In our investigations with SimBio-BEM, a number of 3400
nodes led to an RDM of maximally 0.047 and a MAG above
0.97.

6. Conclusion

OpenMEEG is a comprehensive, open source software
package for solving many different instances of forward
problems in quasistatic electromagnetism. It can compute
lead fields for EEG and MEG, as well as EIT (or Functional
Electrical Stimulation) and intracerebral EEG. Regarding

http://en.wikipedia.org/wiki/Accuracy_and_precision


12 Computational Intelligence and Neuroscience

3.85 7.25 11.5 20 45.5
−0.01

0

0.01

0.02

0.03
R

D
M

Distance to inner layer

(a) RDM 800 points per layer

3.85 7.25 11.5 20 45.5
0.95

1

1.05

M
A

G

Distance to inner layer

(b) MAG 800 points per layer

3.85 7.25 11.5 20 45.5

0

0.1

0.2

0.3

0.4

0.5

R
D

M

Distance to inner layer

OM
OM1l

OMNA
LCISA

(c) RDM 800 points per layer

3.85 7.25 11.5 20 45.5
0.5

1

1.5

M
A

G

Distance to inner layer

OM
OM1l

OMNA
LCISA

(d) MAG 800 points per layer

Figure 13: Forward MEG: RDM and MAG box plots obtained on 100 randomly meshed sphere models. OM and OMNA use a 3-layer model
while OM1l and LCISA use a one-layer model. Each layer contains 800 random vertices. In (a) and (b), radial magnetometers are considered,
whereas in (c) and (d) use nonradial magnetometers.

accuracy, OpenMEEG represents the state-of-the-art. Besides
its excellent accuracy and its versatility, several other features
of this software make it unique:

(i) the number of nested layers is unrestricted;

(ii) dipolar sources may be positioned within any of the
domains;

(iii) EEG, EIT, MEG, and IP lead fields can be jointly
computed on the same head model;

(iv) it is interfaced with Python and Matlab via FieldTrip
for a maximal ease of use.

The progress brought forth by this new software however
only represents a limited contribution in modeling brain
functional activity. Head model generation is a crucial prob-
lem in practice, and the need for automatized procedures
in this domain is crying. When more complex head models

(involving inhomogeneous and anisotropic conductivity)
are needed, Boundary Element Methods are no longer
applicable, and one must resort to Finite Element Methods,
of which few open source solvers are yet available (SimBio-
FEM [21]). Nevertheless, for the head models commonly
used in practice, OpenMEEG represents the state of the art
for forward computation.
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[9] N. G. Gençer and I. O. Tanzer, “Forward problem solution of
electromagnetic source imaging using a new BEM formulation
with high-order elements,” Physics in Medicine and Biology,
vol. 44, no. 9, pp. 2275–2287, 1999.

[10] M. S. Hamalainen and J. Sarvas, “Realistic conductivity
geometry model of the human head for interpretation of
neuromagnetic data,” IEEE Transactions on Biomedical Engi-
neering, vol. 36, no. 2, pp. 165–171, 1989.

[11] J. Kybic, M. Clerc, T. Abboud, O. Faugeras, R. Keriven,
and T. Papadopoulo, “A common formalism for the integral
formulations of the forward EEG problem,” IEEE Transactions
on Medical Imaging, vol. 24, no. 1, pp. 12–28, 2005.

[12] J. Kybic, M. Clerc, O. Faugeras, R. Keriven, and T.
Papadopoulo, “Fast multipole acceleration of the MEG/EEG
boundary element method,” Physics in Medicine and Biology,
vol. 50, no. 19, pp. 4695–4710, 2005.

[13] J. Kybic, M. Clerc, O. Faugeras, R. Keriven, and T.
Papadopoulo, “Generalized head models for MEG/EEG:
boundary element method beyond nested volumes,” Physics in
Medicine and Biology, vol. 51, no. 5, pp. 1333–1346, 2006.
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