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SUMMARY

The Superior Yield of the New Strategy of Enoxaparin, Revascularization, and GlYcoprotein IIb/IIIa in-
hibitors (SYNERGY) was a randomized, open-label, multicenter clinical trial comparing 2 anticoagulant
drugs on the basis of time-to-event endpoints. In contrast to other studies of these agents, the primary,
intent-to-treat analysis did not find evidence of a difference, leading to speculation that premature dis-
continuation of the study agents by some subjects may have attenuated the apparent treatment effect and
thus to interest in inference on the difference in survival distributions were all subjects in the population
to follow the assigned regimens, with no discontinuation. Such inference is often attempted viaad hoc
analyses that are not based on a formal definition of this treatment effect. We use SYNERGY as a context
in which to describe how this effect may be conceptualized and to present a statistical framework in which
it may be precisely identified, which leads naturally to inferential methods based on inverse probability
weighting.

Keywords: Dynamic treatment regime; Inverse probability weighting; Potential outcomes; Proportional hazards
model.

1. INTRODUCTION

The Superior Yield of the New Strategy of Enoxaparin, Revascularization, and GlYcoprotein IIb/IIIa
inhibitors (SYNERGY) trial (The SYNERGY Trial Investigators, 2004) was a randomized, open-label,
multicenter clinical trial in almost 10 000 high-risk, aggressively managed patients with non-ST-segment
elevation (NSTE) acute coronary syndromes (ACS) likely to undergo a procedure such as percutaneous
coronary intervention or coronary artery bypass grafting (CABG). The primary objective was to compare
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the anticoagulant agents unfractionated heparin (UFH, control) and enoxaparin on the basis of the com-
posite endpoint of time to all-cause death or myocardial infarction (MI) within 30 days of randomization.
Subjects were followed for other events, including all-cause mortality within one year, our focus here.

Subjects randomized to UFH were to receive an intravenous bolus of 60 U/kg and an initial continu-
ous infusion of 12 U/kg/h, while those randomized to enoxaparin were to receive a subcutaneous 1 mg/kg
injection every 12 h, making a double-blind study difficult. Study drug was to be continued until the physi-
cian judged the patient to require no further anticoagulation, at which point the patient would be consid-
ered to have completed study treatment. The protocol also mandated that study drug should be discontin-
ued before various procedures; for example, CABG, or if the patient experienced a serious adverse event.

The primary, intent-to-treat analysis did not suggest a difference in enoxaparin relative to UFH (hazard
ratio 0.95, 95% confidence interval 0.86–1.06), nor did that of one year all-cause mortality (hazard ratio
of 1.06 [0.92–1.22], log-rank statistic 0.59,p-value 0.44). These results differ from those of prior trials
indicating that enoxaparin is superior to UFH (Petersenand others, 2004), possibly because SYNERGY
subjects were a higher risk, more aggressively managed cohort. Alternatively, they may be a consequence
of postrandomization discontinuation of assigned treatment, which refers to any modification of assigned
treatment, such as stopping or switching, prior to completion. For some subjects, discontinuation of study
drug was mandatory, as above. Others discontinued assigned treatment for reasons not dictated by the
protocol or at their or their providers’ discretions and some did not receive their assigned treatments at all.
As the trial was not blinded, such treatment discontinuations might be due to subject or physician pref-
erence, despite the fact that treatment switching was an explicit protocol violation. Indeed, more subjects
switched from enoxaparin to UFH than did so in the opposite direction, and more patients randomized to
enoxaparin than to UFH did not receive the assigned treatment at all.

It was thus of interest to make inference on the difference in UFH and enoxaparin survival distributions
“had no subject discontinued his/her assigned treatment.” We highlight this last statement to emphasize
that it is critical to clarify precisely what is meant by this given that discontinuation of either drug would
be mandatory under certain conditions. One common strategy targeting this effect is to carry out the
standard analysis one would conduct in the presence of no discontinuation, artificially censoring subjects
discontinuing assigned treatment at the times of discontinuation. Without formal characterization of the
effect of interest, however, whether or not this analysis has a meaningful interpretation is not apparent.

The objective of this article is to present an instructive demonstration of how careful conceptualization
of this problem, which arises frequently in clinical research, leads to unambiguous definition of a sensible
treatment effect and to valid inferences on it via a version of inverse probability risk set weighted methods
(Robins, 1993; Herńanand others, 2006). In Sections2and3, we conceptualize the problem and place it in
a relevant statistical framework. We show how inverse probability risk set weighted methods follow from
it in Section4 and apply them to SYNERGY in Section5. Simulation studies are reported in Section6.

2. BACKGROUND AND CONCEPTUALIZATION

In clinical trials such as SYNERGY involving a possibly censored time-to-event endpoint, ideally, the
primary goal is inference on differences in survival distributions were all subjects in the population to fol-
low each of the treatment regimens studied. Under the usual assumption of noninformative censoring and
compliance of all subjects to their assigned regimens, valid inferences on this effect may be achieved via
standard methods. When some subjects do not comply, for example, by discretionary discontinuation as
in SYNERGY, because such subjects are self-selected, valid inference on this effect is no longer possible
from these analyses, and it is conventional to adopt an intent-to-treat perspective and instead address the
issue of whether or not the survival distributions associated with “offering” the study treatments differ.

A secondary analysis of interest may nonetheless be to make inference on the “ideal” difference in
survival distributions were the population to follow each regimen. Here, it is essential to clarify what it
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means to “follow” a treatment regimen. In principle, “following” implies that a subject adhere to a pre-
specified plan of treatment administration regardless of events that may occur subsequent to treatment
initiation, referred to byvan der Laan and Petersen(2007) as a static treatment regimen. Conventional
clinical trials may be viewed ideally as comparing static regimens; however, safety and other considera-
tions dictate circumstances under which discontinuation of treatment would be mandatory, for example,
occurrence of a serious adverse event that makes it dangerous or unethical to continue treatment, or, in
SYNERGY, the need for CABG, which requires cessation of all anticoagulant therapy. Such events would
in practice, with certainty, lead to discontinuation of treatment, and, indeed, in most clinical trials, events
that would lead to certain, mandatory discontinuation of study treatment are enumerated in the protocol.

From this perspective, “following” a treatment regimen should incorporate the possibility of discontin-
uing treatment for mandatory reasons, as such mandatory discontinuation is reasonably regarded as a part
of the way a treatment is intended to be or must be administered. Accordingly, we may view a treatment
regimen in SYNERGY as equivalent to the algorithm “Take assigned study treatment until completion
or until discontinuation for mandatory reasons.” Such an algorithm is a simple example of a dynamic
treatment regime (Robins, 1986), a set of sequential decision rules that dictate the next treatment action
based on a patient’s covariate and treatment history up to that point. In SYNERGY, for both UFH and
enoxaparin, the decision to discontinue treatment for mandatory reasons or not is based on the sole binary
indicator of occurrence of an event meriting mandatory discontinuation. The treatment effect of inter-
est may thus be regarded more realistically as, using SYNERGY as an example, the difference between
the survival distribution were all patients in the NSTE-ACS population to follow the dynamic treatment
regime using enoxaparin and that were all patients to follow the regime using UFH.

These considerations show that it is critical to distinguish mandatory discontinuation, which, from the
perspective here is part of a treatment regimen, from discontinuation for other reasons, such as patient- or
physician-initiated stopping or switching. Such discontinuations would not occur with certainty in practice
and in a trial are not dictated by the protocol; for example, whether or not treatment seems ineffective is a
subjective judgment that would lead some providers or patients to stop or switch treatment and others not.
These discontinuations are not consistent with the intended administration of treatment and thus represent
noncompliance with the regimens as defined above, and we denote them as optional.

Summarizing, the effect of interest stated in Section1, that is, the difference in survival distributions
“had no subject discontinued his/her assigned treatment,” should be defined precisely as the difference
between survival distributions were all subjects in the population to follow the dynamic treatment regimes
corresponding to each study drug, which allow for possible discontinuation of treatment for mandatory,
but not optional, reasons. Of course, the definitions of mandatory and optional discontinuation as well as of
treatment completion must be stated unambiguously, and reasons for discontinuation must be documented
and categorized. In SYNERGY, treatment completion was defined as in Section1, and completion and
discontinuation times and reasons for discontinuation were collected on case report forms; see Section5.

As in Section1, common analyses attempt to “adjust” for discontinuation, and, as in that described
there, where event times for subjects discontinuing study drug for any reason are artificially censored and
standard methods used, do not distinguish between mandatory and optional discontinuation. Clearly, such
an approach may lead to biased inference on the effect of interest defined here, as mandatory discontinu-
ations are consistent with the treatment regime and hence associated event times should not be censored.
Even if artificial censoring is imposed only at optional, but not mandatory, discontinuation times, because
optional discontinuation may be associated with failure time, for example, subjects likely to experience
the event sooner may also be more likely to optionally discontinue treatment, the artificial censoring may
violate the usual assumption of independence of potential time-to-event and censoring times required for
valid inference via standard methods. Likewise, the naive approach of using standard methods on the
data set found by excluding altogether subjects discontinuing treatment for both or for optional reasons,
may again lead to biased inference on the effect of interest because the remaining subjects may no longer
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represent random samples from the relevant populations. Yet another common strategy is to fit a pro-
portional hazards model including binary, time-dependent indicators for each treatment taking the values
1 (0) when the subject is on (off) that treatment, possibly also including baseline and other postrandom-
ization time-dependent covariates associated with discontinuation; covariates of both types in SYNERGY
are described in Section5. The latter covariates may be affected by past treatment, be associated with
future treatment, and also be associated with failure time; that is, are time-dependent confounders as in,
for example,Herńanand others(2000). This method may lead to biased estimation of the effect of interest
when such time-dependent confounders exist, whether or not they are included in the model.

The fundamental problem with all these approaches is that they aread hocand do not arise expressly
from targeting the goal of making inference on the treatment effect defined in terms of the competing
dynamic treatment regimes. Identifying valid inferential methods for this effect requires placing the prob-
lem in a relevant statistical framework in which the effect may be formally defined.

3. STATISTICAL FRAMEWORK

We assume that interest is in a time to an event (“failure” or “survival”) through timetmax 6 ∞, for
example, 30 days or 1 year in SYNERGY, with subjects surviving totmax administratively censored at
tmax. Also assume that subjects who mandatorily discontinue assigned treatment prior totmax are followed
to tmax, so that their survival/censoring information is available after discontinuation. Such information is
not required for those who optionally discontinue beforetmax but is necessary for an intent-to-treat anal-
ysis. In SYNERGY, this information was captured for all subjects discontinuing treatment for any reason.

As discussed in Section5, about two-thirds of the censored survival times in SYNERGY were cen-
sored at 1 year (the end of study follow-up) and the remaining one-third prior to 1 year were also rea-
sonably assumed to be administrative. Accordingly, we incorporate the usual assumption that potential
survival and censoring times are independent, as would be routinely assumed in a primary trial anal-
ysis, so that censoring is noninformative. See Section7 for modifications to handle violations of this
assumption.

We first define potential outcomes through which the effect of interest may be characterized. Iden-
tify the treatments byz = 0, 1. Like treatment assignment, treatment discontinuation is an action that
can be imposed or not upon a subject rather than an outcome of assigned treatment. With optional dis-
continuation, such action is discretionary, while mandatory discontinuation is an action that takes place
with certainty as a consequence of an outcome associated with the treatment; for example, an adverse
event. From this perspective, consider the ideal situation where optional discontinuation would not oc-
cur prior to tmax (so all subjects would comply with their assigned regimes throughtmax). For a ran-
domly chosen subject, letT∗(z), z = 0, 1, be the potential event time;C∗(z) be the potential time
to censoring, whereC∗(z) is bounded bytmax; M∗(z) be the potential time to mandatory treatment
discontinuation (prompted by an outcome meriting such) or completion (whichever occurs first); and
V H∗(u, z) be the history of postrandomization, time-dependent covariates through timeu under regimez
if the subject were not to optionally discontinuez prior to tmax. Summarize these potential outcomes as
P∗ = [T∗(z), C∗(z), M∗(z), S∗(z) = min{T∗(z), C∗(z), M∗(z)}, V H∗(u, z), 0 < u 6 S∗(z), z = 0, 1].

The regimes to be compared are “continue onz until completion or mandatory discontinuation,”z =
0, 1. In this ideal setting where no subject optionally discontinues prior totmax, we may thus identify a
parameter corresponding to the effect of interest in a model for the (net-specific) hazard

λ∗
z(t) = lim

h→0
h−1Pr{t 6 T∗(z) < t + h|T∗(z) > t} = λ∗

0(t) exp(βz). (3.1)

The log-hazard ratioβ clearly has the desired interpretation as characterizing the relative effects of the 2
treatment regimes on survival. For greater generality, we allow the possibility of inference conditional on



262 M. ZHANG AND OTHERS

a vector of baseline covariatesX and consider henceforth the conditional (onX) hazard

λ∗
z(t |X) = lim

h→0
h−1Pr(t 6 T∗(z) < t + h|T∗(z) > t, X) = λ∗

0(t) exp(βz + γ T X). (3.2)

In most clinical trials, interest is in the unconditional effectβ in (3.1) (Tsiatis and others, 2008); the
developments for (3.1) mirror those for (3.2) with dependence onX eliminated; see Section4. We thus
consider how to make valid inferences onβ in (3.2) based on the observed data from the trial, which
include subjects who optionally discontinued assigned treatment. To do so, we must relate the observed
data to the potential outcomes and determine assumptions under which this is possible.

First, consider the ideal trial with no optional discontinuations andn subjects, whereZ denotes ob-
served randomized treatment assignment. The observed data would beW∗

i = {Zi , Xi ,U∗
i ,1∗

i , S∗
i , E∗

i ,

V H
i (S∗

i )}, i = 1, . . . , n, whereU∗
i = U∗

i (Zi ) = min{T∗
i (Zi ), C∗

i (Zi )}, 1∗
i = 1∗

i (Zi ) = I {T∗
i (Zi ) 6

C∗
i (Zi )}, S∗

i = S∗
i (Zi ), E∗

i = 1 if S∗
i = M∗

i (Zi ) and 0 otherwise, andV H
i (u) = V H∗

i (u, Zi ). Here,
we assume that time-dependent covariates are collected up to timeS∗

i , make the standard assumption that
observed values forZi = z are equal to the corresponding potential outcomes forz = 0, 1, and often
suppress dependence onZi for brevity. Assuming thatT∗

i (z) is independent ofC∗
i (z), z = 0, 1, because

(U∗
i ,1∗

i ) depend directly on{T∗
i (z), C∗

i (z)}, standard methods could be used to estimateβ in (3.2); that
is, fitting the (cause-specific) hazard modelλ(t |Z, X) = limh→0 h−1Pr(t 6 U∗ < t + h,1∗ = 1|U∗ >
t, Z, X) = λ0(t) exp

(
βZ + γ T X

)
(Kalbfleisch and Prentice, 2002, Chapter 8), The estimators forβ and

γ would be obtained by solving

n∑

i =1

∫ {

(Zi , XT
i )T −

∑n
j =1(Z j , XT

j )T exp(βZ j + γ T X j )Y∗
j (u)

∑n
j =1 exp(βZ j + γ T X j )Y∗

j (u)

}

dN∗
i (u) = 0, (3.3)

the usual partial likelihood score equation, whereN∗
i (u) is the counting processI (U∗

i 6 u, 1∗
i = 1),

Y∗
i (u) is the at-risk processI (U∗

i > u), and dependence onZi is suppressed.
The data observed in the actual trial differ fromW∗

i , i = 1, . . . , n, as some subjects may optionally
discontinue assigned treatment. If a subject is observed to discontinue assigned treatmentZ, let O denote
the time to optional discontinuation; else, setO = ∞. As in the ideal case, we would like to relate
the observed data to the potential outcomes and identify an approach analogous to (3.3). On subjecti ,
we observe a time to failure or censoringUi and censoring indicator1i (= 1 if Ui is a failure time
and 0 otherwise). The observed data oni are thusWi = {Zi , Xi ,Ui ,1i , Si , Ei , V H

i (Si )}, whereSi =
min{Oi , M∗

i (Zi ),U∗
i }, Ei = 1, 2, 3 if Si = Oi , M∗

i (Zi ),U∗
i , respectively; postrandomization covariates

are collected through timeSi ; and Oi = Si I (Ei = 1) + ∞I (Ei > 1) is included inWi . Assume that
(Ui ,1i ) = (U∗

i ,1∗
i ) if Oi > S∗

i ; else,(Ui ,1i ) is not necessarily equal to(U∗
i ,1∗

i ), as in this case
optional discontinuation may alter the course of the event time. Because thus(Ui ,1i ) depends directly
on {T∗

i (z), C∗
i (z)} only for subjects observed not to optionally discontinue treatment, an approach other

than (3.3) is required for consistent estimation ofβ (andγ ) in (3.2).

4. INFERENCE

Fitting the hazard modelλ(t |Z, X) by solving (3.3) substituting(Ui ,1i ) for (U∗
i ,1∗

i ), i = 1, . . . , n,
will not lead to valid inference because of the incomplete information on the potential outcomes from
subjects who optionally discontinue treatment. We now demonstrate in our setting that methods involving
inverse probability risk set weighting (Robins, 1993; Herńanand others, 2006; Robinsand others, 2008)
yield consistent estimators forβ (andγ ) in (3.2). Similar to inverse weighting methods for missing data
problems, the idea is to weight appropriately the contributions of subjects in each risk set in the integrand
in (3.3) who have not yet optionally discontinued treatment.
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Letting Q∗ = (P∗, X) and allowing the possibility of optional discontinuation at time 0, as for sub-
jects in SYNERGY who never took assigned treatment, define the hazard rate for O, at timeu > 0,
conditional onQ∗ (so on all potential outcomes and baseline covariates), as

q(u, Z, Q∗) = lim
h→0

h−1Pr(u 6 O < u + h|O > u, Z, Q∗) for u > 0, (4.1)

and the function with massp0(Z, Q∗) = Pr(O = 0|O > 0, Z, Q∗) = Pr(O = 0|Z, Q∗) at u = 0. When
u > S∗, q(u, Z, Q∗) = 0 (a function ofZ and Q∗) because there is no possibility of being obseved
to optionally discontinue treatment once mandatory discontinuation/treatment completion, censoring, or
failure has occurred. By the definitions ofS and E, for all realizations ofZ and Q∗ for which S∗ > u,
q(u, Z, Q∗) is equivalent to the cause-specific hazard function

q(u, Z, Q∗) = lim
h→0

h−1Pr(u 6 S < u + h, E = 1|S> u, Z, Q∗), u > 0. (4.2)

We now specify the critical assumption required for consistent estimation ofβ (andγ ), which is simi-
lar to that of “missing at random” (Rubin, 1976). LettingQ(u) = {V H (u), X}, assume thatq(u, Z, Q∗) =
q{u, Z, Q(u)} for u 6 S∗ and p0(Z, Q∗) = p0(Z, X). That is, assume that the hazard (4.1), or, equiv-
alently, the cause-specific hazard (4.2) at time u depends on(Z, Q∗) when S∗ > u, including future
prognosis represented in the potential outcomesP∗, only through the dataQ(u) observed on a subject to
time u; and thatp0(Z, Q∗) depends onQ∗ only through the baseline covariatesX. Because a provider
and/or patient presumably would decide to stop or switch treatment atu for optional reasons based on the
patient’s treatment assignment, characteristics, and experience up tou, this assumption is plausible. The
key issue is whether or not all such information used to make the decision to take this action has been col-
lected in the trial and is available to the data analyst. Thus, the assumption is that all relevant information
is captured inQ(u), which is not verifiable from the observed data and must be critically evaluated.

Assume for now thatq{u, Z, Q(u)} and p0(Z, X) are known. As noted above, the difficulty with
(3.3) is that subjects who optionally discontinue treatment have incomplete information on the potential
outcomes. This may be formalized by noting that we observe dN∗

i (u) andY∗
i (u) on i only if Oi > u; that

is, defining the observed data counting processNi (u) = I (Ui 6 u,1i = 1) and at-risk processYi (u) =
I (Ui > u), we haveI (Oi > u)dNi (u) = I (Oi > u)dN∗

i (u) and I (Oi > u)Yi (u) = I (Oi > u)Y∗
i (u).

Thus, information on the potential outcome counting and at-risk processesN∗(u) andY∗(u) in (3.3) at
timeu comes from individuals at risk atu who have not yet optionally discontinued treatment. In the spirit
of inverse probability weighting discussed at the beginning of this section, then, the remedy is to weight
the contributions of such subjects so that they mimic the contributions in (3.3) had there been no optional
discontinuation. To this end, define

K {u, Z, Q(∙), S} = {1 − p0(Z, X)} exp

[
−
∫ u∨S

0
q{s, Z, Q(s)}ds

]
,

where “∨” means “minimum of,” andp0(Z, X) is replaced by 0 if there are no optional discontinuations
at time 0. Consider replacing dN∗

i (u) andY∗
i (u) in (3.3) by

(a)
I (Oi > u) dNi (u)

K {u, Zi , Qi (∙), Si }
and (b)

I (Oi > u)Yi (u)

K {u, Zi , Qi (∙), Si }
, (4.3)

respectively. In the Supplementary Material available atBiostatisticsonline, we sketch an argument show-
ing that this achieves the desired effect, which motivates estimatingβ andγ in (3.2) by solving

n∑

i =1

∫ {

(Zi , XT
i )T −

∑n
j =1(Z j , XT

j )T exp(βZ j + γ T X j )Yj (u)κ(u, Wj )
∑n

j =1 exp(βZ j + γ T X j )Yj (u)κ(u, Wj )

}

κ(u, Wi )dNi (u) = 0,

(4.4)
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with weightsκ(u, W) = w(u, Z, X)I (O > u)/K {u, Z, Q(∙), S}, wherew(u, Z, X) “stabilizes” the
weights (e.g.Herńanand others, 2000). Note that it is necessary to assume thatK {u, Z, Q(∙), S)} > ε >
0 for all u > 0. See the Supplementary Material available atBiostatisticsonline for additional discussion
of the weights.

TheK {u, Z, Q(∙), S)} may vary considerably across subjects when there are strong covariate relation-
ships, which can result in largeI (O > u)/K {u, Z, Q(∙), S)} if one takesw(u, Z, X) ≡ 1 as indicated
by the above. This can lead to high-sampling variability of the estimators solving (4.4), which may be
mitigated to some extent by “stabilizing” the weights. Definingr (u, Z, X) = limh→0 h−1Pr(u 6 S <
u + h, E = 1|S> u, Z, X), an alternative isw(u, Z, X) = {1 − p0(Z, X)} exp{−

∫ u
0 r (s, Z, X)ds}.

For inference onβ in (3.1), the foregoing developments go through unchanged except that(Zi , XT
i )T

is replaced byZi andγ T X j does not appear in (4.4), andw(u, Z, X) should not depend onX; write
w(u, Z). Here, writep0(Z) andr (u, Z) for the components ofw(u, Z), which do not depend onX.

An argument that the estimators forβ andγ solving (4.4) are consistent for the true quantities in
(3.2) and asymptotically normal is in the Supplementary Material available atBiostatisticsonline. The
usual sandwich method (e.g.Stefanskiand others, 2002) may be used to estimate the variances of the
estimators.

The foregoing assumes thatq{u, Z, Q(u)} andp0(Z, X), and henceK {u, Z, Q(∙), S} (andr (u, Z, X)
if applicable), are known. In practice, these quantities must be modeled and estimated. In the Supplemen-
tary Material available atBiostatisticsonline, we outline how this may be accomplished and present
representative SAS code (SAS Institute, 2006).

We have focused on inference for a time-to-event. In many cardiovascular disease trials, the endpoint
is binary; for example, an indicator of whether or not death or MI occurred withintmax time units from
baseline. In the Supplementary Material available atBiostatisticsonline, we outline similar methods for
estimating the log-odds ratio contrasting competing treatment regimes.

5. APPLICATION TO SYNERGY

We now present analyses of SYNERGY, focusing first on estimation ofβ in (3.1) for all-cause mortality
within tmax = 365 days (1 year) as illustrative of a censored time-to-event endpoint.

Of 9,784 subjects, of whom 4,899 (4,885) were randomized to UFH (enoxaparin), 27.3% (28.6%)
were censored beforetmaxand 65.5% (63.6%) were administratively censored attmax. In both groups, over
95% of subjects censored beforetmax were so within 2 months oftmax, with 50% (75%) of these within
1 week (1 month) oftmax; the protocol mandated that the last scheduled contact with each patient should
be at 1 year but could take place no earlier than 10 months after randomization. When queried, study
personnel indicated that most subjects attended study visits based on convenience and that subjects who
attended a visit “close enough” totmax were instructed that it was not necessary to return. Accordingly,
for this analysis, it is reasonable to regard all censoring in SYNERGY as administrative.

Because timing of treatment completion and discontinuation and reasons for discontinuation were well
documented, it was possible to categorize each observed discontinuation unambiguously as mandatory or
optional. All treatment completions and discontinuations for any reason took place within
30 days of baseline. Patient discharge and occurrence of bleeding, adverse events other than bleeding,
renal failure, thrombocytopenia, and CABG were identified in the protocol as events meriting manda-
tory discontinuation. Reasons classified as optional include physician preference, withdrawal of patient
consent, patient transfer, and accidental suspension of treatment. Using these definitions, 594 patients
randomized to enoxaparin discontinued treatment for optional reasons, with mean time to discontinuation
of 3.0 days (SD 3.0) and 90 of these discontinuing at time 0; 369 patients randomized to UFH optionally
discontinued treatment, with mean time 3.4 days (SD 3.2), 39 at time 0. Of the enoxaparin subjects, 551
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discontinued for mandatory reasons (mean 3.8 days, SD 3.6); 337 UFH subjects mandatorily discontinued
treatment (mean 3.7 days, SD 3.2) and all remaining subjects completed assigned treatment.

Numerous baseline variablesX were collected prior to randomization, as were several postrandom-
ization covariatesV H (u). We followed the steps outlined in the Supplementary Material available at
Biostatisticsonline. To build a model forK {u, Z, Q(∙), S}, we first fitted a proportional hazards model
to the data for subjects not optionally discontinuing at time 0 including all ofX, retaining a subset via
forward selection. The selected baseline covariates and treatment indicator were then included with all
time-dependent, postrandomization covariates in a final proportional hazards model forq{u, Z, Q(u)},
u > 0. This model included assigned treatment; gender; height; troponin levels; smoking status; and
indicators of diabetes, Killip class, race, region, prior hypertension, prior CABG, prior enoxaparin, prior
UFH, and rales at baseline; and time-dependent postrandomization transfusion status, creatine kinase
(CK) level, and CK-MB level. CK and CK-MB are enzymes used as markers for MI and, as MI may be
associated with both mortality and clinician decisions on anticoagulant therapy, may be time-dependent
confounders, and similarly for transfusion status. Forw(u, Z), we fitted a proportional hazards model for
r (u, Z), u > 0. As some patients optionally discontinued treatment at 0, we fitted a logistic regression
models forp0(Z, X) and p0(Z) using the data for all subjects; baseline covariates included inp0(Z, X)
identified by forward selection were assigned treatment, prior enoxaparin, age, region, race, height, prior
hypertension, and prior angina.

Table1 shows that results are similar for estimation of the hazard ratio corresponding toβ in (3.1) from
the intent-to-treat analysis reported in Section1, several naive approaches, and using the inverse weighted
methods. A possible explanation is that the percentage of patients who discontinued treatment for optional
reasons is not large (9.8%). Alternatively, important covariates may not have been measured, rendering
the “adjustment” for optional discontinuation ineffective. Consistent with the results, comparison of the

Table 1. Results of analyses of SYNERGY. For all-cause mortality to tmax = 1 year and estimation of the
hazard ratioexp(β) in (3.1): intent-to-treat analysis; naive analysis in which event times are artificially
censored at times of discontinuation for any reason (censor, all); naive analysis in which event times are
artificially censored at times of optional discontinuation (censor, optional); naive proportional hazards
analysis with time-dependent treatment indicators as covariates (time-dependent); and inverse risk set
weighted analyses using the indicated choice ofw(u, Z) (inverse weighted). For the binary outcome TIMI
bleeding at tmax = 30days and estimation of the odds ratioexp(β) at the end of Section5: intent-to treat
analysis; naive analysis deleting all subjects discontinuing treatment for any reason (delete); and inverse
weighted analysis. In each case, p-value corresponds to test of null hypothesisβ = 0, and standard errors

were obtained via the deltamethod

Method Estimate 95% confidence interval p-value

Hazard ratio, 1 year all-causemortality
Intent-to-treat 1.06 (0.92–1.22) 0.44
Censor, all 1.03 (0.86–1.23) 0.77
Censor, optional 1.08 (0.92–1.26) 0.33
Time-dependent 1.03 (0.86–1.23) 0.77
Inverse weighted
w(u, Z) ≡ 1 1.08 (0.92–1.26) 0.36
w(u, Z) depends onZ 1.07 (0.91–1.25) 0.42

Odds ratio, TIMI bleed at 30days
Intent-to-treat 1.21 (1.05–1.40) 0.009
Delete 1.06 (0.88–1.27) 0.56
Inverse weighted 1.23 (1.05–1.40) 0.009
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“important” covariates in the model forK {u, Z, Q(∙), S)} above to those retained in a naive proportional
hazards model fitted to the survival data ignoring discontinuation shows that there is very little overlap,
suggesting that there are no strong measured confounders. Although no analysis finds sufficient evidence
that enoxaparin is different from UFH on the basis of 1-year mortality, only the weighted analysis is
designed to address the well-formulated question of how the treatments would compare if no subjects
were to discontinue for optional reasons. Despite the apparent failure of this analysis to contradict the
naive or intent-to-treat results, it confirms that the negative trial outcome was not an artifact of differential
rates of treatment discontinuation, which had called into question the validity of the trial.

An obvious concern with anticoagulant agents is bleeding, and a secondary outcome of interest was
the indicator of whether or not a subject experienced a bleeding event within the firsttmax = 30 days
according to the definition in the thrombosis in myocardial infarction (TIMI) trial (Chesebroand others,
1987); virtually no outcomes were censored within 30 days. Estimated odds ratios are shown in Table1.
The intent-to-treat analysis indicates strong evidence of increased odds of TIMI bleeding with enoxaparin,
in contrast to the naive analysis eliminating subjects discontinuing study drug. The inverse weighted
analysis carried out as described in the Supplementary Material available atBiostatisticsonline, which
takes proper account of mandatory and optional discontinuation, mirrors the intent-to-treat result, likely
for the same reasons as above.

6. SIMULATION STUDIES

We carried out simulations using 2,000 Monte Carlo data sets andn = 2, 000. Each data set was created
such that potential time to failure under no optional discontinuation satisfies (3.1) with β = −0.5. Treat-
ment assignmentZ was generated as Bernoulli(0.5), and baseline covariatesX1 and X2 were generated
as independentN(0, 1), so X = (X1, X2). Potential failure time under observed treatment assignment
Z, T∗(Z), was found by generating a uniform variableϒ correlated withX via ϒ = 8−1(0.6X1 +
0.6X2+0.529ε), where8 is the standard normal cumulative distribution function (cdf), andε ∼ N(0, 1);
and transformingϒ using the inverse of the cdf of an exponential distribution with rate 0.0025 exp(β)
(Z = 1) or 0.0025 (Z = 0), so that the log-hazard ratio= β in (3.1). Potential time to treatment com-
pletion/mandatory discontinuation was generated as exponential with rate exp(0.4X1 + 0.5X2 − 2.8),
and potential time to censoring was 90 time units plus a draw from an exponential distribution with rate
0.0012 exp(0.4Z). Thus, potential time to censoring is dependent only onZ such that, under no optional
discontinuation, it is independent of potential failure time given treatment assignment, as usually assumed.

We generated a potential time to optional discontinuationO∗ with hazard at timeu equal to exp(−5)×
exp{0.9Z + 0.1X1 − 0.4X1Z + 0.5X2 + (0.4+ 0.2Z)V H (u)}, whereV H (u) = I (D > u), andD was
exponential with rate 2 exp(0.5X1 + 0.3Z − 0.8ε). Thus,D is associated withX1, Z, andε, which are
also associated with potential time to failure; consequently,V H (u) is a time-dependent confounder. IfO∗

was greater than all the potential times to treatment completion/mandatory discontinuation, censoring, or
failure, then the observed time to optional discontinuationO = ∞ and was censored as in step (2) of
the implementation procedure in the Supplementary Material available atBiostatisticsonline; otherwise,
O = O∗.

Finally, we generated observed failure or censoring timeU by first constructing it under no censor-
ing. If the time to optional discontinuation was smaller than the potential times to treatment comple-
tion/mandatory discontinuation and failure, the time to failure was set equal to the potential time but with
the remaining time after optional discontinuation reduced by a rate of exp(0.08), so that optional discon-
tinuation has a negative effect on survival; otherwise, the time to failure was set equal to the potential
failure time. The observedU was then set to the minimum of this constructed time to failure and the
potential censoring time described earlier. On average across data sets, 32% of subjects were censored
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and 23% discontinued treatment for optional reasons. In this set-up,tmax = ∞. To study inference on a
log-odds ratio as at the end of Section4, as there is no censoring prior to 90 time units, we also generated
a binary indicator of whether or not a binary indicator of failure was< tmax = 90.

Table2shows results for estimatingβ in (3.1) using the inverse weighted method withK {u, Z, Q(∙), S}
andw(u, Z) modeled and fitted as in step (2) of the implementation procedure in the supplementary ma-
terial, the usual intent-to-treat analysis, and the naive analysis where time to failure is censored at the time
of optional discontinuation. Inverse weighted methods lead to consistent estimation, while the other es-
timators are biased. The results, and those of other simulations we have conducted, show that stabilizing
the weights may or may not lead to improved precision of estimation. Given the complexity of imple-
mentation, we suggest that stabilized weights be used only when extreme unstabilized weights close to
zero arise (see the supplementary material available atBiostatisticsonline). Table2 also shows results for
estimation of the log odds ratio for the binary endpoint; the intent-to-treat estimator is similarly biased.

For the time-to-event endpoint, we also carried out a simulation of performance of the associated
logrank test. Data were generated as above except thatβ = 0. On average, 25% of patients were censored
and 23% discontinued treatment for optional reasons. For each data set, a test of the null hypothesis
of β = 0 was carried out at level 0.05 using the test based on inverse weighted methods, the usual
intent-to-treat log-rank test, and the usual log-rank test with time to failure artificially censored at the
time of optional discontinuation if it occurred. Monte Carlo rejection rates were 0.049, 0.846, and 0.212,
respectively; only the inverse weighted test achieves the nominal level, with the others severely optimistic.

7. DISCUSSION

Using SYNERGY as an example, we have demonstrated how a treatment effect under the condition that
“no subject discontinued his/her assigned treatment” may be conceptualized. The key is to distinguish
between mandatory and optional discontinuation and focus on associated dynamic treatment regimes that
recognize mandatory discontinuation as consistent with intended administration of the treatments. At the
trial design stage, efforts should be made to capture information both on reasons for discontinuation and
on subject covariates, particularly postrandomization characteristics that may be associated with patient
or clinician decisions to discontinue treatment.

Within an appropriate statistical framework, we have also exhibited how inverse probability risk set
weighted methods are a natural approach leading to consistent estimation of a parameter corresponding to

Table 2. Simulation results based on2, 000Monte Carlo data sets for estimation of the log-hazard ratio
β in (3.1) based on the time-to-event endpoint and of the log-odds ratioβ in a logistic regression model
analogous to(3.1) based on the binary endpoint, as at the end of Section4. Methods are as in Table1.
True is the true value ofβ, Mean Est. is the Monte Carlo average of estimates, MC SD is the Monte
Carlo standard deviation of estimates, Ave. SE is the Monte Carlo average of estimated standard errors,
and Cov. Prob. is Monte Carlo coverage probability of nominal95%Wald confidence intervals. Estimated
standard errors were obtained by treating the weights as fixed as discussed in the Supplementary Material

available at Biostatisticsonline

Method Log-hazard ratio Log-oddsratio

True Mean Est. MC SD Ave. SE Cov. Prob True Mean Est. MC SD Ave. SE Cov.Prob

Intent-to-treat −0.500 −0.334 0.055 0.055 0.141 −0.546 −0.427 0.115 0.116 0.824
Censor, optional −0.500 −0.389 0.065 0.065 0.602
Inverse weighting
w(u, Z) ≡ 1 −0.500 −0.492 0.074 0.077 0.960 −0.546 −0.546 0.143 0.146 0.956
w(u, Z) depends onZ −0.500 −0.502 0.091 0.092 0.956
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the desired treatment effect. In SYNERGY, censoring of the time-to-event outcome is reasonably viewed
as purely administrative. The formulation we have presented hence coincides with the conventional sur-
vival analysis conception of potential time-to-event and censoring times that may be assumed independent
given treatment. From this perspective, one may view the inverse weighted analysis as attempting to re-
cover “the analysis that would have been done” under the standard assumption of independent censoring
had there been no optional discontinuation. In settings where censoring may be informative, the statis-
tical framework would be altered to treat censoring as an external missingness process, and, under the
assumption that censoring is “at random,” additional weighting to account for the censoring is involved;
seeRobins(1993) andHerńanand others(2006). In any case, a key assumption that must be fulfilled is
that the probability of optional discontinuation at any time depends only on observable information up to
that time that is available to the data analyst.

In principle, inverse weighted methods may be modified to incorporate an “augmentation” to improve
precision (Robinsand others, 1994); however, we conjecture that potential efficiency gains may not be
sufficiently large to justify the increased complexity.

SUPPLEMENTARY MATERIAL

Supplementary material is available athttp://www.biostatistics.oxfordjournals.org.
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HERNÁN, M. A., LANOY, E., COSTAGLIOLA, D. AND ROBINS, J. M. (2006). Comparison of dynamic treatment
regimes via inverse probability weighting.Basic and Clinical Pharmacology and Toxicology98, 237–242.

KALBFLEISCH, J. D. AND PRENTICE, R. L. (2002).The Statistical Analysis of Failure Time Data. Hoboken, NJ:
John Wiley & Sons.

PETERSEN, J. L., MAHAFFEY, K. W., HASSELBLAD, V., ANTMAN , E. M., COHEN, M., GOODMAN, S. G.,
LANGER, A., BLAZING , M. A., LE-MOIGNE-AMRANI , A., DE LEMOS, J. A. and others(2004). Efficacy
and bleeding complications among patients randomized to enoxaparin or unfractionated heparin for antithrombin
therapy in non ST segment elevation acute coronary syndromes: a systematic overview.Journal of the American
Medical Association292, 89–96.

ROBINS, J. M. (1986). A new approach to causal inference in mortality studies with sustained exposure periods—
application to control of the healthy worker survivor effect.Mathematical Modelling7, 1393–1512 (and errata and
addenda).

http://www.biostatistics.oxfordjournals.org


Inference on treatment effects the presence of premature discontinuation 269

ROBINS, J. M. (1993). Analytic methods for estimating HIV-treatment and cofactor effects. In: Ostrow, D. G.
and Kessler, R. C. (editors),Methodological Issues in AIDS Behavioral Research. New York: Plenum Press,
pp. 213–290.
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