
ARTICLE

Tumour-specific methylation of PTPRG intron 1 locus
in sporadic and Lynch syndrome colorectal cancer

Eddy HJ van Roon1,2,4, Noël FCC de Miranda1, Merlijn P van Nieuwenhuizen1, Emile J de Meijer2,
Marjo van Puijenbroek1, Pearlly S Yan3, Tim H-M Huang3, Tom van Wezel1, Hans Morreau*,1 and Judith M Boer*,2

DNA methylation is a hallmark in a subset of right-sided colorectal cancers. Methylation-based screening may improve

prevention and survival rate for this type of cancer, which is often clinically asymptomatic in the early stages. We aimed to

discover prognostic or diagnostic biomarkers for colon cancer by comparing DNA methylation profiles of right-sided colon

tumours and paired normal colon mucosa using an 8.5 k CpG island microarray. We identified a diagnostic CpG-rich region,

located in the first intron of the protein-tyrosine phosphatase gamma gene (PTPRG) gene, with altered methylation already

in the adenoma stage, that is, before the carcinoma transition. Validation of this region in an additional cohort of 103 sporadic

colorectal tumours and 58 paired normal mucosa tissue samples showed 94% sensitivity and 96% specificity. Interestingly,

comparable results were obtained when screening a cohort of Lynch syndrome-associated cancers. Functional studies showed

that PTPRG intron 1 methylation did not directly affect PTPRG expression, however, the methylated region overlapped with a

binding site of the insulator protein CTCF. Chromatin immunoprecipitation (ChIP) showed that methylation of the locus was

associated with absence of CTCF binding. Methylation-associated changes in CTCF binding to PTPRG intron 1 could have

implications on tumour gene expression by enhancer blocking, chromosome loop formation or abrogation of its insulator

function. The high sensitivity and specificity for the PTPRG intron 1 methylation in both sporadic and hereditary colon

cancers support biomarker potential for early detection of colon cancer.
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INTRODUCTION

DNA methylation is a common mechanism in colorectal tumourigen-
esis.1,2 Over the last decade, several genome-wide array-based methods
have been developed, allowing the discovery of novel tumour-specific
methylated loci. Enzymatic (HELP,3 MMASS,4 differential methylation
hybridisation (DMH),5 CHARM6) and chromatin immunoprecipita-
tion (ChIP) methods7 are most commonly used for genome-wide
screening of DNA methylation, in combination with CpG island or
promoter microarrays. An alternative genome-wide approach to
identify genes silenced by DNA methylation detects expression differ-
ences in cell lines treated with DNA demethylating agents.8,9 More
recently, captured methylated DNA10 and bisulphite-converted
reduced representations11 are analysed by high-throughput sequen-
cing strategies. The unbiased approaches have indicated that trans-
cription regulation associated with CpG methylation is not restricted
to promoter CpG islands.12,13 Conserved regions up to 2 kbp distant
from the promoter, annotated as CpG island shores,12 and promoter
CpG islands of lesser density, annotated as intermediate-CpG
islands,13 undergo cancer-specific methylation more often than tradi-
tional promoter CpG islands. The methylation status of these regions
is strongly related to gene expression and might have been under-
estimated in previous studies.

The aim of this study was to discover novel tumour-specific DNA
methylation markers in right-sided colon cancer. These tumours have
a higher frequency of the CpG island methylator phenotype (CIMP).
Additionally, right-sided tumours are often clinically asymptomatic
at early stages, thus, patients would greatly benefit from a reliable
screening method. We employed DMH combined with a 8.5 k CpG
clone library microarray for the initial identification of differential
methylation in a cohort of colon cancers.14 This library is enriched for
CG-rich areas throughout the genome, encompassing promoter CpG
islands, as well as CpG-rich island shores and intermediate-CpG
islands.15 We report tumour-specific methylation of the first intron
of the receptor protein-tyrosine phosphatase gamma gene (PTPRG),
in both sporadic and Lynch syndrome colorectal cancers. Additionally,
we demonstrate that methylation of this region affects it’s binding to
the CCCTC-binding factor (zinc-finger protein, CTCF).

MATERIALS AND METHODS

Tissue
Anonymized samples were obtained from patients who underwent surgery

between 1988 and 2006 at the Leiden University Medical Center (Leiden,

The Netherlands) or at the Rijnland Hospital (Leiderdorp, The Netherlands).

Tumour sections were micro-dissected to minimise normal epithelium and
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stromal cells. DNA was isolated from fresh-frozen tissue using a previously

described method,16 and from formalin-fixed paraffin-embedded (FFPE) tissue

using the Wizard Genomic DNA Purification kit (Promega, Madison, WI, USA).

We used available normal mucosa from the same individuals as control to correct

for age-dependent methylation. Age, location and microsatellite instability (MSI)

status for the sporadic tumours are listed in Supplementary Table S1, and for the

Lynch syndrome-associated tumours in Supplementary Table S2. The colorectal

cancer cell lines SW48, RKO, SW480, Caco2, SW837 and LS411 were obtained

from the American Type Culture Collection (Manassas, VA, USA). DNA was

isolated from these cell lines as described previously.16 RNA was isolated using

TRIZOL (Invitrogen, Carlsbad, CA, USA) and subsequently purified with Qiagen

RNeasy columns combined with the RNase-free DNase kit (Qiagen Sciences,

Germantown, MD, USA). The present study was approved by the Medical Ethics

committee of the LUMC (protocol P01-019). Cases were analysed following the

medical ethical guidelines described in the Code Proper Secondary Use of

Human Tissue established by the Dutch Federation of Medical Sciences.

CpG island microarrays
CpG island clone inserts (8544) were amplified using vector-based primers as

described previously.14,17 The CpG island clone library was originally gene-

rated by the Sanger Centre from affinity-purified in vitro methylated

DNA fragments.15 Clone sequence information was downloaded from the

Toronto Microarray Facility. PCR products were spotted onto CodeLink

(GE Healthcare, Munich, Germany) slides using an OmniGrid arrayer

(Genomic Solutions, Ann Arbor, MI, USA) at the Leiden Genome Technology

Center (www.lgtc.nl) as described.18

Differential methylation hybridisation
DMH was performed according to Yan et al.14 Cy5-labeled amplicons,

representing methylated DNA fragments derived from tumours and paired

normal mucosa samples, were cohybridized to the CpG island microarrays with

a Cy3-labeled common reference amplicon consisting of a pool of DNA from

the six colorectal cancer cell lines described above. Detection was done on a

G2565BA scanner (Agilent Technologies, Santa Clara, CA, USA) and image

analysis using GenePix6.0 (Molecular Devices, Union City, CA, USA). Pre-

processing, including normalisation, was performed using the GenePix error

model in Rosetta Resolver version 5.0 (Rosetta Biosoftware, Seattle, WA, USA).

Microarray data for the tumour and normal samples were compared using an

error-weighted ANOVA model and corrected for multiple testing19 in Rosetta

Resolver. Microarray data are available on Gene Expression Omnibus with

accession number GSE21181.

Bisulphite sequence analysis (BSA)
DNA samples (500 ng) were converted using the EZ DNA methylation Gold

bisulphite kit (Zymo Research, Orange, CA, USA). Primers (Supplementary

Table S3) for BSA of 10 CpGs in the PTPRGint1 locus (Supplementary

Figure S1) were designed using MethPrimer.20 Amplification was carried out

in a DNA Engine Dyad Peltier Thermal Cycler (Bio-Rad, Hercules, CA, USA)

using AmpliTaq Gold PCR buffer and enzyme (Applied Biosystems, Foster City,

CA, USA). For the direct BSA, PCR products were sequenced using the right

primer, resulting in nine interpretable CpGs (CpG2-10). For additional clonal

BSA, PTPRGint1 PCR fragments were cloned into TOP10 Escherichia coli

bacteria using a TOPO TA cloning kit (Invitrogen). Sequence alignment analysis

was performed using ClustalW21 and BioEdit.22 CpG dinucleotides in the direct

BSA were scored as being methylated when the ratio of the cytosine/thymine

peaks was above 0.4. The BiQ analyzer software was used for visualisation.23

MS-MLPA assay
Custom MS-MLPA probes (Supplementary Table S3) for the PTPRGint1

locus were designed in Primer324 and included the HhaI site in CpG9

(see Figure 1b). As a control, we used a BRCA2 probe set from the

SALSA MS-MLPA KIT ME001B Tumour suppressor-1 kit (MRC-Holland,

Amsterdam, The Netherlands). Fragment analysis was performed on an ABI

3130 (Applied Biosystems). The MS-MPLA was performed as described using

50 ng of genomic DNA.25 A negative, unmethylated control (human semen

DNA) and a 100% methylated DNA control (CpGenome Universal methylated

DNA, Chemicon, Millipore, Billerica, MA, USA), were included in every

experiment to assess HhaI cleavage and PCR. Fragment analysis was performed

in GeneMapper (Applied Biosystems). PTPRGint1 peak heights were normal-

ised by comparison with the BRCA2 peak height from the same run.

Subsequently, the PTPRGint1/BRCA2 ratio from the digested reaction was

divided by the PTPRGint1/BRCA2 ratio from the undigested reaction resulting

in one ratio per sample that represented the fraction of methylated CpG9. In

all, 10 independent measurements provided a ratio distribution for unmethyl-

ated (mean, 0.108; SD 0.037) and fully methylated (mean 0.833, SD 0.148)

control DNA. Samples were typed as being unmethylated or methylated when

they were within three standard deviations of the mean of the unmethylated

and methylated reference samples, respectively. Samples with ratios in between

these standard deviation boundaries were scored as partially methylated. For

specificity and sensitivity calculations, partially methylated samples were

considered methylated. Determination of specificity between normal and

tumour tissue was performed by a w2-test.

Figure 1 Identification and validation of the differentially methylated locus PTPRGint1. (a) Trend plot of the top-20 differentially methylated microarray

clones (FDR r0.01%) showing the average log10 ratios in the normal, adenoma and carcinoma samples compared with the colorectal cancer cell line

reference panel. Clone 47B02, corresponding to PTPRGint1, had a similarly increased log ratio in adenomas and carcinomas compared with normals
(red solid line). (b) BiQ summary of direct BSA of PTPRGint1 (CpG dinucleotides 1–10) in paired normal colon mucosa (n¼19, upper panel) and colon

tumours (n¼18, 12 right- and left-sided carcinomas and six adenomas, lower panel) showed highest specificity and sensitivity in the four most 3¢ CpGs

measured. Each box corresponds to one CpG position in the genomic sequence, while colours summarise the methylation states of all sequenced samples at

that position.
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Real-time RT–PCR
cDNA was generated using the random primer protocol from the Transcriptor

First Strand cDNA Synthesis Kit (Roche Applied Science, Indianapolis,

IN, USA) using 1mg of RNA. Intron-spanning primers (Supplementary Table S3)

were designed to target exon 1 and 2 of the main PTPRG transcript in

Primer3.24 Reactions were performed in duplicate on a Light Cycler 480 (Roche

Applied Science) using IQ SYBR Green SuperMix (Biorad). High-resolution

melting curve analysis was performed to check primer specificity. Reactions

with more than one peak in the melting curve were discarded, as were samples

where the standard deviation between technical replicates was above one

Ct value. A standard curve was generated using five 1:10 dilutions of pooled

cDNA from colon cancer cell lines (SW48, RKO, SW480, Caco2, SW837

and LS411), showing an efficiency of 100%. The Ct values that were used

for analysis were between 23 and 33. Relative mRNA concentrations were

calculated from this standard curve. Stably expressed control genes for normal-

isation were selected with the GeNorm applet; the two most stably expressed

genes were used for normalisation of each tumour cDNA (CPSF6 and EEF1).26

CTCF ChIP and quantitative PCR
The primary colon cancer cell line KP7038t, established at the Department of

Pathology at the LUMC, was grown in GIBCO RPMI 1640 with glutamax

(Invitrogen), 10% fetal calf serum and penicillin/streptomycin (50mg/ml).

Tumour-associated fibroblasts (KP7038f) collected from the primary tumour,

as well as cell lines RKO and SW480 were grown under identical conditions.

Cells at approximately 80% confluency were fixed with 1% formaldehyde for

10 min at room temperature. The formaldehyde was quenched with glycine

(0.125 M) and the cells were harvested by scraping. ChIPs were performed

using the SimpleChIP Enzymatic Chromatin IP kit (Cell Signaling Technology,

Danvers, MA, USA) with 10ml anti-CTCF antibody (D31H2 XP; Cell Signaling

Technology). Normal colon mucosa was collected from a patient who under-

went a colon colonoscopy unrelated to colon cancer. Twenty 50mm sections,

cut from macro-dissected frozen tissue, were fixed in PBS with 1% formalde-

hyde. After quenching, the tissue was micro-dissected and processed for

ChIP followed by duplicate PCR reactions as above. Primers (Supplementary

Table S3) targeting control regions were selected from Kim et al.27 The Ct values

that were used for analysis were between 25 and 40. Standard curves were

generated using four consecutive 1:5 dilutions of input DNA for both cultures

(non-immunoprecipitated, cross-linked DNA) to determine relative DNA con-

centrations. For comparison between pull-downs, relative DNA concentrations of

the CTCF and IgG antibody pull-downs were normalised with the corresponding

relative concentration from the histone H3 antibody pull down.

RESULTS

Locus PTPRGint1 is methylated in colorectal adenomas and
carcinomas
Methylation profile comparison by ANOVA of 15 carcinomas, 3
adenomas and 8 paired normal mucosa samples, identified
20 differentially methylated loci for the three tissue groups (false
discovery rate o0.01%). For all but one of these loci, methylation in
the adenomas was comparable to the normal samples whereas
carcinomas showed increased methylation (Figure 1a). The most
significant CpG island clone was 47B02 that showed increased
methylation in both adenomas and carcinomas compared with
normal mucosa. Therefore, we performed validation experiments
for the corresponding locus, which mapped to the first intron of
the PTPRG gene (chr3: 61524993-61525363, UCSC assembly: March
2006, see Supplementary Figure S1), referred to as PTPRGint1.

Analysis at single CpG resolution using direct BSA showed that 17
out of 18 tumour samples were fully methylated in the PTPRGint1
region, whereas one carcinoma was unmethylated for CpG dinucleo-
tides 8–10 (Figure 1b, bottom panel). In contrast, normal colon
samples were mostly unmethylated (Figure 1b, upper panel). CpGs
7–10 were most informative to distinguish between tumour and
normal in this set of samples. These results were confirmed at the

single chromosome level using clonal BSA (Supplementary Figure S2).
In summary, the microarray-based finding of differential PTPRGint1
methylation in right-sided tumours was confirmed, and extended to
left-sided adenomas and carcinomas.

Methylation of PTPRGint1 CpG9 has high sensitivity and specificity
To assess the sensitivity and specificity of PTPRGint1 methylation to
discriminate between cancer and normal tissue, we developed a high-
throughput MS-MLPA assay (Figures 2a and b). We tested an FFPE
cohort of 103 tumours and 58 corresponding normal tissues, which
allowed us to assess the possibility of age-related methylation often
seen in aging mucosa. Of the 67 carcinoma samples, 94% showed
methylation of the targeted CpG dinucleotide (61 fully, two partially
methylated), whereas 46 (95.8%) of the 48 corresponding normal
samples were unmethylated, and the remaining two partially methyl-
ated (Figure 2c and Table 1). Comparing the methylation numbers
between normal and tumour tissue by w2-test provided a highly
significant P-value of 9.8�10�110. PTPRGint1 methylation was inde-
pendent of MSI status in the sporadic carcinomas, as both MSI-High
and stable cases were methylated. A relatively small group of 18
sporadic adenomas (13 low grade dysplastic and five high grade
dysplastic) and neighbouring normal mucosa of 10 of these showed
PTPRGint1 methylation in all adenomas, but not in the available
normal mucosa (Figure 2c and Table 1). To assess whether PTPRGint1
methylation is an early event in colorectal carcinogenesis, several colon
lesions preceding the adenoma/carcinoma stages were studied. All six
hyperplastic polyps and 11 out of 12 serrated adenomas tested showed
PTPRGint1 methylation (Figure 2c).

PTPRGint1 CpG9 methylation in Lynch syndrome-associated
colorectal cancer
The initial cohort for MS-MLPA validation contained two Lynch
syndrome-associated colorectal carcinomas that were both methylated.
Therefore, we further investigated PTPRGint1 methylation in 63
carcinomas from patients with a DNA mismatch repair (MMR)
gene mutation (14 MLH1 mutations, 19 MSH2 mutations and
30 MSH6 mutations). Of these, 92.1% showed methylation (58 fully,
3 partially methylated), while 62 of the 65 (95.7%) corresponding
normal samples were unmethylated (Figure 2c, Table 1; w2 P-value
3.3�10�153). In conclusion, methylation of PTPRGint1 CpG9 has
similarly high sensitivity and specificity in Lynch syndrome-associated
colorectal carcinomas as in sporadic colorectal cancer.

No silencing of PTPRG gene expression in methylated samples
To assess whether hypermethylation of PTPRGint1 affected expres-
sion of the gene, relative mRNA levels of PTPRG were studied in
15 right-sided colon carcinomas, 3 adenomas and 18 corresponding
normal mucosa samples. The PTPRG gene encodes four protein
coding isoforms (Source: HGNC Symbol; Acc:9671, aligned to
Ensembl GRCh37). Using intron 1 spanning primers the full length
transcripts ENST00000474889 and ENST00000295874 (missing one
cassette exon), were analysed (Figure 3). Two additional transcripts,
ENST00000383711 and ENST00000394462, both starting at exon 3,
were analysed using intron 26 spanning primers and gave comparable
results (data not shown). Expression of the PTPRG gene was detected
in all samples. To assess the effects of PTPRGint1 methylation on
PTPRG expression, we compared the MS-MLPA methylation ratio
with the PTPRG relative expression (Figure 3). We found that PTPRG
was expressed at similar levels in the tumour and normal samples
independent of methylation status. One patient (No. 28) showed
increased PTPRG expression in both normal and tumour samples,
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thought to reflect individual expression differences and a possible
copy number effect in the tumour.

PTPRGint1 is a methylation-dependent CTCF binding site
The PTPRGint1 locus overlapped with an experimentally defined
CTCF binding site from a CTCF ChIP-chip study in fibroblasts27

displayed in the genome web browsers USCS28 and Ensembl.29 This
CTCF binding region of 750 bp (OREG0015647; chr3: 61525101-
61525851, UCSC assembly: March 2006) has a 262 bp overlap with
the 3¢ part of the PTPRGint1 locus ( Supplementary Figure S1). We
studied CTCF binding by ChIP in the primary tumour culture

KP7038t that carried PTPRGint1 methylation (MS-MLPA ratio 0.97;
data not shown), unmethylated tumour-derived fibroblasts KP7038f
from the same patient (MS-MLPA ratio 0.07, data not shown), as well
as normal colon mucosa. We detected CTCF binding to PTPRGint1 in
the normal mucosa and KP7038f fibroblasts, but little binding to the
primary tumour cells (Figure 4a).

Table 1 Sensitivity and specificity of the PTPRGint1 locus CpG9

methylation in sporadic tumours and tumours associated with a

specific MMR mutation

CpG9

Sensitivity

methylated tumours/total tumours

Specificity unmethylated

normals/total normalsa

Sporadic adenomas 100% (18/18) 100% (10/10)

Sporadic carcinomas 94% (63/67) 95.8% (46/48)

MLH1 mutated 100% (14/14) 87% (20/23)

MSH2 mutated 96% (18/19) 100% (24/24)

MSH6 mutated 86.7% (26/30) 100% (14/14)

Total Lynch 92.1% (58/63) 95.4% (62/65)

Abbreviation: PTPRGint1, protein-tyrosine phosphatase gamma gene intron 1.
aThe mutational analysis of the MMR genes was incomplete for four unpaired normal samples
in the Lynch syndrome cohort. Therefore, these were only included in the total specificity
calculations.

Figure 3 Scatter plot of the relative PTPRG expression against the

PTPRGint1 methylation ratio according to the MS-MLPA. The vertical line at

0.22 indicates the cut-off for unmethylated samples. Plotted data is

representative of two independent experiments.

Figure 2 PTPRGint1 methylation detected by MS-MLPA. (a) GeneMapper output of the custom MS-MLPA to analyse PTPRGint1 CpG9 methylation in a

normal mucosa sample. Upper panel: The PTPRGint1 peak was located at B84 bp, the control peak was located at B110bp. Lower panel: Loss of

PTPRGint1 signal after HhaI digestion indicated an unmethylated CpG9. (b) GeneMapper output of the custom PTPRGint1 MS-MLPA in the corresponding

colon cancer sample. Upper panel: Undigested. Lower panel: HhaI digestion. Retention of the PTPRGint1 marker signal indicated protection against HhaI

digestion by CpG9 methylation. (c) Frequency of PTPRGint1 CpG9 methylation in precursor lesions (hyperplastic polyps and serrated adenoma), early- and

advanced adenomas, carcinomas and corresponding normal mucosal tissue for the latter three groups. The number of samples typed as methylated (dark),

partially methylated (striped) and unmethylated (white) in the MS-MLPA assay is indicated on the y axis.
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To control for possible differences in the amount of CTCF protein
between the samples, we compared the qPCR results for the
PTPRGint1 region with a positive control locus 7.9 Mb distant from
PTPRGint1 that was shown to bind CTCF and does not contain a
CpG in its putative 20 bp consensus sequence.27 This locus was
enriched in pull downs of all samples, including the primary tumour
cells, indicating that lack of CTCF binding to PTPRGint1 was not
because of lack of CTCF protein. CTCF binding to PTPRGint1 was
comparable to the positive control in both KP7038f fibroblasts (ratio
1.2) and normal colon mucosa (ratio 1.1). However, the PTPRGint1/
positive control ratio was 0.06 in the primary tumour culture KP7038t
(Figure 4b). CTCF binding to PTPRGint1 was similarly decreased in
colorectal cancer cell lines RKO and SW480 (Figure 4b). These results
indicate a significant decrease of bound CTCF to the methylated
PTPRGint1 region in tumour cells.

DISCUSSION

We describe colorectal tumour-specific methylation of a locus, in the
first intron of the putative tumour suppressor gene PTPRG, in both
proximal and distal carcinomas and adenomas, including Lynch
syndrome tumours. For these high-risk individuals, who are advised
to undergo regular colonoscopies, no molecular markers have been

described so far.30 Assuming that a successful faecal or blood DNA test
for PTPRGint1 methylation could be developed, this is a promising
discovery that would aid the early detection of colorectal tumours,
independent of their aetiology.

PTPRGint1 is not located in a promoter CpG island but in the first
intron, about 3 kbp from the transcriptional start site. We did not find
a relation between the methylation status of PTPRGint1 and PTPRG
expression, indicating that PTPRGint1 methylation does not lead to
loss of function of PTPRG as has been observed for mutations in
colon cancer, and deletions in lung carcinomas and renal carcinoma
cell lines.31,32 However, the identification of a methylation-sensitive
CTCF binding site overlapping with PTPRGint1 suggests that tumour-
specific methylation may have a more distant effect. Differential
binding of the insulator protein CTCF could have a major influence
on expression of distant genes through alternative loop formation, as
has been observed in b-globin expression in mouse models.33 A recent
study has shown that loss of CTCF binding to a boundary region
upstream of CDKN2A resulted in spreading of repressed chromatin
and DNA methylation into the p16 promoter with sequential down-
regulation of p16 expression.34 The same study described that loss of
upstream CTCF binding resulted in promoter DNA methylation of
RASSF1 and CDH1.,34 Contradictory to the finding that CTCF
binding abrogation was shown to be causative of heterochromatin
spreading and DNA methylation34,35 is the observation that DNA
methylation of CTCF binding sites is suggested to regulate CTCF
binding.36,37 Interestingly, aberrant DNA methylation that excludes
CTCF binding to intronic regulatory DNA was shown to promote
expression of an oncogene, BCL6, in B cell lymphomas.38 Although
the sequence of events is unknown, the age-related aberrant hyper-
methylation often seen in colon cancer hints towards the latter.

We excluded differential peptidic abundance of CTCF between
tumour and normal samples by successfully amplifying a positive
control CTCF binding site on all samples. It remains to be demon-
strated whether CTCF protein modifications and its cellular and
nuclear distribution are maintained in all tumour cells, both of
which can influence CTCF activity and the binding to specific regions.
More insight into the role of aberrant DNA methylation of
PTPRGint1 in the aetiology of cancer requires a better understanding
of whether aberrant CTCF binding is caused by inhibition of protein
activity or by initial aberrant methylation of the CTCF binding site.

Hypermethylation of the CpG island in the PTPRG gene promoter
has been previously described in cutaneous T-cell lymphomas,
melanoma cell lines and gastric cancer.39–41 Transcriptional down-
regulation was shown to be associated with PTPRG promoter methyl-
ation in the cutaneous T-cell lymphomas study.39 This study used a
similar microarray for identification of differential methylation as the
present study. We did not find differential methylation of the PTPRG
promoter region between normal and colon tumour samples on the
microarray. Moreover, BSA of colorectal cancer cell lines showed
that the PTPRG promoter region was unmethylated (R van Doorn,
personal communication). Therefore, we have no indication for
upstream spreading of DNA methylation from the CTCF binding
region at PTPRGint1 towards the promoter.

In conclusion, this study provided evidence for tumour-specific
hypermethylation of a CTCF binding site located in the first intron of
PTPRG. The high specificity and sensitivity imply a possible utility for
PTPRGint1 methylation in new or existing colon-specific methylation
marker panels. Especially, the high level of PTPRGint1 methylation in
Lynch syndrome-associated colorectal tumours is unique and could
prove to be a valuable addition. Methylation-dependent absence of
CTCF binding to the PTPRGint1 locus suggests a possible effect on

Figure 4 (a) CTCF binding to PTPRGint1, positive- and negative control

regions in normal colon mucosa (light grey), KP7038f (black) and KP7038t

(dotted). The histone H3 normalised values of the CTCF antibody and IgG

negative control antibody pull downs are given per primer pair. Standard

errors represent the variability of duplicate PCR reactions. This is a repres-

entative experiment of three ChIPs. (b) The PTPRGint1/positive control ratio

for normal colon mucosa, KP7038f, KP7038t (also shown in a), SW480

(vertically striped) and RKO (diagonally striped).
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chromatin density or conformation that could have a role in colon
tumourigenesis.42
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