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Abstract
Shape analysis has become of increasing interest to the neuroimaging community due to its
potential to precisely locate morphological changes between healthy and pathological structures.
This manuscript presents a comprehensive set of tools for the computation of 3D structural
statistical shape analysis. It has been applied in several studies on brain morphometry, but can
potentially be employed in other 3D shape problems. Its main limitations is the necessity of
spherical topology.

The input of the proposed shape analysis is a set of binary segmentation of a single brain structure,
such as the hippocampus or caudate. These segmentations are converted into a corresponding
spherical harmonic description (SPHARM), which is then sampled into a triangulated surfaces
(SPHARM-PDM). After alignment, differences between groups of surfaces are computed using
the Hotelling T2 two sample metric. Statistical p-values, both raw and corrected for multiple
comparisons, result in significance maps. Additional visualization of the group tests are provided
via mean difference magnitude and vector maps, as well as maps of the group covariance
information.

The correction for multiple comparisons is performed via two separate methods that each have a
distinct view of the problem. The first one aims to control the family-wise error rate (FWER) or
false-positives via the extrema histogram of non-parametric permutations. The second method
controls the false discovery rate and results in a less conservative estimate of the false-negatives.

1 Introduction
Quantitative morphologic assessment of individual brain structures is often based on
volumetric measurements. Volume changes are intuitive features as they might explain
atrophy or dilation due to illness. On the other hand, structural changes at specific locations
are not sufficiently reflected in volume measurements. Shape analysis has thus become of
increasing interest to the neuroimaging community due to its potential to precisely locate
morphological changes between healthy and pathological structures.

One of the first and most influential research in shape analysis was presented by D’Arcy [1]
in his ground-breaking book On Growth and Form. In more recent years, several researchers
proposed shape analysis via deformable registration to a template ([2,3,4,5]). Inter-subject
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comparisons are made by analyzing the individual deformable transformations. This analysis
of the transformation fields has to cope with the high dimensionality of the transformation,
the template selection problem and the sensitivity to the initial position. Nevertheless,
several studies have shown stable shape analysis results. [6] and [7] presented some of the
first mathematical methods for 3D shape analysis based on sampled descriptions. The shape
analysis of densely sampled 3D Point Distribution Models (PDM) and their deformations
was first investigated by [8]. Inspired by their experiments, [9] proposed shape analysis
based on a parametric boundary description called SPHARM ([10]). The SPHARM shape
analysis approach was extended by [11] to use the implied sampled surface (SPHARM-
PDM), a method also used by [12]. [13,14] and Golland [15] proposed shape analysis on
medial shape descriptions in 3D and 2D, respectively. They used a fixed topology sampled
model with implicit correspondence that is fitted to the objects.

This manuscript presents a comprehensive set of tools that form a pipeline for the
computation of 3D structural statistical shape analysis on the object boundary via SPHARM
(see Figure 1). It has been applied in several studies on brain morphometry, but can
potentially be employed in other 3D shape analysis problems. The main limitations of our
shape analysis methodology is the necessity of spherical topology.

2 Methods
This section describes the SPHARM-PDM shape description, the statistical analysis
methodology, as well as issue of alignment and scaling normalization.

In summary, the input of the proposed shape analysis is a set of binary segmentation of a
single brain structure, such as the hippocampus or caudate. These segmentations are first
processed to fill any interior holes and a minimal smoothing operation. The processed binary
segmentations are converted to surface meshes, and a spherical parametrization is computed
for the surface meshes using a area-preserving, distortion minimizing spherical mapping.
The SPHARM description is computed from the mesh and its spherical parametrization.
Using the first order ellipsoid from the spherical harmonic coefficients, the spherical
parametrizations are aligned to establish correspondence across all surfaces. The SPHARM
description is then sampled into a triangulated surfaces (SPHARM-PDM) via icosahedron
subdivision of the spherical parametrization. These SPHARM-PDM surfaces are all spatially
aligned using rigid Procrustes alignment. Group differences between groups of surfaces are
computed using the standard robust Hotelling T2 two sample metric. Statistical p-values,
both raw and corrected for multiple comparisons, result in significance maps. Additional
visualization of the group tests are provided via mean difference magnitude and vector
maps, as well as maps of the group covariance information.

The correction for multiple comparisons is performed via two separate methods that each
have a distinct view of the problem. The first one aims to control the family-wise error rate
(FWER) or false-positives via the extrema histogram of non-parametric permutations. The
second method controls the false discovery rate and results in a less conservative estimate of
the false-negatives.

2.1 SPHARM-PDM
In summary, the SPHARM description is a hierarchical, global, multi-scale boundary
description that can only represent objects of spherical topology ([10]). The spherical
parameterization is computed via optimizing an equal area mapping of the 3D voxel mesh
onto the sphere and minimizing angular distortions. The basis functions of the parameterized
surface are spherical harmonics. Each individual SPHARM description is composed of a set
of coefficients, weighting the basis functions. [16] demonstrated that SPHARM can be used
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to express shape deformations. Truncating the spherical harmonic series at different degrees
results in object representations at different levels of detail. SPHARM is a smooth, accurate
fine-scale shape representation, given a sufficiently high representation level. Based on a
uniform icosahedron-subdivision of the spherical parameterization, we obtain a Point
Distribution Model (PDM).

Mathematics behind SPHARM—This section discusses the mathematical properties of
the spherical harmonic basis functions. It gives a summary of spherical harmonic descriptors
as they are presented in Brechbühler’s dissertation [17].

Spherical harmonic basis functions , −l ≤ m ≤ l of degree l and order m are defined on θ ∈
[0;π] × ϕ ∈ [0;2π) by the following definitions:

(1)

(2)

where  denotes the complex conjugate of  and  the associated Legendre polynomials

(3)

Table 1 lists explicit expressions for the spherical harmonic functions up to degree 3. The
Cartesian notion reveals that the spherical harmonics are polynomials in the 3D space
(u0,u1,u2).

To express a surface using spherical harmonics, the three coordinate functions are
decomposed and the surface  takes the form

(4)

where the coefficients  are three-dimensional vectors due to the three coordinate
functions. The coefficients  are obtained by solving a least-squares problem. Therefore,
the values of the basis functions are gathered in the matrix Z = (zi, j(l,m)) with

, where j(l,m) is a function assigning an index to every pair (l,m) and i
denotes the indices of the nvert points to be approximated. The coordinates of these points

are arranged in  and all coefficients are gathered in

. The coefficients that best approximate the points in least-squares
sense are obtained by

(5)
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Using spherical harmonic basis functions, we obtain a hierarchical surface description that
includes further details as more coefficients are considered. This is illustrated in Fig. 2.

SPHARM Correspondence—Correspondence of SPHARM-PDM is determined by
normalizing the alignment of the spherical parameterization to an object-specific frame. In
the studies presented in this paper, the normalization is achieved by rotation of the
parameterization, such that the spherical equator, 0° and 90° longitudes coincide with those
of the first order ellipsoid(see Figure 3). After this parametrization normalization,
corresponding surface points across different objects possess the same parameterization.

The SPHARM-PDM shape analysis is visualized in Figure 1 using a caudate structure. Prior
to the shape analysis, the group average object is computed for each subject group, and an
overall average object is computed over all group average objects. Each average structure is
computed by averaging the 3D coordinates of corresponding surface points across the group.
The overall average object is then used in the shape analysis as the template object. At every
boundary point for each object, we compute a distance map representing the signed local
Euclidean surface distance to the template object. The sign of the local distance is computed
using the direction of the template surface normal. In the global shape analysis, the average
of the local distances across the whole surface is analyzed with a standard group mean
difference test. The local shape analysis is computed by testing the local distances at every
boundary point. This results in a significance map that represents the significance of these
local statistical tests and thus allows locating significant shape differences between the
groups. We corrected the shape analysis for the multiple comparison problem using a
uniformly sensitive, non-parametric permutation test approach ([18]). The non-corrected
significance map is an optimistic estimate of the real significance, whereas the corrected
significance map is a pessimistic estimate that is guaranteed to control the rate of false
positives at the given levelα (commonly α = 0.05) across the whole surface.

We have compared the SPHARM correspondence to other types of correspondences and it
compared favourably to human expert established correspondence [19].

2.2 Area-preserving Spherical Mapping
The appropriate parameterization of the points of a surface description is a key problem for
correspondence finding, as well as for an efficient SPHARM representation. Every point i
on the surface is to be assigned a parameter vector (θi,ϕi) that are located on the unit sphere.
A homogeneous distribution of the parameter space is essential for an efficient
decomposition of the surface into SPHARM coefficients. We give here a brief summary of
the surface parameterization procedure proposed by Brechbühler [10].

A bijective mapping of the surface to the unit sphere is created, i. e., every point on the
surface is mapped to exactly one point on the sphere, and vice versa. The main idea of the
procedure is to start with an initial parameterization. This initial parameterization is
optimized so that every surface patch gets assigned an area in parameter space that is
proportional to its area in object space. The initial mapping from surface to parameter space
is constructed using discrete Laplace’s equations to solve the corresponding Dirichlet
problem. To obtain a homogeneous distribution of the parameter space over the surface, this
initial parameterization is modified in a constrained optimization procedure considering two
criteria:

1. Area preservation: Every object region must map to a region of proportional area in
parameter space.

2. Minimal distortion: Every quadrilateral should map to a spherical quadrilateral in
parameter space.
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Brechbühler establishes constraints for area preservation, while the distortion of the mesh
serves as the objective function during optimization. The optimization solves the resulting
system of nonlinear equations by linearizing them and taking Newton steps.

2.3 Surface Models from SPHARM: SPHARM-PDM
From the SPHARM description we can compute triangulated surfaces by sampling the
spherical parameterization uniformly on the sphere. Equidistant sampling in the parameter
space leads to a dense sampling around the poles (θ = 0, θ = π) and a coarse sampling around
the equator (θ = π/2). This fact can be explained by the poles being mapped to all points
having ϕ = 0...2π and θ = 0, or θ = π (see also Fig. 3). Using a linear, uniform icosahedron
subdivision shown in Fig. 4, however, we gain a good approximation of a homogeneous
sampling of the spherical parameter space and thus also of the object space. The subdivision
is linear in the number of subdivisions along each edge of the original icosahedron, rather
than the commonly used recursive subdivisions. Any recursive subdivision has a
corresponding linear subdivision, but most linear subdivisions have no corresponding
recursive subdivision (see Table 2).

Using the pre-computed parameter locations (θi,ϕi) from the icosahedron subdivision, we
can compute the PDM directly from the coefficients, as the parameter locations stay
constant for all objects at a given subdivision level. The sampling points  at the locations
(θi,ϕi) are obtained using equation (4):

In our experience the sampling for the surface of brain structures should be chosen between
subdivision level 10 (1002 surface points) and 20 (4002 surface points) depending on the
complexity of the objects. For example, hippocampal surfaces are well represented by a
subdivision level 10 and caudate surfaces by a subdivision level 15.

2.4 Alignment and Scaling Normalization
Alignment and scaling of the objects are two important issues in shape analysis that are also
discussed here [11]. In general, we usually chose rigid-body Procrustes alignment ([20])
followed by no scaling normalization or scaling inversely to the intra-cranial cavity volume
(ICV). Commonly both results are reported in a shape analysis study, the original scale
analysis represents an unbiased raw analysis, whereas the ICV scale analysis corrects for
differences in overall interior head size and thus approximatively normalizes for gender and
age differences. In general both types of analysis should yield similar patterns of differences
and special care needs to be taken if this is not the case.

2.5 Local Testing of Group Mean Difference using Hotelling T2 metric
After shape description, correspondence establishment, alignment and scaling normalization,
the next step in the shape analysis pipeline consists of testing for differences between groups
at every surface location (see Figure 5). This can be done in 2 main fashions:

• Analyzing the magnitude of the local difference vector to a template: For this
option, a template needs to be first selected, usually this is the common mean of the
2 groups or the mean of separate control group. The magnitude of the difference is
easily understood and results in difference maps for each subject. Also, the
resulting univariate statistical analysis is quite well known and local significance
can be easily computed using the Student t metric. The main disadvantage of this
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method is the need to select a template, which introduces an additional bias into the
statistical analysis. We applied this method in earlier studies of hippocampi [21]
and ventricles [22].

• Analyzing the spatial location of each point: For this option, no template is
necessary and multivariate statistics of the (x,y,z) location is necessary. We have
chosen to use the Hotelling T2 two sample difference metric as a measurement of
how 2 groups locally differ from each other. The standard Hotelling T2 is defined

as , where Σ = (Σ1(n1 - 1) + Σ2(n2 - 1))/(n1 +
n2 - 2) is the pooled covariance matrix. An alternative modified Hotelling T2 metric
is less sensitive to group differences of the covariance matrixes and the number of

samples[23]: . All our current studies are
based on this modified Hotelling T2 metric.

We then want to test the two groups for differences in the means of the selected difference
metric (univariate: Student t, multivariate: Hotelling T2) at each spatial location. Permutation
tests are a valid and tractable approach for such an application, as they rely on minimal
assumptions and can be applied even when the assumptions of the parametric approach are
untenable. Non-parametric permutation tests are exact, distribution free and adaptive to
underlying correlation patterns in the data. Further, they are conceptually straightforward
and, with recent improvements in computing power, are computationally tractable.

Our null hypothesis is that the distribution of the locations at each spatial element is the
same for every subject regardless of the group. Permutations among the two groups satisfy
the exchangeability condition, i.e. they leave the distribution of the statistic of interest
unaltered under the null hypothesis. Given n1 members of the first group ak, k = 1...n1 and n2

members of the second group bk, k = 1...n2, we can create  permutation
samples. A value of M from 20000 and up should yield results that are negligibly different
from using all permutations [24].

2.6 Correction for Multiple Comparison
The local shape analysis involves testing from a few to many thousands of hypothesis (one
per surface element) for statistically significant effects. It is thus important to control for the
multiple testing problem (see Figure 5), and the most common measure of multiple false
positives is the familywise error rate (FWER). The multiple testing problem has been an
active area of research in the functional neuroimaging community. The most widely used
methods in the analysis of neuroimaging data use random field theory [25] [26] and make
inferences based on the maximum distribution. In this framework, a closed form
approximation for the tail of the maximum distribution is available, based on the expected
value of the Euler characteristic of the thresholded image [26]. However, random field
theory relies on many assumptions such as the same parametric distribution at each spatial
location, a point spread function with two derivatives at the origin, sufficient smoothness to
justify the application of the continuous random field theory, and a sufficiently high
threshold for the asymptotic results to be accurate.

In our work, we are employing non-parametric permutation tests and false discovery rate as
two alternative correction methods for the multiple comparison problem.
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Minimum over Non-parametric permutation tests—Non-parametric methods deal
with the multiple comparisons problem [18] and can be applied when the assumptions of the
parametric approach are untenable. Similar methods have been applied in a wide range of
functional imaging applications [27,28,29].

Details of this method are described in [18] and only a summary is provided here. The
correction method is based on computing first the local p-values using permutation tests.
The minimum of these p-values across the surface is then computed for every permutation.
The appropriate corrected p-value at level α can then be obtained by the computing the value
at the α-quantile in the histogram of these minimum values. Using the minimum statistic of
the p-values, this method correctly controls for the FWER, or the false positives, but no
control of the false negatives is provided. The resulting corrected local significance values
can thus be regarded as pessimistic estimates akin to a simple Bonferroni correctection.

False Discovery Rate—Additionally to the non-parametric permutation correction, we
have also implemented and applied a False Discovery Rate Estimation (FDR) [30,31]
method. The innovation of this procedure is that it controls the expected proportion of false
positives only among those tests for which a local significance has been detected. The FDR
method thus allows an expected proportion (usually 5%) of the FDR corrected significance
values to be falsely positive. The correction using FDR provides an interpretable and
adaptive criterion with higher power than the non-parametric permutation tests. FDR is
further simple to implement and computationally efficient even for large datasets.

The FDR correction is computed as follows [31]:

1. Select the desired FDR bound q, e.g. 5%. This is the maximum proportion of false
positives among the significant tests that you are willing to tolerate (on average).

2. Sort the p-values smallest to largest.

3. Let pq be the p-value for the largest index i of the sorted p-values psort,i ≤ q · i/N,
where N is the number of vertices.

4. Declare all locations with a p-value p ≤ pq significant.

3 Computation scheme and Implementation
This section describes the set of shape analysis tools and the use of these in succession to
compute the whole shape analysis (see Figure 7). The general workflow starts from the
segmented datasets with binary labels for each structure of interest. The SegPostProcess
program extracts a single binary label and applies heuristic methods to ensure the spherical
topology of the segmentation. In the next step, the GenParaMesh computes the surface mesh
corresponding to the segmentation, as well as a spherical parametrization of this surface
mesh via area preserving mapping (see Section 2.2). The SPHARM-PDM shape
representation is then computed using the ParaToSPHARMMesh program, which also
handles issues of alignment. These three programs have to be run on all datasets in a shape
analysis study. Often they are applied in parallel to the datasets. After all SPHARM-PDM
representations have been computed, the statistical testing program StatNonParamTestPDM
computes the difference maps, the significance maps, as well as the descriptive statistics
such as the mean surfaces and covariance matrixes,

All these tools are command line tools without any graphical user interface. They have an
online help/usage describing the input and output parameter specification. This information
is printed on the terminal window by calling the program without any parameters or using
the ’-help’ option.
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All input and output meshes are stored in ITK-readable format of an itk::MeshSpatialObject.
Conversion tools to/from other formats, such as OpenInventor and STL are also provided.

3.1 Processing of Binary Labels: SegPostProcess
The application of the SegPostProcess program is optional and but we recommend its use,
as it ensure spherical topology of the segmentation and offers a series of services:

1. Extraction of a single label or a label range: This is especially helpful if the label
dataset contains multiple labels.

2. Resampling of the label data: Segmentation data from MRI or other modalities are
often stored at rather coarse resolution or at non-isotropic resolution. The input to
GenParaMesh has to be of isotropic resolution and a relative fine resolution is
recommended. In our studies, we have commonly resampled the data to an
isotropic resolution of 0.5 mm to 0.75 mm.

3. Spherical topology: Any cavities fully enclosed in the segmentation is filled, two
smoothing operations are applied, a full 6-connectedness is ensured, and only the
largest component in the image is extracted. The cavity filling only fills fully
interior structures and thus leaves the exterior boundary unedited. The first
smoothing operation is implemented via a binary closing operation and the second
smoothing operation is a level set based anti-alias smoothing (ITK filter
itk::AntiAliasBinaryImageFilter [32]).

A common use of this tool is illustrated by the following command line. The output is a
single label dataset.

SegPostProcess Label.hdr -o Label_PP.hdr -label 1-space 0.75,0.75,0.75

3.2 Spherical Parametrization: GenParaMesh
GenParaMesh first extracts the surface of the input label segmentation by following
the ’cracks’ between the voxels of the foreground (label) and the background. The resulting
mesh coordinates are thus off by minus half a voxel-width from coordinate systems that
place the origin at the center of the voxels. This surface mesh is mapped to sphere using the
methods described in Section 2.2. If the tool reports a bad Euler number, then this shows
that the extracted surface is not of spherical topology, whereas the vice versa is not
necessarily true. An indication of a successful parametrization is given by the output
line ’initially active:’. If the number of initially active equations is low, a successful
computation is likely. In our experience, less than 2% of the datasets do not finish
successfully when SegPostProcess is first applied with a reasonably high resolution.

A common use of this tool is illustrated by the following command line. The output is two
meshes, one for the surface and one for the spherical parametrization.

GenParaMesh Label_PP.hdr -iter 800 -label 1

3.3 SPHARM-PDM: ParaToSPHARMMesh
This tool computes the SPHARM-PDM representation and resolves issues of
correspondence and alignment. The input is a surface mesh with spherical parametrization.
It is not necessary that this parametrization has been computed using our GenParaMesh, but
other parametrizations can equally be used, such as conformally mapped spherical
parametrizations. As a first step, the raw spherical harmonic coefficients are computed only
up to the first degree and the first order ellipsoid is determined. The spherical
parametrization is then rotated such that the poles of the first order ellipsoid are coinciding
with the poles of the parametrization. The spherical harmonic coefficients are recomputed
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up to the degree specified on the command line option. Additionally, the surface points of
the SPHARM are reconstructed using the icosahedron subdivision scheme described in
section 2.3.

The two main parameters of this tool are the maximal degree for the SPHARM computation
and the subdivision level for the icosahedron subdivision. In our experience, the SPHARM
maximal degree is should be chosen between 12 (hippocampus) to 15 (lateral ventricle,
caudate) for brain structures. If the degree is chosen too high the reconstructed SPHARM
surface will often show signs of voxelization. By using the ’-paraOut’ command line option,
the spherical icosahedron subdivision, as well as local phi and theta attribute files for the
quality control visualization with KWMeshVisu are written out.

Correspondence: The SPHARM shape description has an object-inherent correspondence
based on the first order ellipsoid. Unfortunately this is not fully unique as the first order
ellipsoid can be flipped along any of its axis with the same result. Thus, without additional
measures the correspondence is ambiguously defined in regard to flips along these axis. In
order to clarify this ambiguity, an additional SPHARM object (described by SPHARM
coefficients) can be provided as a flip-template. This flipTemplate is used to test all possible
flips of the parametrization along the first order ellipsoid axis and select the one whose
reconstruction has minimal distance to the flip-template. Commonly, the first object is
computed without providing a flip-template and then serves for all subsequent objects as the
flip-template (see also Section 4).

Alignment: The ParaToSPHARMMesh tool provides two types of alignment. The first type
performs an alignment of the normalized first order ellipsoid axis to the unit-axis with the
ellipsoid center located at the origin. The second alignment type is a rigid-body Procrustes
alignment [6], i.e. Procrustes alignment only with translation and rotation. Whereas the first
alignment is object inherent, the Procrustes alignment is in need of a template, which can
optionally be supplied.

A common use of this tool is illustrated by the following command line. The output is a
series of SPHARM coefficients and SPHARM-PDM meshes, one set in the original
coordinate system, one in the first order ellipsoid aligned coordinate system and one in the
Procrustes aligned coordinate system.

ParaToSPHARMMesh Label_surf.meta Label_para.meta -subdivLevel 10 -
spharmDegree 12 \

 -flipTemplate template.coef -regTemplate template.meta

3.4 Statistics: StatNonParamTestPDM
Once all SPHARM-PDM meshes have been computed, group differences of the local
surface point distributions can be assessed using the StatNonParamTestPDM. There are two
main types of results from the statistical testing step: a) descriptive group statistics, such as
the mean and covariance information, and b) group mean difference hypothesis testing. The
descriptive statistics are used for quality control, sanity check, as well as these are necessary
to make sense of the computed significance maps (”Is that significant region enlarged in the
patient population?”). The significance maps show the regions of significant difference of
the Hotelling T2 metric with 3 different maps (see also section 2.5): the raw p-value map, the
FDR corrected p-value map, and the permutation based corrected p-value map. The value of
the Hotelling T2 metric is also useful to visualize the full range of the effect size.

The current version of the tool also computes a single global shape difference by averaging
the local Hotelling T2 metric across the whole surface. The p-value is computed the same
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way as for the local tests using non-parametric permutation tests. No correction is needed for
the global shape difference as only a single test is performed. Additional other measures of
global shape difference will be implemented, such as percentile measures of the Hotelling T2

representing stable estimations of extremal difference, such as the 68% and 95% percentiles.

The main parameter of the testing procedure is the number of permutations employed for
both the computation of the raw and corrected p-values. As a rule of thumb, we are
employing 10 times the number of surface mesh points, which is a safe estimate and results
in quite extensive computation and memory requirements. Other relevant parameters include
the maximal significance threshold (commonly chosen at 5%), as well as the resolution of
the significance correction captured by the number of thresholds uniformly spaced between
null and the maximal significance threshold (a good value is about 1000). For example, a
maximal threshold of 5% with 10 threshold steps results in a correction resolution of 5%/10
= 0.5%. The number of steps parameter does not affect the raw significance map, which is
rather determined by the number of permutations.

The StatNonParamTestPDM tool has several options for specifying its input. There are 2
main input types: a) text file listing all mesh files with corresponding information b) text file
containing raw feature information. Using the second option, the tool can be applied to
many different types of data that are embedded in a linear space, but limited descriptive
group statistics are provided. The first option is simpler to use and has a richer set of output.
Both options use ASCII text files, which reserve a single line per subject. For the mesh-list
file, each line contains first the group identifier number (often either 0 or 1), then the scaling
factor for an optional scaling normalization, followed by the absolute or relative path to the
mesh-file. The scaling normalization is only performed when the appropriate ’-scale’
command line option is also present, otherwise the scaling information is simply omitted.

In case, data other than meshes are to be tested, the current version of the program allows
the testing of univariate, bi and tri-variate data via the ’-2DvectorData’ and ’-3DvectorData’
options. Additional information needs to be provided, identifying the column numbers
(indexed at 0) for the group identification number and for the first feature, as well as the
numbers of features.

A common use of this tool is illustrated by the following command line. The output is are
mean surface meshes for both groups and for all datasets, as well as attribute files for
Covariance statistics, mean difference, local significance, and Hotelling T2 values.
Additionally the significance of the global shape difference is written out.

StatNonParamTestPDM listfile.txt -out stats -surfList -numPerms 20000 \

 -signLevel 0.05 -signSteps 1000

3.5 Visualization using KWMeshVisu
We have also developed a tool for the intuitive visualization of the statistical results, as well
as for inspecting the established SPHARM correspondence. This tool is called
KWMeshVisu and the SPHARM-PDM and statistical visualizations in this document have
been created with it. The use and implementation details of this tool have been described in
a separate paper, which has been submitted to the ISC/NAMIC Workshop on open science
at MICCAI 2006.

3.6 Download and Installation
The shape analysis framework described in this paper is both accessible through the
Sandbox of the National Alliance for Medical Image Computing NAMIC or directly as part
of the UNC NeuroLib library [33]. Instructions for the download and installation process of
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the UNC NeuroLib can be found in the tutorial section. For compilation ITK libraries as
well as lapack and blas libraries are necessary. Lapack and blas are often installed standardly
on UNIX system, or can be downloaded from www.netlib.org/lapack.

• NAMIC: www.na-mic.org/Wiki/index.php/Engineering:SandBox

• UNC: www.ia.unc.edu/dev

4 Results
As exemplary test study we applied our shape analysis framework to a schizo-typal
personality disorder (SPD) study on the caudate brain structure that was available to us
through the NAMIC network [34]. The data consists of structural SPGR MRI datasets from
15 right handed medication-free male SPD patient, as well as from 14 matched healthy
control subjects. Although both left and right hemispheric caudate were outlined on the MRI
data, only the right caudate is presented here as a test study. Additionally, we are currently
developing appropriate 3D synthetic test datasets, which will be published online as open
access data.

The following simple script was used for the computation of the SPHARM-PDM
descriptions:

#!/bin/tcsh -f

foreach case (/Data/caud*/*_R.gipl)

 set ppcase = $case:r_pp.gipl

 SegPostProcess $case -o $ppcase-label 1 -space 0.5,0.5,0.5

 GenParaMesh $ppcase -iter 1000 -label 1

 set meshPrefix = $ppcase:r

 ParaToSPHARMMesh ${meshPrefix}_surf.meta ${meshPrefix}_para.meta \

  -subdivLevel 15 -spharmDegree 15 \

  -flipTemplate flipTemplate.coef -regTemplate regTemplate.meta

end

The correspondence of the SPHARM-PDM description was visually controlled (see Figure
8) for all datasets. For the group mean difference testing step, a text files was created listing
the names of all mesh-files preceded by the group identifier (either 0 or 1) and the scaling
factor. In this case the scaling factor was 1.0 for all cases, i.e. no scaling was performed. A
sample line in this mesh list text-file thus looks like the following:

1 1.0 /Data/caud1/caud1_R_pp_surfSPHARM_procalign.meta

This mesh list file was then the input of the statistical testing program, called in the
following fashion:

StatNonParamTestPDM caudList.txt -out stats -surfList -numPerms 20000 \

 -signLevel 0.05 -signSteps 1000

The descriptive group statistics (see Figure 9) show that the mean objects of the 2 groups are
quite similar. The differences between the mean are overall small (max at 1.6 millimeter),
but most pronounced in the anterior head region, the superior body region and the posterior
tail region 1. The visualization of the covariance ellipsoids show that the variability is
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reduced in the body section compared to the anterior head and especially the posterior tail
section.

The results of the mean difference hypothesis tests are visualized in Fiigure 10. The raw
significance maps displays an overly optimistic estimate with the superior body, as well as
anterior head region to be significantly different. The conservative, permutation based
correction map provides a pessimistic estimate with only a single significant region in the
anterior head region. The result of the false discovery rate correction is in-between the raw
and the permutation based correction. On one hand, Significant parts in the anterior tail
section are visible in the raw significant map, but are not preserved in the FDR corrected
map. On the other hand, significant parts in the superior body as well as the anterior head
region are present in the FDR corrected maps. The global shape difference has a p-value of p
= 0.009.

Based on these results, a significant shape difference between the two populations on the
right caudate is clearly suggested. The main differences are enlarged section in controls
compared to SPD located in the anterior head and superior body regions. For a full shape
analysis, we recommend to both analyze the objects in their original scale (scaling factor =
1.0, as in this study), as well as normalized for the individual intra-cranial cavity volume
(ICV). The ICV is usually acquired in a separate brain tissue segmentation and the scaling

factor f is then chosen as . As this study serves as an example of
how to employ our shape analysis framework, the analysis of the ICV normalized data is
omitted here.

5 Conclusion
We have presented a comprehensive, local shape analysis framework founded on the
SPHARM-PDM shape representation and local permutation tests. The whole software is
available as open source and is currently in use by several research groups outside of UNC.

We presented research and software development in progress, and many additional
enhancements of the current tool base are being developed or are planned. These
enhancements include the incorporation ofsubject covariates, such as age, gender,
handedness etc, as well as an user-interface based control tool for the whole shape analysis.
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Figure 1.
Schematic view of our SPHARM-PDM based shape analysis pipeline.
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Figure 2.
The SPHARM shape description of a human lateral ventricle shown at 4 different degrees
( 1, 3, 6, 10 harmonics).
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Figure 3.
Left: Illustration of SPHARM correspondence via alignment of the spherical
parametrization using the first order ellipsoid meridian and equator. Right: Set of 6 caudate
structures with correspondence shown at selected locations via colored spheres.
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Figure 4.
Icosahedron subdivision for different levels of sampling. From left to right: Base
icosahedron, subdivision factors 2, 4 and 6.
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Figure 5.
Left: Schematic view of testing procedure: A set of features per surface point (shown as
colormaps) are analyzed using uni- or multi-variate statistics, resulting in a raw significance
map (bottom) .Right: The raw significance maps are overly optimistic and need to be
corrected to control for the multiple comparison problem. The corrected significance maps
on the other hand are commonly pessimistic estimates.
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Figure 6.
Left: Scheme of P-value computation via permutation tests. The real group difference S0
(e.g. Hotelling T2) is compared to that the group differences Sj of random permutations of
the group labels. The quantile in the Sj histogram associated with S0 is the p-value. Right:
Example run on test data with 1000 random permutations. On the left the individual Sj are
plotted and on the left the corresponding Sj histogram is shown. The black line indicates the
value of S0.
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Figure 7.
Workflow of the shape analysis pipeline starting at the segmentation of the brain structures
to the local final statistical analysis.
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Figure 8.
Quality Control visualization of the SPHARM correspondence with KWMeshVisu using the
Phi-attribute file shown on 3 randomly selected cases. Same color represent the same ϕ
parameter value of the spherical parametrization.
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Figure 9.
Descriptive statistics of right caudate analysis. The left visualization shows the mean
difference as a colormap from green (0 mm difference) to red (1.6 mm difference) as well an
vectorfield on the overall mean surface mesh. For two regions with large differences a
zoomed view is provided. The right visualization shows the covariance ellipsoid colored
with the magnitude of the largest ellipsoid axis (axis of largest covariance). The same two
zoomed views are provided. The variance in the first zoom section is markedly reduced
compared to the second zoom section.
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Figure 10.
Significance testing on right caudate study
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Table 1

Explicit expressions of the spherical harmonics up to degree 3, in both polar and Cartesian form due to
Brechbühler. The last part of the table gives the common normalizing constants, e.g. 

l m = 0 m = 1 m = 2 m = 3

0 1

1 cosθ eiφ sinθ

2 -1+3cos2θ eiφ cosθ sinθ e2iφ sin2θ

3 -3cosθ+5cos3θ eiφ (1-5cos2θ) sinθ e2iφ cosθsin2θ e3iφsin3θ

0 1

1 u 2 u0+iu1

2 -1+3u2
2 (u0+iu1)u2 (u0+iu1)2

3 -3u2+5u2
3 (u0+iu1)(1-5u2

2) (u0+iu1)2u2 (u0+iu1)3

0 1 ∕ 4π
1 3 ∕ 4π 3 ∕ 8π
2 5 ∕ 16π 15 ∕ 8π 15 ∕ 32π
3 7 ∕ 16π 21 ∕ 64π 105 ∕ 32π 35 ∕ 64π
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Table 2

Comparison of subdivision levels for recursive and linear subdivision of the icoshedron

Recursive
Level

Linear
Level

Number of
Surface Points

1 1 12

2 2 42

3 4 162

4 8 642

5 16 2562
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