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Abstract
Genome-wide scans of nucleotide variation in human subjects are providing an increasing number
of replicated associations with complex disease traits. Most of the variants detected have small
effects and, collectively, they account for a small fraction of the total genetic variance. Very large
sample sizes are required to identify and validate findings. In this situation, even small sources of
systematic or random error can cause spurious results or obscure real effects. The need for careful
attention to data quality has been appreciated for some time in this field, and a number of
strategies for quality control and quality assurance (QC/QA) have been developed. Here we extend
these methods and describe a system of QC/QA for genotypic data in genome-wide association
studies. This system includes some new approaches that (1) combine analysis of allelic probe
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intensities and called genotypes to distinguish gender misidentification from sex chromosome
aberrations, (2) detect autosomal chromosome aberrations that may affect genotype calling
accuracy, (3) infer DNA sample quality from relatedness and allelic intensities, (4) use duplicate
concordance to infer SNP quality, (5) detect genotyping artifacts from dependence of Hardy-
Weinberg equilibrium (HWE) test p-values on allelic frequency, and (6) demonstrate sensitivity of
principal components analysis (PCA) to SNP selection. The methods are illustrated with examples
from the ‘Gene Environment Association Studies’ (GENEVA) program. The results suggest
several recommendations for QC/QA in the design and execution of genome-wide association
studies.

Keywords
GWAS; DNA sample quality; genotyping artifact; Hardy-Weinberg equilibrium; chromosome
aberration

Introduction
The number of genome-wide association studies (GWAS) of complex human diseases has
increased markedly in recent years with the availability of low-cost, high-density genotyping
and large, well-characterized sample sets. Like other genomic applications, the production
of GWAS data involves industrial-scale processes for which systems of quality control and
quality assurance (QC/QA) are essential. This article describes a system of QC/QA for
GWAS with a focus on the genotypic data. We define QC as steps taken to monitor and
control the quality of a product as it is being produced, while QA is defined as a post-
production review of product quality. In this case, the ‘product’ is a set of GWAS data
produced for the purpose of detecting genotype-phenotype associations and gene-
environment interactions. The QC/QA system is illustrated with examples from four projects
in the ‘Gene Environment Association Studies’ (GENEVA) program [Cornelis, et al. 2010].
GENEVA projects consist of case-control, cohort, and family-based study designs. We
focus here on QC/QA for case-control study designs, but many of the principles also apply
to other designs.

The fundamental goal of a case-control association study is to test for an allelic frequency
difference between cases and controls to find SNPs that affect disease susceptibility.
Because GWAS typically involve large sample sizes to detect small effects and hundreds of
thousands of polymorphisms are studied, even small artifactual differences in allelic
frequency between cases and controls can generate false-positive results. Therefore, it is
particularly important to avoid associations between case-control status and experimental
factors that have potential effects on allelic frequency. Well-recognized artifacts occur when
cases and controls differ in population structure [Cardon and Palmer 2003] or when case and
control DNA samples are handled differently in ways that affect DNA quality [Clayton, et
al. 2005]. Differences in DNA quality can result in differences in the frequency of missing
genotype calls, which are often biased towards one genotype or another [Wellcome Trust
Case Control Consortium 2007]. When studies contain related subjects, methods that
implicitly assume independence of subjects may have inflated false-positive rates. False
negative results may be increased by failure to control various experimental factors, leading
to `noise’ in the system and thereby reducing power. Such factors include low quality DNA
samples, poorly-performing SNP assays, and errors in sample identification. All of these
problems are best handled by appropriate experimental design and quality control, but
quality assurance also plays an important role in identifying biases that may be reduced or
eliminated during the analysis phase of GWAS.
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The need for careful QC/QA of genotypic data in GWAS is well recognized and several
publications address various aspects [Broman 1999; Chanock, et al. 2007; Wellcome Trust
Case Control Consortium 2007; Manolio, et al. 2007; McCarthy, et al. 2008; Miyagawa, et
al. 2008; Ziegler, et al. 2008]. We have extended these methods to include some new
approaches that (1) combine analysis of allelic probe intensities and called genotypes to
distinguish gender misidentification from sex chromosome aberrations, (2) detect autosomal
chromosome aberrations that may affect genotype calling accuracy, (3) infer DNA sample
quality from relatedness and allelic intensities, (4) use duplicate concordance to infer SNP
quality, (5) detect genotyping artifacts from dependence of Hardy-Weinberg equilibrium
(HWE) test p-values on allelic frequency, and (6) demonstrate sensitivity of principal
components analysis (PCA) to SNP selection. Here we describe the QC/QA process applied
to GENEVA studies and provide some guidelines for the design of GWAS to avoid
experimental artifacts.

Methods
Projects and subjects

The GENEVA projects covered in this article are (1) Addiction to alcohol and other drugs,
(2) Lung Cancer, (3) Type 2 diabetes (T2D) with subjects from the Nurses’ Health Study
(NHS) and (4) T2D with subjects from the Health Professionals Follow-up Study (HPFS).
The Addiction and Lung Cancer projects were genotyped on the Illumina Human1Mv1_c
and HumanHap550-2v3_B arrays, respectively, at the Center for Inherited Disease Research
(CIDR). The T2D projects were genotyped on the Affymetrix Genome-Wide Human 6.0
array at the Broad Institute Center for Genotyping and Analysis (Broad). Details about
GENEVA organization, study designs and subjects are described in Supporting Information,
on the GENEVA website (see Web Resources), and in Cornelis et al [2010]. Data for these
projects, along with QC/QA reports are posted in the NCBI database for Genotypes and
Phenotypes [Mailman, et al. 2007] (dbGaP). The QC/QA reports are posted also on the
GENEVA web site.

Definitions of Quality Measures
Missing call rate is either the fraction of missing calls per SNP over samples or the fraction
per sample over SNPs. On a scatterplot of the normalized allelic probe intensities produced
by SNP assays, θ is defined to be the polar coordinate angle of a point (i.e. a sample-SNP
combination) and R is defined to be the sum of those intensities. BAlleleFreq (BAF) is a
measure of allelic imbalance, defined as an estimate of the allelic frequency in a population
of cells from a single individual. LogRRatio (LRR) is a measure of relative intensity, the
logarithm (base 2) of the observed value of R divided by the expected value [Peiffer, et al.
2006]. The genotype cluster plot of a SNP displays either the intensities of the two alleles or
R versus θ and the genotype calls of each sample. The confidence score is a measure related
to the distance between a given data point and the centroid of the nearest genotype cluster in
a cluster plot. The heterozygosity of a sample is the fraction of non-missing genotype calls
that are heterozygous. The genotype discordance rate is the number of genotype calls that
differ between a pair of samples divided by the total number of SNPs for which both calls
are non-missing. A Manhattan signal plot is a genome-wide plot of −log10 of the p-value for
SNP-phenotype association versus chromosomal position. A regional association plot is a
similar to the Manhattan plot except that it zooms in on a small region showing trait
associations and will usually include SNP-SNP correlation data. Contrast QC (CQC)
measures the separation of raw allelic intensities from Affymetrix arrays into three clusters.
Genomic inflation factor [Devlin and Roeder 1999] is the ratio of the median of the observed
statistic for a set of genome-wide tests to the expected median of that statistic under the null
hypothesis. More details for some of these terms are given in Supporting Information.
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Genotyping batch design
A genoty ping batch consists of a set of samples that are processed together through the
genotyping chemistry, hybridization and scanning stages. For the Affymetrix projects, a
batch consisted of a 96-well plate and for the Illumina projects, a set of 24 samples (quarter-
plate). Except for the Addiction project, samples were assigned to batches to balance case-
control status and, in some projects, ethnicity. Each 96-well plate included one or more
HapMap [International HapMap Consortium 2005] controls and some plates include study
sample duplicates.

Genotyping Center QC
At both genotyping centers, DNA samples provided by study investigators are fingerprinted
with a 24- or 79-SNP panel. The fingerprints are used to assess genotyping performance and
to track sample identity. If gender discrepancies or unexpected duplicates are detected, study
investigators may correct sample annotation or replace DNA samples prior to high density
genotyping. Laboratory Information Management Systems (LIMS) are used to track and
monitor samples, reagents and equipment at all stages of the genotyping process. Daily and
monthly reports are reviewed to identify quality issues. Metrics based on raw intensities are
used to eliminate low quality samples prior to genotype calling. Genotype calling was done
using normalized intensities with the Birdseed algorithm [Korn, et al. 2008] for Affymetrix
and with BeadStudio (see Web Resources) for Illumina projects. Genotypes were called by
plate for Affymetrix and by project for Illumina. The software calculates a confidence score
for each sample-SNP data point and those beyond a fixed threshold have their genotype set
to missing. Samples with low quality scans are repeated. Post-production metrics are used to
eliminate low quality samples and SNPs from the Genotyping Center data release, using
project-specific thresholds. These metrics vary among platforms and projects, and may
include call rate, allele frequency-plate associations, Hardy-Weinberg deviations, duplicate
discordance of HapMap controls and sex differences in SNP metrics. More details of
Genotyping Center QC are provided in Supporting Information.

QA Methods
The QA analyses were performed using two software packages, PLINK [Purcell, et al. 2007]
and the R statistical package [R Development Core Team 2006]. For analysis in R, the
genotypic and quantitative variables (probe intensities, etc.) are stored in netCDF files
accessed with the ‘ncdf’ package (see Web Resources). netCDF is a compact storage format
that allows rapid access to array-structured datasets. The results presented here were
generated in R unless stated otherwise.

Most of the QA methods are described in the Results section below. More details on some
methods are in the Supporting Information, which also includes an outline of the process
(Table S1). Initially, the focus is on identifying samples of poor quality or questionable
identity, which are removed for subsequent analyses and not posted on dbGaP. For the
remaining samples and for SNPs, filters are provided to flag various features such as
ethnicity, relatedness and data quality.

Results
Sample Quality

The missing call rate per sample is an informative indicator of sample quality. The
Genotyping Centers generally fail samples with missing call rates >5%. During QA, we look
for high outliers in the distribution of missing call rates and for low outliers in the
distribution of the mean confidence score (over all non-missing genotypes) for each sample.
None were found for the projects considered here.

Laurie et al. Page 4

Genet Epidemiol. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Three additional quality measures are used in the QA process to detect mixed
(contaminated) DNA samples. First, we identify outliers in autosomal heterozygosity within
each ethnic group (for example, as points more than 1.5 inter-quartile ranges from the upper/
lower quartile value). Second, we screen for samples with a high variance of BAF for non-
homozygous SNPs, as described in Supporting Information. Third, we look for unusual
patterns of relatedness, such as samples that appear to be related to many other samples.
Samples with one or more of these characteristics may be mixtures of multiple DNA
samples, which can be identified by examination of BAF/LRR plots. Figure S1 in
Supporting Information shows examples of normal and low quality samples. The
“Relatedness” section below describes an example of mixed sample detection.

Genotyping Batch Quality
All four studies have highly significant batch effects on the logarithm of missing call rate
(ANOVA p-values < 10−100). In most cases, despite the high level of significance, the
distribution of the mean missing call rate per batch is continuous with no obvious outliers.
Therefore no batches were excluded by this criterion, except for one batch in the Addiction
study in which only three of 24 samples passed QC at the genotyping center.

Another way to detect batch effects is to assess differences in allelic frequency between each
batch and a pool of all other batches in a study, using a homogeneity test (see Supporting
Information). This allelic frequency test can be affected not only by laboratory processing,
but also by the biological characteristics of the samples in a batch, such as continental
ancestry, other ethnic variation and relatedness. After taking continental ancestry into
consideration, no batch outliers were found in any of the four projects, except for the batch
with only three passing samples noted above (see Figure S2 and text in Supporting
Information).

Gender Checks and Sex Chromosome Aneuploidy
Gender identity is usually inferred from X chromosome heterozygosity, but we find that this
variable alone gives ambiguous results, because of sex chromosome aneuploidies and
genotyping artifact. Therefore, we also use plots of the mean intensities of the X and Y
chromosomes, as shown in Figure 1 for the Addiction and T2D NHS projects.

In the Addiction project, the majority of males and females fall into two very distinct
clusters based on X and Y chromosome intensities. All samples annotated as males have a Y
intensity greater than all samples annotated as females. Therefore, there is no evidence of
gender misidentification. However, several samples (delineated by the dashed lines in Figure
1) are distinct from the majority of males and females. Two males with DNA samples from
blood have an X chromosome intensity typical of females and a Y intensity typical of males.
They appear to be XXY. One of these males has high X heterozygosity and might be
mistaken for a female if X heterozygosity alone was used for checking gender. Four male
samples (3 cell line and one blood) have unusually high intensities of the Y chromosome
and may be either XYY or perhaps XY/XYY mosaics. Similarly, two males have a low Y
intensity and may be XY/XO mosaics (one cell line, one blood). Several females have low X
intensities and low X heterozygosity, indicating that they are XO or, perhaps more likely,
XX/XO mosaics, since they are all cell line samples. As expected, many of the putative XX/
XO mosaics show allelic imbalance in BAF plots of the X chromosome, which will be
discussed in the next section. Data for samples with a sex (or other) chromosome
abnormality are posted on dbGaP, but the affected chromosome is flagged.

In the T2D HPFS project, all subjects are male, but several HapMap females were
genotyped as controls for the gender identity check. Figure 1 shows one HapMap female (a
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cell line sample) that appears to be XX/XO. The plot also shows five unusual males with
low Y intensity and substantial levels of X heterozygosity, while all other males have zero
heterozygosity. This situation is an artifact of the Birdseed method for calling X
chromosome genotypes. In this algorithm, samples inferred to be males by annotation and/or
Y chromosome intensity are analyzed with a prior assumption of two genotype clusters,
while those inferred to be females have a prior assumption of three clusters. Based on their
low Y intensities, these five males were mis-assigned as females during automated calling of
the X chromosome genotypes. Consequently, the X chromosome SNPs of these five samples
are flagged for omission from association analyses.

Chromosomal Aberrations
Previous studies have documented the use of measures of allelic imbalance (BAF) and
relative intensity (LRR) for detecting chromosomal aberrations with SNP array data [Conlin,
et al. 2010; Peiffer, et al. 2006]. Aneuploidy and large (multi-megabase) duplications and
deletions have been detected in tumor cells and in lymphoblastoid cell lines [Simon-
Sanchez, et al. 2007]. We also find such aberrations in blood and buccal cell samples. The
frequencies and types of aberrations will be reported elsewhere, but some examples are
given here from the Lung Cancer project. The upper panel of Figure 2 shows ‘sample 1’, a
female with low X chromosome intensity and heterozygosity. Chromosome 8 in this sample
has a normal pattern of three BAF bands, but on chromosome X the intermediate band
(corresponding to heterozygous SNPs) is split into two, widely separated bands. These
characteristics are expected for a mosaic population of disomic and monosomic cells in
which monosomic cells predominate. The lower panel shows ‘sample 2’, which has a high
intensity of chromosome 8 relative to its other chromosomes. In this case, the separation of
the two intermediate bands is smaller. The positions of these bands (at about 0.4 and 0.6)
and the high intensity indicate a mosaic population of trisomic and disomic cells. (A purely
trisomic cell population would have the intermediate bands at 0.33 and 0.66.) Samples with
a chromosome aberration are included in the posting on dbGaP, but we flag the affected
chromosome to be filtered out during association analysis, since it is likely to have a high
rate of genotyping errors. In addition, we suggest filtering out any sample-chromosome
combination with a missing call rate greater than 5%, since such chromosomes may contain
undetected aberrations.

Relatedness
We estimate the degree of relatedness between every pair of individuals in a study to
identify unexpected relatedness. Three identity-by-descent (IBD) coefficients (Z0, Z1 and
Z2), the probabilities of sharing 0, 1 or 2 alleles that are identical by descent, are estimated
using a method of moments procedure implemented with PLINK software [Purcell, et al.
2007] and compared with their expectations and evolutionary variance (see Supporting
Information). Some pedigree errors can be corrected by consulting original records, while
others are corrected based on the inferred genetic relationships.

Figure 3 shows a plot of estimates of Z1 versus Z0 for all pairs of Lung Cancer study
subjects with a kinship coefficient estimate greater than 0.025. All study subjects were
expected to be unrelated, but this is clearly not the case. Based on expected values (+/− 2
SD), we inferred 14 pairs of full sibs and 5 pairs of half sibs. In addition, there is one parent-
offspring pair and 36 pairs of duplicates, including a pair of identical twins. Two of the
duplicate pairs could not be documented as coming from the same subject and were
removed from the data set.

In the T2D NHS project, the relatedness analysis revealed two samples that appeared to be
related to nearly every other sample in the study with a kinship coefficient between the
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expected values of half sibs and first cousins (Figures S3 – S6). These samples have
relatively high heterozygosity and their BAF plots indicate that they are mixed samples
(Figure S1 d and e). Several other samples that appeared to have relatedness to a large
number of other samples are not clearly mixed, but appear to be of low quality since they all
have more than five chromosomes flagged for high variance of BAF (e.g. Figure S1 f).
Similar samples were found in the T2D HPFS project and both projects are discussed further
in Supporting Information.

Population Structure
To investigate population structure, we use principal components analysis (PCA), essentially
as described by Patterson et al. [2006]. The choice of which SNPs to use for principal
components analysis is not obvious. Using all SNPs on a whole-genome array is
computationally demanding, but feasible, and would seem to be the best approach in terms
of utilizing all available information about genetic relationships. However, whole-genome
arrays contain clusters of highly correlated SNPs and a single cluster may have a very strong
influence on certain PCs, as noted previously [Novembre, et al. 2008; Tian, et al. 2008]. For
example, in the Lung Cancer project (which consists entirely of European-ancestry
subjects), when using all autosomal SNPs with missing call rate less than 5% (~545k SNPs),
the first two PCs separate U.S. and Italian subjects, while the third PC separates both U.S.
and Italian subjects into three distinct groups. These three groups correspond to the
genotypes of a cluster of highly correlated SNPs in 8p23, a region that contains a
polymorphic inversion. The same result was found previously in PCA of other European-
ancestry populations [Novembre, et al. 2008]. The highly localized features underlying some
principal components may limit their usefulness in detecting and controlling for population
structure. Moreover, they may even be counterproductive when used as covariates in
association testing for traits affected by SNPs in those chromosomal regions. Therefore,
when adjusting for potential population structure, we recommend against the use of PCs that
are highly correlated with localized SNP clusters.

One approach to avoiding the strong influence of SNP clusters is to prune the full genome-
wide SNP set before PCA to obtain a subset of SNPs in which all pairs have low
correlations. In the T2D project, we compared two such SNP sets, one reported by Yu et al.
[2008] selected to have pair-wise linkage disequilibrium (LD) of r2<0.004 and minor allele
frequencies (MAF)>0.05 in a European-ancestry population. The other SNP set we selected,
from among the 870,000 autosomal SNPs assayed on the NHS subjects, to have LD r2<0.04
and MAF>0.05. Both sets contained about 12,000 SNPs and the overlap is 445 SNPs. The
first two eigenvectors obtained from the two SNP sets are very similar, whereas the third,
fourth and fifth have much lower correlations (Figures S7 and S8). Similar sensitivity to
SNP selection has been observed in other projects. These results suggest that, beyond the
first one or two components, eigenvectors ordered by sample eigenvalues may not be robust
indicators of population structure. However, we note that this does not rule out the
eigensystem as a whole being similar across SNP sets. When subsets of SNPs are used for
PCA, we recommend exploring the variability in PCA-based representations of the data
under different SNP set selections.

Case-control associations with population structure and experimental factors
To check for association between case-control status and population structure, we test for an
association between disease status and the first two eigenvectors from the PCA of each
population subgroup of interest. No significant associations have been found so far, which
may be a reflection of study designs that carefully match the geographic origins and other
characteristics of cases and controls. We also test for a difference in missing call rate per
sample between cases and controls, as a way of detecting association with experimental
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factors. No significant differences have been found so far, except for a special case in the
Addiction project described below. In addition to case-control status, we test for correlation
between missing call rate and quantitative traits of interest. For example, in the T2D NHS
project, the correlation between body mass index and missing call rate is small and not
significant (r=−0.01, p-value=0.28).

The Addiction project has three categories of case status: (a) alcohol and possibly other
illicit drug dependence (‘case’), (b) controls exposed to alcohol, but never addicted to
alcohol or illicit drugs (‘control’) and (c) addicted to illicit drug(s) but not to alcohol
(‘other’). There is a significant association between case status and genotyping batch, which
could lead to bias in case-control allelic frequencies, although the occurrence of 213 batches
with median size of 21 samples reduces the magnitude of any potential problem. Using
analysis of variance, there is a significant effect of case status on the logarithm of missing
call rate (p<0.01), which is due to the ‘other’ category having a higher rate than the other
two (0.12% versus 0.10%, Figure S9). This effect appears to be due to confounding with the
DNA source, which was either blood or cell line. Among the DNA samples in the ‘other’
category, 77% are from cell lines, whereas the values for alcohol cases and controls are 34%
and 25%, respectively. The missing call rate for cell lines is very significantly higher than
for blood (p<9 × 10−14), as shown in Figure S9 (0.12% versus 0.10%). Therefore, allelic
frequency differences between ‘other’ versus ‘case’ and ‘control’ categories are potentially
biased by nonrandom missingness. In a situation like this, it may be useful to adjust for
tissue type in the association analysis, by including it as a regression covariate.

We have found significant effects on the missing call rate of several experimental factors in
multiple studies, including tissue type, tissue collection date, DNA extraction method and
date, study site, plate, well and genotyping batch. Although confounding makes it difficult to
distinguish causative factors, it is prudent to balance these factors with respect to phenotypic
traits as much as possible in the design of GWAS experiments.

Genotyping Completeness and Accuracy
Current genotyping technology is very reliable and typically produces data with both high
call rates and high accuracy. However, both types of measures should be evaluated for each
project because genotyping processes, reagents and instrumentation may vary. The missing
call rate is a measure of data completeness, but is also a measure of genotype quality
because missingness is often nonrandom. Two methods can be used to assess genotyping
accuracy, duplicate sample concordance and consistency with Mendelian transmission.

Genotyping error rates can be estimated from duplicate discordance rates. Each of the three
genotypes may be miscalled as either of the other two genotypes, resulting in six potentially
different error rates. For a given true genotype, we consider two error rates, α and β. The
probability that duplicate genotyping instances of the same subject give a discordant
genotype is 2[(1− α − β)(α + β) + αβ]. When α and β are very small, this is approximately
2(α + β) or twice the total error rate. In high-density genotyping, the number of SNPs per
sample is so high that duplicating a single sample would give a good estimate of overall
error rate, assuming that the rate was similar for every sample. However, DNA sample
quality may vary considerably so that error rates can vary among samples. Therefore, we
recommend using at least five study samples for estimating error rates.

For duplicate sample pairs, the median discordance rates (discordant calls per SNP) are 7 ×
10−5 for Lung Cancer (33 pairs, Illumina HumanHap550 array) and 2 × 10−4 for Addiction
(60 pairs, Illumina Human1M array), so the genotyping error rates are on the order of 10−4.
The corresponding mean completion (call) rates are very high: 99.8% for Lung Cancer and
99.7% for Addiction samples. For the T2D projects run on the Affymetrix 6.0 array, study
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samples were not duplicated, but multiple replicates of a single HapMap control sample
(NA12144) provide discordance rate estimates of 4 × 10−3 for NHS and 1 × 10−3 for HPFS.
The corresponding mean completion rates are 99.6% for NHS and 99.7% for HPFS. It
appears that the error rate is about an order of magnitude larger for the Affymetrix 6.0 than
for the Illumina 1M arrays, although different sample sets and other factors could affect
these results.

Duplicate discordance estimates for individual SNPs also can be used as a SNP quality filter.
The problem here is to find a level of discordance that would eliminate a large fraction of
SNPs with high error rates, while retaining a large fraction with low error rates. For
example, if the mean error rate is 10−4, we may wish to retain greater than 99% of SNPs
with error rates less than 10−3, while eliminating as many as possible of SNPs with error
rates greater than 10−2. For the Addiction project, with 60 duplicates, a threshold of >1
discordant call seems appropriate, since it would eliminate 99.9% of SNPs with an error rate
of 10−1, 33.5% with a rate of 10−2, 0.65% with a rate of 10−3 and <0.1% with an error rate
of 10−4. Figure S10 shows the relationship between the probability of observing greater than
0, 1, 2, or 3 discordant calls and the number of duplicates for different genotyping error
rates. These binomial calculations can be used to select the optimum threshold and number
of duplicates to achieve various levels of distinction among different error rates. At least 30
pairs are indicated for most situations.

Mendelian Errors
Mendelian errors can be detected in parent-offspring pairs or trios. In principle, this method
of error detection is less efficient than evaluating concordance of duplicate samples because
some genotyping errors are consistent with Mendelian inheritance (e.g. offspring of AB and
BB parents, with a true BB genotype called as AB). However, Mendelian errors can be used
to detect clustering problems that are not detectable with duplicate concordance. For
example, consider a SNP assay in which the AA and AB clusters merge together and are
both called as AA, while the actual BB cluster is called as AB. In this case, two AB parents
(both called as AA) with a BB offspring (called as AB) would generate a Mendelian error.
Similarly, Mendelian errors can detect SNPs with null alleles (N) segregating. For example,
one parent as AN, the other as BB and the offspring as BN would give apparently
inconsistent genotypes of AA, BB and BB, respectively. In both cases, a duplicate sample
would give concordant results

The GENEVA studies analyzed to date are not family-based, but the Addiction and Lung
Cancer projects included a small number of HapMap trios as genotyping controls. For each
SNP in the Addiction project, the Mendelian error rate was calculated as the number of
errors detected divided by the number of families in which the offspring and at least one
parent have non-missing genotypes. Among the 1,040,106 SNPs with a possibility for error
detection, 99.1% have no errors and the mean error rate is 0.04%.

Hardy-Weinberg Equilibrium Testing
We use an exact test for Hardy-Weinberg equilibrium [Haldane 1954] (HWE) performed on
unrelated control subjects with relatively homogenous ancestry. In quantile-quantile (QQ)
plots, all four projects show deviations of observed from expected p-values at about 0.01 for
autosomal SNPs (e.g. Figure S11). It is not clear how many of these deviations are due to
genotyping artifacts and how many are due to true genotypic frequency deviations from
HWE, but examination of cluster plots indicates that most of the extreme deviations are due
to poorly performing SNP assays.
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The HWE test appears to detect different types of genotyping artifact on the two genotyping
platforms. Figure 4 shows the HWE p-value versus minor allele frequency for the Addiction
and T2D NHS projects. The pattern of extreme HWE deviations is strikingly different. The
Illumina data (Addiction) show a curve of low p-values that corresponds to SNPs for which
one homozygous class is missing, or nearly so (as indicated by the theoretical plot in Figure
S12 and the color-coding in Figure 4). This feature is not observed in the Affymetrix data
(T2D NHS) and is likely due to the Illumina calling algorithm setting a limit on the distance
between adjacent clusters (which may cause merging of adjacent clusters). The extreme
HWE deviations in the Affymetrix data show a different pattern: SNPs with relatively low
minor allele frequencies tend to have more very significant deviations than those with high
frequency, and there are many SNPs in which the heterozygous class is deficient. This
feature may be due to the Birdseed algorithm calling by 96-sample plate, which may make
calling genotypes of SNPs with rare alleles more difficult. We should emphasize, however,
that extreme deviations are rare with both platforms (<0.3% of SNPs having p-value<
10−10).

One of the SNP filters that we recommend is based on HWE test p-value. Interpretation of
these p-values is difficult because the choice of significance level depends on sample size
[Wakefield 2009]. However, the purpose of the recommended filter is to flag poorly
performing assays rather than detecting real deviations in the population, so we examine
genotype cluster plots to set a threshold for filtering. In all four studies described here, these
plots show that many assays with p-values between 10−3 and 10−4 have good clustering and
genotype calling whereas many of those with p-values less than 10−4 are of poor quality.
(For example, in the Lung Cancer project, among 48 plots in the range of p=10−6 to 10−4,
12 of 48 plots showed good clustering, whereas in the range of p=10−4 to 10−2, 42 of 48
showed good clustering.) Therefore, we recommend filtering at p=10−4 for these four
studies. Other studies may require a different threshold to account for variations in sample
size and genotyping technology.

Sample Exclusion and Filtering
Samples are designated for exclusion if they are of questionable identity (e.g. unresolved
gender mismatch) or of unacceptable quality (e.g. appear to be contaminated). All remaining
samples are posted on dbGaP, but we recommend that filters are applied prior to association
testing. In some cases, the filters apply only to certain chromosomes of a sample (e.g.
chromosome aberrations). We recommend filtering out samples with an overall missing call
rate greater than 2% and those that are PCA outliers from all major ethnic groups in the
study. The percentages of data lost by application of the sample filters is 1.6% for
Addiction, 0.5% for Lung Cancer, 1.6% for T2D NHS and 0.5% for T2D HPFS.

The presence of low quality samples during genotype calling may affect the cluster
definitions and, therefore, the accuracy of genotype calls for high quality samples. This
effect was demonstrated by Pluzhnikov et al. [2008] in a project that used the Affymetrix 5.0
array with Birdseed v2 calling by plate. Eight low quality samples were detected with high
heterozygosity and “unusual patterns of relatedness”. These samples were all on one plate,
which had a disproportionately high number of cases. False positive associations were found
and these remained after simply removing the eight low quality samples. Re-calling of the
remaining samples on the affected plate was necessary to remove the false positives.

The GENEVA T2D projects were genotyped on the Affymetrix 6.0 array with Birdseed
v1.33 calling by plate. A total of 28 (NHS) and 26 (HPFS) low quality samples were found
with high heterozygosity, a high level of relatedness to other samples, and poor BAF plots
(see Supporting Information for more details). However, important differences from the
situation described by Pluzhnikov et.al [2008] are that the samples are distributed across
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many plates and we did not find evidence of spurious associations. The QQ plots show low
genomic inflation (Figure S14) and genotypic cluster plots for the top hits (after SNP
filtering described below) are generally of good quality. Nevertheless, the possible effect of
low quality samples was investigated in two ways.

First, for the HPFS project, we estimated the concordance between a HapMap control
(NA12144) run on each plate and the consensus genotype calls of 139 replicate genotyping
instances of this subject from an independent study using the same array and calling
algorithm (and using SNPs that pass the quality filters described below). The mean
discordance is very low for plates with and without low quality samples and the difference is
not significant (15.8 × 10−5 for 15 plates with low quality samples and 9.8 × 10−5 for 14
plates without such samples; p-value=0.72). Second, we re-called a sample of 8 plates from
each study, four plates with and four plates without low quality samples. The maximum
number of low quality samples per plate was five. The discordance between the original and
recalled genotypes is significantly higher for plates from which low quality samples were
removed (p-value=9 × 10−4) and it varies significantly with the number of samples removed
(p-value=2 × 10−4). However, the discordance is very low for both types of plates. The
highest median discordance between original and recalled genotypes is 6 × 10−5 for an
HPFS plate with five low quality samples. For comparison, the median discordance between
15 HapMap control samples from HPFS (all from plates with no low quality samples) and
the external consensus reference is 1.4 × 10−4. Therefore, the effect of recalling after low
quality sample removal (measured as discordance between original and recalled genotypes)
is less than independent genotyping of the same sample.

We concluded that the substantial effort required to recall and reanalyze all of the affected
plates in the T2D studies (14/29 in HPFS and 15/41 in NHS) was very unlikely to make a
significant improvement in the quality of the data, so these data sets were released to dbGaP
without doing so. However, we advise GWAS analysts to consider re-calling a plate
whenever one or more of the following occur: (a) a significant portion of the plate consists
of low quality samples; (b) the plate is an outlier with respect to median missing call rate
and/or the allelic frequency-plate association test; (c) the study has high genomic inflation
and low quality cluster plots for association test hits; (d) case-control association with
affected plates.

In the two Illumina projects, we did not detect unusual patterns of relatedness or evidence of
mixed samples. No low quality samples were detected in the QA process for the Lung
Cancer project. In the Addiction project, one problematic genotyping batch of 3 samples was
detected and removed from the data set (of which only one sample was used in cluster
definition). For Illumina genotype calling, all samples (except those with call rate < 98%)
are used for cluster definition, so this system is much less susceptible to the influence of a
few low quality samples than the by-plate Birdseed calling for Affymetrix projects. In
another GENEVA Illumina project (performed by the Broad genotyping center and not
described in this article), we evaluated the effect of recalling after removing 846 low quality
scans (out of 2970) and replacing them with high quality scans from the same subjects. The
discordance between genotype calls in the original and recalled genotypes was extremely
low: 1594 of 2124 samples had no discordance and the highest discordance rate was 9 ×
10−6.

SNP Filtering
Data for all SNPs released by the Genotyping Centers are posted on dbGaP, but we
recommend filtering association test results based on missing call rate, duplicate
discordance, Mendelian errors, sex differences in allelic frequency and heterozygosity, and
MAF. The thresholds vary among studies according to quality metric distributions and
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genotyping platform. For both the Illumina Human1M and Affymetrix 6.0 arrays, the
fraction of SNPs that were either failed by the Genotyping Center QC or flagged for filtering
during QA is about 7% without the MAF > 0.01 filter (Table I), while the corresponding
figure for the Illumina HumanHap550 array is 2%. The recommended MAF filter level is
based on power to detect associations. However, for comparison among studies, the filters in
Table I are all set to MAF>0.01 in subjects from the United States with primarily European
ancestry. For this ethnic group and MAF criterion, the percent of SNPs lost from the
Affymetrix 6.0 and Illumina Human1M arrays after both quality and MAF criteria are
applied is about 20%, while that for the Illumina HumanHap550 array is 6%. The table also
shows that genome coverage (estimated for HapMap II CEU subjects) is decreased by only
1–2% due to the recommended filters. Supporting information provides data about overlap
of SNP filters within and among studies and the physical distribution of SNPs that fail to
pass these filters.

Preliminary Association Tests
Our final data cleaning step is to perform preliminary association tests and then examine
QQ, Manhattan signal, regional association and genotype cluster plots. We use logistic
regression and likelihood ratio tests for case-control studies, using samples filtered by
quality criteria and retaining unrelated subjects. Initially, we select which of the following
covariates to include in the model: age, sex, recruitment center and the first several
eigenvectors from the PCA. These potential covariates are analyzed in models that exclude
genotype and those with significant effects are included in the final model. We then include
the genotype (coded for an additive model) for each SNP in turn and test for SNP effects
with a likelihood ratio test. We recommend examination of cluster plots for the ‘top hits’
(most significant SNPs) in an association study and flag results for any SNPs that show poor
clustering. Examples of QQ and cluster plots are illustrated for the Addiction study in Figure
S15. Another check on the quality of top hits is to examine Manhattan signal and regional
association plots of association test p-value versus chromosomal position. As noted
previously [Wellcome Trust Case Control Consortium 2007], valid associations are likely to
appear as a small cluster of SNPs with low p-values, unless the sentinel polymorphism is in
a SNP-poor region.

The benefits of attention to QC/QA of genotypic data are difficult to quantify, but some
examples have been reported. Pluzhnikov et al. [2008] describe a genotyping plate effect
(due to a small number of low quality samples) that resulted in spurious associations. The
Wellcome Trust Case Control Consortium [2007] (supplement) reported a decrease in the
genomic inflation factor with the application of a series of quality filters and we observed a
similar effect in the GENEVA Addiction study, where the genomic inflation factor changes
from 1.08 to 1.04 after filtering.

Discussion
The most effective QC/QA process starts with a good experimental design. Our experience
with GENEVA and other projects has led to the following recommendations. Adherence to
sound epidemiological principles in the recruitment of subjects for case-control studies is a
crucial first step [Zondervan and Cardon 2007]. Subsequently, it is critical to avoid
association between case-control status (or other phenotypes) and any variables that may
affect genotyping quality. Variables that may affect DNA sample quality include tissue
collection date, storage and shipping conditions, tissue type, DNA extraction method,
extraction batch, and study site. Factors that may affect genotyping process quality are
reagent batches, instrumentation and processing batches (such as plate effects). Therefore, to
avoid confounding, we recommend balancing case-control status across experimental factors
and randomizing the order of processing and the plate positions of samples. We also
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recommend the use of at least five duplicate sample pairs to assess the overall accuracy of
genotyping and at least 30 pairs for SNP filtering. The duplicates should be selected to
represent the overall quality and tissue source of the study samples. Family trios as
additional control samples are useful for detecting SNPs with poor clustering via Mendelian
error detection. Rigorous sample tracking systems should be employed to avoid sample
identity problems, since a large fraction of sample switches are not detectable.

In the past few years, despite the phenomenal increase in the number of published GWAS
and in the number of replicated associations for complex human diseases [Hirschhorn 2009;
Manolio, et al. 2008], much of the genetic variation in disease traits remains unexplained by
SNP associations detected so far. One possible explanation is that the variance is due to a
large number of SNPs with small effects, in which case many more loci might be detected as
power increases with increasing sample size. Studies with very large sample sizes, on the
order of tens of thousands of subjects, have more power, but are also more likely to be
affected by experimental errors. Therefore, QC/QA of genotypic data in GWAS will
continue to be an important aspect of human genetics research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Gender and sex chromosome anomalies in the Addiction and T2D HPFS projects
The X and Y probe intensities are calculated for each sample as the mean of the sum of the
normalized intensities of the two alleles for each probe on those chromosomes. Probe pair
samples sizes are given in the axis labels. In the Addiction project, the standard error of the
mean intensity for each sample ranges from 0.002 to 0.004 for the X chromosome and 0.007
to 0.018 for the Y chromosome. In the T2D HPFS study, the standard error of the mean
intensity for each sample ranges from 5 to 8 for the X chromosome and from 20 to 98 for the
Y chromosome. X heterozygosity is the fraction of heterozygous calls out of all non-missing
genotype calls on the X for each sample. Red/blue symbols are for subjects annotated as
female/male. Symbols designate the tissue source of DNA samples, where triangle is for
whole blood and circle is for lymphoblastic cell lines.
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Figure 2. Allelic imbalance reveals mosaic aneuploidy
Scans of BAF for two blood samples in the Lung Cancer project indicate X chromosome
aneuploidy in one and chromosome 8 aneuploidy in the other. In both cases, the evidence
suggests cell populations that are mosaic for normal and aneuploid cells (see text).
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Figure 3. Relatedness inference from IBD estimates for the Lung Cancer project
Estimates of the IBD coefficients, Z0 and Z1, are used to infer relatedness. Each point is for
a pair of samples and the diagonal line is Z0 + Z1 = 1. The orange bars show the expected
values +/− 2 standard deviations (SD) for full sibs (Z0 = 0.25 +/− 0.08, Z1 = 0.50 +/− 0.10),
half sibs (Z1 = 0.5 +/− 0.10, Z0 = 1−Z1) and first cousins (Z1 = 0.25 +/− 0.08, Z0 = 1−Z1).
Parent-offspring pairs are expected to occur at Z1=1 and duplicates (or identical twins) at
Z0=Z1=0. Only pairs of samples with kinship coefficient estimates > 1/32 are plotted. (This
truncation is responsible for the sharp downturn at the lower right end of the diagonal.)

Laurie et al. Page 18

Genet Epidemiol. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Exact HWE test statistic and minor allele frequency
The data presented are for autosomal SNPs in European-ancestry subjects, either for the
Addiction study (Illumina Human1M array) or for the NHS study of the Diabetes project
(Affymetrix 6.0 array). The sample sizes are 1365 for Addiction and 1752 for the NHS
study. The SNPs tested in the Addiction project (930,358) were filtered by excluding SNPs
with a missing call rate greater than 15% (and some other criteria, Table I). The NHS SNP
test results shown here (867,003) are filtered by exclude SNPs with a missing call rate
greater than 15%. The plot for a completely unfiltered set is very similar. SNPs colored in
red are those for which one of the two homozygotes occurs at less than 10% of the expected
value, while those in green are those for which heterozygotes occur at less than 10% of the
expected value. See Figure S13 for a version of this figure in which the Y- axis is focused on
−log10(p-value) from 0 to 10. See Figure S12 for a theoretical explanation of curves
highlighted in green and red.
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Table I

SNP failure and recommended filter criteria with results from 4 GENEVA projects.

Remove SNPs with: SNPs losta

Projects using Illumina arrays

Addiction Illumina Human1M Lung Cancer Illumina HumanHap550

Pre-release failures

  Missing call rate > 15% 4,434 417

  >1 discordance in replicate HapMap controls 2,725 331

  Manual review and other criteriab 1,743 213

Total SNPs failed by Genotyping Center 8,902 961

Post-release recommended filters

  MAF = 0 31,755 106

  Missing call rate ≥ 2% 28,800 7,569

  Missing call rate ≥ 5% in one or both sexes 0 0

  >1 family with Mendelian error(s) 835 486

  >1 subject with discordant call(s) 843 66

  Sex difference in allelic frequency ≥0.2 13 0

  Sex difference in heterozygosity > 0.3c 0 0

  HWE p-value < 10−4 in study controls 2,275 1,242

  MAF < 0.01 134,710 23,036

Initial number of SNPsd 1,049,008 561,466

Percent of SNPs lost excluding MAF filter 7.0% 1.9%

Percent of SNPs lost including MAF filter 19.8% 6.0%

Genome coverage at r2>0.8 for all SNPs on the arraye 91.2% 87.4%

Genome coverage at r2>0.8 after filteringe 90.0% 86.8%

Projects with Affymetrix arrays

T2D - NHS Affymetrix 6.0 T2D HPFS Affymetrix 6.0

Pre-release failures

  Missing call rate > 5% 23,859 26,872

  HWE p-value < 10−8 in all samples 3,312 2,389

  Plate associations (single plate p<10−8, 2 or more p<10−4)f 3,380 5,844

Total SNPs failed by Genotyping Center 30,551 35,105

Post-release recommended filters

  One member of each pair of duplicate probes (mostly AFFX)g 2,839 2,903

  MAF=0 1,438 2,782

  Missing call rate ≥ 3% 17,802 15,987

  > 1 discordance in replicate samples of NA12144 7,121 5,340

  HWE p-value < 10−4 in study controls 540 513

  MAF < 0.01 126,331 121,469

Initial number of SNPs 909,622 909,623

Percent of SNPs lost excluding MAF filter 6.6% 6.9%
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Remove SNPs with: SNPs losta

Projects using Illumina arrays

Addiction Illumina Human1M Lung Cancer Illumina HumanHap550

Percent of SNPs lost including MAF filter 20.5% 20.2%

Genome coverage at r2>0.8 for all SNPs on the arraye 80.0% 80.0%

Genome coverage at r2>0.8 after filteringe 78.1% 77.9%

a
The number of SNPs lost at each step is after losses at the previous step

b
Other criteria include gender difference in missing call rate and autosomal heterozygosity, male X heterozygosity, female Y heterozygosity

c
For autosomal and pseudo-autosomal SNPs only

d
The initial number of SNPs assayed is the total number of probes on the Illumina Human1M array (1,072,820) minus the number of intensity-only

probes.

e
Calculated with HapMap II data for CEU subjects [Barrett and Cardon 2006] with software by Carl Anderson (see Web resources)

f
These plate association tests were conducted without adjustment for ethnicity differences among plates.

g
The Affymetrix 6.0 array has 3024 SNPs with the same ‘rs’ number and the same map position. Each of these SNPs is assayed with two different

probes, one of which is ‘AFFX’, used for quality control.
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