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Nonhuman primates are used widely in biomedical re-
search. Macaques and baboons are the most widely studied 
species.6,12,20,31,38,39,42,45 Macaques are anatomically similar to 
humans and exhibit similar cardiovascular physiology and 
metabolism,2,4,15-17,22,24,28 which make them useful as a model 
of left ventricular dysfunction and heart failure.2,23,30,32,37,44 
Echocardiography has emerged as the most commonly used 
technique to assess left ventricular function, because it provides 
a variety of indices pertaining to left ventricular systolic and 
diastolic function. However, the availability of high-quality 
ultrasound equipment, transducers, technical expertise in image 
acquisition, and interpretation are factors that can limit the use 
of echocardiography in nonhuman primate research.

Left ventricular function has long been assessed by using 
cardiac time intervals (CTI) derived by phonocardiography and 
carotid pulse tracings. In humans, CTI have been found highly 
correlated with echocardiographic, angiographic, and hemody-
namic measures of left ventricular function11,13. Low cost, ease of 
use, high accuracy, and excellent reproducibility have led to the 
frequent use of CTI in human cardiovascular research. However, 
electrical bioimpedence and phonocardiography with external 
carotid wave recordings have in large part been replaced by 
echocardiography as techniques to measure CTI.35

In recent years, electronic advances in the stethoscope have 
enhanced quantitative assessment of heart sounds.5,9,33,34,43 Elec-
tronic stethoscopes are capable of recording heart sounds that 
can be digitally processed for display, storage, and analysis on 
computer. Therefore, electronic stethoscopes provide a portable 
low-cost alternative means to obtain CTI. Several investigators 
have incorporated analytical techniques to derive information 
pertaining to left ventricular function and pulmonary artery 
pressure from humans by using electronic stethoscopes.1,5,9,43

The results of several studies have led to the use of the elec-
tronic stethoscope as an alternative to the phonocardiogram, an 
older technology for determining CTI.1,7,27,40 Data pertaining 
to the uses of CTI and electronic stethoscopes in nonhuman 
primates is lacking. We are unaware of a single study that has 
either evaluated left ventricular function by measuring CTI or 
has used the electronic stethoscope for cardiac assessment in 
monkeys. The ability to obtain CTI data and reference values 
may be very useful for the identification of cardiovascular ab-
normalities in primates. The objective of the current study was 
to ascertain the feasibility of determining CTI from recorded 
heart sounds in apparently healthy bonnet macaques (Macaca 
radiata). Bonnet macaques have a close physical resemblance to 
rhesus monkeys but are relatively smaller and lighter.26

Materials and Methods
The characteristics of the SUNY Downstate Medical Center 

primate colony have been described previously.16 In summary, 
there are 125 laboratory-born and -raised bonnet macaques 
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mass values for each heart sound were used, respectively, as a 
threshold to locate S1 and S2 time-points. The final data set of 
Q-, S1-, and S2-detected times were processed to determine the 
elapsed time between Q and S1, Q and S2, S1and S2, and S2 and 
S1. These intervals represent the following: electromechanical 
activation time (QS1), electromechanical systole (QS2), mechani-
cal systole, defined as the interval between the first and second 
sounds (S1S2), and mechanical diastole, defined as the interval 
between the second and first sounds (S2S1).

Echocardiographic studies. Two experienced echocardiogra-
phers (JL and LS) performed transthoracic echocardiographic 
studies. Each study was inspected carefully to assure adequate 
endocardial definition. Left ventricular septal wall thickness, 
posterior wall thickness, and end-diastolic diameter were meas-
ured from M-mode images according to American Society of 
Echocardiography standards.19 When the scanning axis was not 
perpendicular to the axis of the heart, 2D images were used. The 
transmitral pulsed Doppler velocity recordings from 3 consecu-
tive cardiac cycles were used to derive the peak E wave and A 
wave velocities of diastolic transmitral flow. Left ventricular 
ejection time was measured from the apical 5-chamber view 
with the pulse wave 1 cm below the aortic outflow tract. Left 
ventricular mass and ejection fraction were calculated by the 
American Society of Echocardiography corrected cube formula 
and indexed by crown–rump length.19

Statistics. Descriptive data for all variables included in Table 
1  were expressed as mean ± 1 SD. Univariate associations be-
tween variables in Table 2  were analyzed by using Spearman 
correlation coefficients. Multiple linear-regression analysis 
was performed to determine independent predictors of car-
diac time intervals and to provide regression equations for 
the relationship between cardiac time interval and heart rate. 
Reproducibility of cardiac time intervals was assessed by type 
C intraclass correlation coefficients using a consistency defini-
tion with 2-way random-effects model in which subject effects 
and measures effects both were random and reported as 95% 
confidence interval. All statistical analyses were achieved by us-
ing Statistical Package for Social Sciences version 17.0 software 
(SPSS, Chicago, IL). A P value less than 0.05 was considered to 
be statistically significant.

Results
Clinical and echocardiographic parameters including mean ± 

1 SD and ranges (minimum to maximum) are reported for all 48 
bonnet macaques in Table 1. Technically adequate heart-sound 
recordings were obtained in all of the monkeys tested. Figure 
1 shows an example of a heart-sound recording from a 9.5-kg 
female macaque. Table 2 summarizes the relations between 
cardiac time intervals and the anthropometric and echocar-
diographic data. QS2 was inversely correlated with heart rate 
(r = −0.795, P < 0.001), mean arterial pressure (r = −0.364, P = 
0.015), and diastolic blood pressure (r = −0.337, P = 0.025) and 
directly correlated with left ventricular ejection time (r = 0.534, 
P = 0.006) as determined by using echocardiography. S1S2 
inversely correlated with heart rate (r = −0.820), mean arterial 
pressure (r = −0.374, P = 0.012), and diastolic blood pressure (r 
= −0.344, P = 0.022) and directly correlated with left ventricular 
ejection time (r = 0.621, P = 0.001) and age (r = 0.335, P = 0.021). 
S2S1 inversely correlated with heart rate (r = −0.800, p ≤ 0.001), 
mean arterial pressure (r = −0.487, P = 0.001), diastolic blood 
pressure (r = −0.442, P = 0.003), and systolic blood pressure (r 
= −0.431, P = 0.004) and directly correlated with left ventricular 
ejection time (r = 0.324, P = 0.034). The S1S2/S2S1 relation cor-
related with systolic blood pressure (r = 0.294, P = 0.045). On 

(Macaca radiata) living in social groups of 6 to 10 and maintained 
on commercial monkey chow. The SUNY Downstate Medical 
Center Division of Laboratory Animal Research approved this 
prospective study. All procedures were performed in careful 
conformance with the Guide for the Care and Use of Laboratory 
Animals.14 We studied 48 bonnet macaques, of which 46 were 
female, without recent or ongoing participation in physiologic 
or pharmacologic studies.

Laboratory methods. Animals. Anesthesia was administered 
by using ketamine (15 mg/kg IM) as clinically indicated to 
achieve sedation throughout the procedure. Immediately after 
sedation, each monkey was weighed, crown–rump length was 
measured, and blood pressures were recorded by sphygmoma-
nometry of the right lower extremity. Monkey body mass index 
was calculated by dividing weight in kilograms by the square 
of the crown–rump length in meters.15 Monkey body surface 
area was calculated according to a previously published for-
mula.22

Electronic stethoscope. Recordings of heart sounds were made 
by using an electronic stethoscope (model ds32a, Thinklabs 
Medical, Denver, CO). The electronic stethoscope consists of 
a conventional stethoscope design equipped with an electro-
magnetic diaphragm, loud-speaker drivers at the eartips, and a 
lightweight analog recorder at the junction of the single tubing 
to the double tubing. The system records sounds directly to a 
laptop computer; the data can be uploaded and displayed as 
waveforms (Dell Computer, Round Rock, TX) with the signal 
processed through the computer’s sound card.

Analysis of ECG and stethoscope recordings. Amplified (auto 
gain) and band-limited 3-lead electrocardiographic signals 
were preprocessed. Each audio signal was digitized to 10 
bits at 1000 samples per second on individual channels of an 
analog-to-digital module (DI-148U, Dataq Instruments, Akron, 
OH) attached to a laptop PC. The digital output was recorded 
and displayed in strip-chart format by using WinDaq software 
(Dataq Instruments). The recorded data were converted by us-
ing Dataq conversion software, into a comma-separated-value 
array and written to a file in plain text. Electrocardiographic 
data were low-pass–filtered with a sliding-averaging filter, with 
an α coefficient of 0.1, to attenuate motion artifacts and 60-Hz 
interference. Next, the absolute value of the first derivative 
was obtained and the average subtracted, and large inflections 
were used to determine the temporal spacing between electro-
cardiographic packets. The spacing distribution was used to set 
a temporal threshold. Electrocardiographic event timing that 
fell outside the threshold was used to eliminate that event. The 
initial filtered data set was examined backward from the flagged 
time in an attempt to find local minima that would correspond 
to the Q wave. These points in time were taken as the zero 
reference time for S1 and S2 timing. The electrocardiographic 
plot, with the timing flags, was examined and edited by the 
user to eliminate spurious time points. The array containing 
the S1 and S2 signals was high-pass–filtered to attenuate low-
frequency background noise while preserving the fidelity of 
the heart sounds. This resulted in a mean signal:background 
ratio of 7.25:1. The array was divided logically into sections 
that corresponded temporally with individual Q–Q intervals. 
Each section was examined for positive and negative inflection. 
Each inflection was weighed by the absolute derivatives of the 
signal before and after each inflection. This process determined 
the center-of-mass for the each heart-sound packet. These signal 
sections subsequently were divided temporally, so that the first 
one-third of the signal section was processed to locate S1 and 
the remaining two-thirds S2. Values of 0.5 times the center-of-
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(0.726 × heart rate); and S2S1 = 325.890 − (0.897 × heart rate). 
The figure depicts a negative association between heart rate 
and the time intervals QS2, S1S2 and S2S1 but no association 
with QS1. Intraclass correlation coefficients for reproducibility 
of cardiac time intervals was 98.7% (95% confidence interval, 
95.0 to 99.7) for QS2, 98.7% (94.9 to 99.7) for S1S2, 99.5% (98.1 
to 99.9) for S2S1, and 87.9% (58.9 to 96.9) for QS1.

multivariate analyses adjusted for age, sex, weight, and blood 
pressure, heart rate was the only independent predictor of QS2 
(R2 = 0.62), S1S2 (R2 = 0.67), S2S1 (R2 = 0.73; P = 0.001). QS1 
did not correlate with any demographic or echocardiographic 
parameters on univariate or multivariate analysis.

Figure 2 depicts the relation between heart rate and individual 
cardiac time intervals as expressed by the following regression 
equations: QS2= 325.826 − (0.78 × heart rate); S1S2 = 301.055 − 

Table 1. Anthropometrics and echocardiographic data from 48 bonnet macaques

Minimum Maximum Mean ± 1 SD

Age (y) 3 20 8 ± 5
Weight (kg) 3.5 13.4 5.8 ± 1.9
Systolic blood pressure (mm Hg) 101 173 133 ± 15
Diastolic blood pressure (mm Hg) 46 153 82 ± 19
Heart rate (bpm) 152 240 198 ± 21
Pulse pressure (mm Hg) 19 86 52 ± 15
Mean arterial pressure (mm Hg) 69 160 99 ± 17
Crown–rump length (m) 0.43 0.46 0.44 ± 0.01
Body surface area (m2) 0.20 0.27 0.24 ± 0.02
Body mass index (kg/m2) 22.96 38.67 30.8 ± 5.1
Ejection fraction (%) 53 93 80 ± 10
Left ventricular mass (g) 1.94 15.64 7.1 ± 3.5
Left ventricular ejection time (s) 70 176 132 ± 24
Left ventricular mass index (g/m) 14.31 28.53 18.9 ± 6
E/A (cm/s) 0.68 2.8 1.02 ± 0.41
QS1 (ms) 1.86 28.03 13.3 ± 5.8
QS2 (ms) 119.84 223.63 171 ± 21
S1S2 (ms) 112.13 202.88 157.33 ± 18.9
S2S1 (ms) 100.78 219.68 148.23 ± 22.5
QS1/S1S2 0.01 0.21 0.08 ± 0.04
S1S2/S2S1 0.75 1.47 1.08 ± 0.16

A, late Doppler velocity component of mitral inflow ; E, early Doppler velocity component of mitral inflow; QS1, electromechanical activation time; 
QS2, electromechanical systole; S1S2, interval between the first and second heart sounds; S2S1, interval between second and first heart sounds.

Table 2. Correlations between cardiac time intervals and echocardiographic and anthropometric data

QS1(ms) QS2(ms) S1S2(ms) S2S1(ms) S1S2/S2S1

Heart rate (bpm) r –0.198 –0.795 –0.820 –0.800 0.106
P 0.177 <0.001 <0.001 .<001 0.499

Systolic blood pressure (mm Hg) r 0.110 –0.243 –0.270 –0.431 0.294
P 0.478 0.112 0.076 0.004 0.045

Diastolic blood pressure (mm Hg) r –0.050 –0.337 –0.344 –0.442 0.173
P 0.748 0.025 0.022 0.003 0.262

Mean arterial pressure (mm Hg) r –0.028 –0.364 –0.374 –0.487 0.209
P 0.851 0.015 0.012 0.001 0.174

Age (y) r –0.019 0.262 0.335 0.192 0.040
P 0.898 0.076 0.021 0.196 0.787

Left ventricular ejection time (ms) r 0.064 0.534 0.621 0.324 0.150
P 0.763 0.006 0.001 0.034 0.475

QS1, electromechanical activation time; QS2, electromechanical systole; S1S2, interval between the first and second heart sounds; S2S1, interval 
between second and first heart sounds.
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function, few human studies have used an electronic stethoscope 
to derive cardiac time intervals;1,7,27,40 we are unaware of a prior 
study that has evaluated either cardiac time intervals or the 
electronic stethoscope in primates.

We assessed the intervals of QS1, QS2, S1S2, and S2S1. QS1, 
defined as the time from Q-wave onset to the peak first heart 
sound, is also known as the electromechanical activation time.8 
Higher QS1 values are associated with reduced left ventricular 
ejection fraction and reduced left ventricular rate of pressure 
rise.27 Although some studies have normalized QS1 to heart 
rate, this has not been a consistent approach.8 The present study 
found QS1 to be unrelated to heart rate. This finding refutes the 
need for QS1 to be corrected for heart rate. In addition, because 
QS1 has previously been normalized to S1S2 to more closely ap-
proximate the left ventricular ejection fraction,36,46 we reported 
these values as well. Mean values for QS1/S1S2 were lower in 
nonhuman primates than previously reported for humans (0.09 
versus 0.29).29

The QS2 interval represents electromechanical systole. Al-
though unaffected by lowering of the ejection fraction, QS2 is 
shortened by excessive adrenergic tone that results in settings 
such as acute coronary syndromes.21 This interval has been 
found to be dependent on heart rate in humans.13 QS2 can be 
used to calculate the preejection period as QS2 – left ventricular 
ejection time; among the various cardiac time intervals, left 
ventricular ejection time and the preejection period have been 
used the most frequently in prior studies. The left ventricular 
ejection time is the time needed for the left ventricle to empty 
into the arterial system.41 The preejection period is the time 
interval between ventricular depolarization and the onset of 
ventricular ejection. Therefore, in the setting of left ventricular 
dysfunction the preejection period shortens, left ventricular 
ejection time lengthens, and the total QS2 remains the same.41 
In contrast, adrenergic stimulation normally shortens both 
preejection period and left ventricular ejection time and de-
creases the ratio of preejection period to left ventricular ejection 
time in contrast.21

Left ventricular ejection time can be approximated by the 
S1S2 interval. The S1S2 interval is the time of mechanical sys-
tole, whereas S2S1 is the duration of mechanical diastole. Both 
time intervals were related strongly to heart rate, as expected. 

Discussion
We determined the feasibility of measuring cardiac time 

intervals in nonhuman primates by the simultaneous record-
ing of heart sounds by electronic stethoscope and single-lead 
electrocardiography. We used this method to measure QS1, 
QS2, S1S2, and S2S1 in a group of adult bonnet macaques. The 
monkeys that were studied represented a wide range of ages 
and weights in animals of both sexes, with a mean heart rate 
of 199 bpm. Cardiac time intervals were obtained in 100% of 
macaques studied. Cardiac time intervals derived by a variety of 
techniques have been used frequently in human cardiovascular 
research but not in nonhuman primates. Although prior studies 
have shown various cardiac time intervals to correlate with he-
modynamic and echocardiographic measures of cardiovascular 

Figure 1. Simultaneous recording of electrocardiogram (EKG) and heart sounds used in assessing cardiac time intervals. Q, start of QRS com-
plex; QS1, electromechanical activation time; QS2, electromechanical systole; S1, first heart sound; S2, second heart sound; S1S2, interval be-
tween the first and second heart sounds; S2S1, interval between second and first heart sounds.

Figure 2. Association between various cardiac time intervals and heart 
rate among the 48 bonnet macaques. All 4 intervals were obtained 
from all monkeys. QS1, electromechanical activation time; QS2, elec-
tromechanical systole; S1, first heart sound; S2, second heart sound; 
S1S2, interval between the first and second heart sounds; S2S1, inter-
val between second and first heart sounds.
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of cardiovascular abnormalities in similar primates. Validation 
by comparison of calculated indices to those obtained invasively 
merits further study.
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sounds occurring at a rate of 250 bpm. These findings are likely 
applicable to rhesus monkeys which are the most commonly 
studied macaques. Bonnet macaques have a close physical re-
semblance to rhesus although are relatively smaller and lighter.26 
This technique also may be useful in cynomolgous macaques, a 
model of atherosclerosis and coronary artery disease.

The current study suggests a great potential for electronic 
stethoscopes in determining cardiac time intervals to quantify 
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asternal view, which was obtained easily in all of our animals. 
Cardiac time intervals can be influenced by hemodynamics and 
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Although the prevalence of conduction disturbances was prob-
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were made from the onset of the Q wave to the heart sound. 
Although the peak of the R wave would be easier to measure 
than the Q wave of the electrocardiogram, we opted to follow 
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excellent reproducibility.
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and supports the applicability of recording heart sounds with 
an electronic stethoscope concurrent with electrocardiographic 
monitoring to determine cardiac time intervals in bonnet 
macaques. Our data yielded preliminary regression equations 
for CTI reference values, which may be useful for identification 
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