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SUMMARY

DNA methylation is a key regulator of gene function in a multitude of both normal and abnormal biologi-
cal processes, but tools to elucidate its roles on a genome-wide scale are still in their infancy. Methylation
sensitive restriction enzymes and microarrays provide a potential high-throughput, low-cost platform to
allow methylation profiling. However, accurate absolute methylation estimates have been elusive due to
systematic errors and unwanted variability. Previous microarray preprocessing procedures, mostly devel-
oped for expression arrays, fail to adequately normalize methylation-related data since they rely on key
assumptions that are violated in the case of DNA methylation. We develop a normalization strategy tai-
lored to DNA methylation data and an empirical Bayes percentage methylation estimator that together
yield accurate absolute methylation estimates that can be compared across samples. We illustrate the
method on data generated to detect methylation differences between tissues and between normal and tu-
mor colon samples.
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1. INTRODUCTION

DNA methylation is a chemical modification of DNA that plays a key role in regulation of gene expression
(Figure1). As an “epigenetic” mark, it encodes an additional layer of heritable information on top of DNA
without changing the underlying genetic sequence. While all cell types in an organism share nearly the
same genome sequence, their DNA methylation patterns can be markedly different (Songand others,
2005; Meissnerand others, 2008). DNA methylation marks help encode tissue-specific transcriptional
programs in diverse cell types and allow these gene expression patterns to be passed down to daughter
cells. Chemically, DNA methylation involves the modification of a cytosine (C) base to form methyl-
cytosine. These methylation marks are recognized by specialized proteins that bind the methylated DNA
and inhibit the expression of neighboring genes (Bird, 2002). In adult cells of mammals, this modification
occurs almost exclusively at cytosines that are immediately followed by a guanine (G) in the 5′ to 3′

direction, denoted “CpG.”
The health implications of deciphering the DNA methylation code have recently received much atten-

tion both in the scientific literature and in the media (Issa, 2007; Cloud, 2010; Scḧubeler, 2009). Work
in the rapidly evolving field of stem cell biology, for example, has shown that DNA methylation can
contribute to the cellular memory mechanism used by the stem cells to retain their pluripotent state dur-
ing repeated cell divisions (Senand others, 2010). In cancer biology, it is clear that aberrations in DNA
methylation almost universally accompany the initiation and progression of cancers (Feinberg and Tycko,
2004). Much of the excitement surrounding epigenetics relates to the promise of therapies that alter the
epigenetic code, activating or silencing disease-related genes. While the majority of such treatments are
still hypothetical or experimental, 2 epigenetic drugs that reactivate tumor suppressor genes by remov-
ing methylation marks have recently received U.S. Food and Drug Administration approval (Sharmaand
others, 2010; Kaminskasand others, 2005). These studies and therapies highlight the medical promise of
mapping and understanding the role of DNA methylation.

Fully describing the methylation profile of a given cell requires measuring the methylation state of ev-
ery CpG. However, current practical laboratory protocols do not permit single cell methylation measure-
ments and because studied cell populations are known to be heterogeneous, methylation measurements
are expected to be continuous rather than binary. Therefore, for any given cell type, we aim to measure
the percentage of methylated cells at each CpG site. These measurements can be made by treating DNA
with sodium bisulfite, which selectively converts unmethylated cytosine (C) to uracil (U) while leaving
methylated C as is, followed by DNA amplification and sequencing (Clark and others, 2006; Frommer
and others, 1992). However, although considered a gold standard, this procedure comes at significant cost
when applied genome-wide due to the amount of sequencing coverage required. Therefore, this technol-
ogy is not yet suitable for affordable genome-wide measurements. The methods presented in this paper
are motivated by the demand for high-throughput measurements necessary to construct genome-wide
methylation profiles.

Recent advances in microarray technology and laboratory protocols provide an alternative high-
throughput platform for assessing DNA methylation. Since methylation of adjacent cytosines in small
regions of a few hundred base pairs tends to be highly correlated (Eckhardtand others, 2006), lower
resolution strategies based on methylated DNA enrichment provide a cost-effective alternative to bisul-
fite sequencing. These approaches employ proteins that selectively bind (affinity purification) (Weber
and others, 2005) or cut (restriction enzymes) DNA depending on its methylation status. Following a pro-
cedure that enriches for either methylated or unmethylated DNA, microarrays are used to detect the DNA
fragments. Coupled with suitable analytical tools, these strategies can provide accurate genome-wide
methylation profiles. A recent comparison of methodsÉ found that the restriction enzyme McrBC, which
selectively cuts methylated DNA (Sutherlandand others, 1992; Ordwayand others, 2006), has higher
sensitivity than the commonly used methylated DNA immunoprecipitation (MeDIP) affinity purification
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Fig. 1. DNA (black strand) is wrapped around histone proteins (gray spheres). Unmethylated DNA (left) tends to be
loosely packed. Genes in such regions are accessible to the cell’s transcriptional machinery and can be expressed.
DNA methylation involves the addition of methyl group molecules to cytosine bases. Highly methylated DNA (right)
is tightly packed resulting in silenced gene expression.

protocol,É in regions of lower CpG density (Irizarry and others, 2008). While analytical methods have
been developed for MeDIP (Down and others, 2008; Pelizzolaand others, 2008), tools are currently
lacking for McrBC DNA methylation data.

The microarray measurements produced by the procedures described above present new statistical
challenges. We have developed an empirical Bayes estimation strategy that, when combined with appro-
priately normalized McrBC-enriched DNA microarray data, produces accurate percentage methylation
estimates with a mean error of 10% compared to bisulfite sequencing estimates. As in applications of
empirical Bayes methods to other microarray data settings (Efronand others, 2001; Smyth, 2004; Irizarry
and others, 2003), we take advantage of the massively parallel structure of the data to borrow information
across the ensemble of probes. Since accurate methylation estimates are highly dependent on suitable pre-
processing to remove systematic biases, we also present a novel normalization strategy. In so doing, we
demonstrate that well-established methods, developed largely in the context of gene expression analysis,
are often inappropriate for DNA methylation data. While these methods have been widely and success-
fully used in a variety of other microarray applications, certain key assumptions underlying the strategies
are violated in the DNA methylation setting leading to inaccurate estimates.

This article is organized as follows. We begin with a description of our example data sets in Section2.
Section3 lays out limitations of existing methods for preprocessing DNA methylation data. In Section4,
we describe our normalization strategy and the empirical Bayesian estimator of percentage methylation.
Results demonstrating the utility of our methods are presented in Section5. We conclude with a discussion
in Section6. Derivations and practical issues including microarray data quality control are included in the
supplementary material available atBiostatisticsonline.

2. DATA DESCRIPTION

2.1 Microarray data

DNA methylation assays typically involve random fragmentation of a DNA sample, followed by an en-
richment step that selects for either methylated or unmethylated DNA. Prior to enrichment, the DNA is
split into 2 fractions one of which is left untreated. Methylation estimates are based on the relative quanti-
ties of DNA in the enriched fraction compared to the untreated (total input) fraction. In this paper, we use
2 data sets generated using the restriction enzyme McrBC (NCBI GEO Accession No. GSE23841). The
first is derived from human liver, brain and spleen, with 5 samples from each tissue. The second consists
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of 5 normal colon and 5 colon cancer samples. The samples are described inIrizarry and others(2009).
Each sample was processed and hybridized to microarrays as detailed inOrdwayand others(2006) and
Irizarry and others(2008). Briefly, the assay involves enrichment of unmethylated DNA using the McrBC
enzyme and the Comprehensive high-throughput arrays for relative methylation (CHARM) DNA methy-
lation microarray (Irizarry and others, 2008) available from Nimblegen. The CHARM microarray is a 2.1
million probe 2-color array designed for maximal CpG coverage.

2.2 Bisulfite-sequencing validation data

We generated an independent verification data set using the same samples analyzed on the CHARM
microarrays. Ten regions containing an average of 12 CpGs and spanning an average of 220 base pairs
were selected for methylation analysis by bisulfite treatment followed by sequencing. A total of 110
sequencing runs were performed with a subset of samples chosen for each region, generating percentage
methylation estimates for each CpG.

3. MOTIVATION

A key prerequisite for estimation of absolute methylation levels from microarray data is preprocess-
ing to accurately establish the baseline signal level associated with unmethylated regions. The basic
measurement used to quantify methylation is the log ratio (M) of intensities observed in the treated and
control (total input) channels. Within-sample normalization aims to transform the log ratios such that
zero represents unmethylated regions and higher M-values represent more methylation. A plot of the mi-
croarray methylation log ratio for probes from unmethylated regions reveals several problems with the
raw signal (Figure3(a)). First, the M-values are not centered on zero as is desirable for regions without
methylation. Second, there is a strong sequence-dependent bias in the signal manifested as a “wave” in a
plot of signal by genomic location. This wave is similar to that observed in array-comparative genomic
hybridization data (Marioni and others, 2007), and can lead to both false negatives and false positives,
particularly in calls of absolute methylation levels. The effect represents a sequence-specific bias as evi-
denced by its strong conservation across samples and is partly explained by probe GC content. The ability
to minimize between-probe variation in GC content during array design is limited since options for probe
placement are constrained by the denseness of tiling. Accurate assessment of absolute methylation lev-
els is therefore highly dependent on an analysis approach that adequately corrects for these biases. The
Loess normalization strategy which has been widely and successfully used for other 2-color microarray
applications (Yangand others, 2002) fails to adequately normalize the methylation log ratio (Figure3(b)).

As with other microarray applications, the strong nonlinear dependence of M on signal intensity is a
significant source of bias. This effect is evident in a plot of M versus A, where A is the average of the 2
channels’ log signals. The key Loess assumptions are that the majority of probes represent regions without
signal (M = 0), and that signal intensity-dependent deviations are an artifact. In applications such as
differential gene expression analysis or transcription factor binding profiling, these assumptions typically
hold and Loess regression can effectively be used to estimate and remove signal intensity-dependent bias.
In methylation experiments, however, both of these assumptions are violated. Since we expect many sites
to be methylated, the average probe behavior no longer represents regions without signal. The baseline
signal level estimated through Loess represents the mean methylation level rather than no methylation.
If Loess normalization were used here, and we define M= 0 as the average value of unmethlyated sites,
then one would incorrectly force M= 0 for many of the probes associated with methylation. This effect
is clear from Figure3(b) where virtually all unmethylated probes have M< 0.

The second Loess assumption that the methylation log ratio (M) should be independent of the average
individual channel signal intensity (A) is also invalid in the methylation data setting. DNA methylation
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levels are related to CpG (and hence GC) density; CpG dense regions, referred to as CpG islands tend
to be unmethylated, while lone CpGs are usually methylated. Since signal intensity is also known to be
influenced by GC content the true M is related to A. Forcing the methylation level to be independent of A
through Loess normalization thus actually introduces bias.

A further problem that remains unresolved after Loess normalization is the considerable variability be-
tween biological replicates. While established between-sample microarray normalization techniques such
as quantile normalization (Bolstadand others, 2003) are in many cases suitable for addressing this prob-
lem in DNA methylation data, we have identified important situations in which alternatives are necessary.
Most methods were developed in the context of gene expression data and typically make the assump-
tion that the overall amount of gene expression, and hence signal, should be the same across samples.
While not strictly true, this assumption has proved reasonable for most gene expression data. In studies of
DNA methylation, similarly, we have found this assumption reasonable for comparisons between normal
tissues. In many situations of particular interest, however, such as comparisons between cancer and nor-
mal tissues, there may be significant global differences in methylation levels. Total methylation levels are
known to vary significantly between, for example, cancer versus normal cells or stem cells versus differ-
entiated cells (Jones and Baylin, 2007; Laurentand others, 2010). As a result, normalizing such samples
in a way that equalizes their total signal level may introduce bias. This is illustrated by a hierarchical
clustering dendrogram of the colon tissue data set following quantile normalization (Figure4(b)). One
would expect the biological replicates within the cancer and normal tissue groups to cluster together, but
the biological differences are obscured by technical artifacts.

Developments in laboratory tools have provided researchers with a promising platform for accu-
rately and rapidly assaying DNA methylation. As described above, however, signal biases and limita-
tions in current analytical methods present a barrier to making the most effective use of this promising
technology.

4. METHODS

We present a 2-component strategy for estimating absolute methylation levels. We first normalize the
methylation log ratios to remove systematic bias (Sections4.1and4.2) and then transform the normalized
log ratios into percentage methylation estimates (Section4.3). All normalization techniques depend on
identifying individual features or overall array characteristics that can be assumed to be constant across
samples. Normalization transforms the data to equalize these features between samples. With this in
mind, we aim to select control probes to serve dual purposes during the normalization process: to set
the zero-level for the methylation signal within each sample and to reduce between sample technical
variation.

4.1 Within-sample normalization

To address the limitations of Loess normalization, we employ a method that uses knowledge of genome
sequence, assay properties, and DNA methylation patterns to select a subset of probes for which its as-
sumptions do hold. By fitting a Loess regression to these control probes, we obtain a valid correction
curve that can be applied to the remaining probes. The key step in selecting control probes is to identify
unmethylated regions of the genome. Since mammalian DNA is almost exclusively methylated at CpG
sites, we can typically achieve this by selecting probes from CpG-free regions, guaranteeing a signal that
represents unmethylated DNA. For these probes, we expect both that M equal zero and that M be inde-
pendent of A. Ideally, such control probes are included on the array by design. The CHARM microarray,
for example, contains 4500 probes located in CpG-free regions to be used for this purpose. Alternatively,



202 M. J. ARYEE AND OTHERS

a suitable subset of probes can be identified for many standard array designs, allowing the use of our
method with a broad set of platforms.

In addition to setting the zero level using the control probe Loess procedure, a simple scale normal-
ization with minimal assumptions is useful to establish the signal level associated with fully methylated
regions. We typically scale the methylation log ratios such that the 99th percentile has an M-value corre-
sponding to 99% methylation (see Section4.3). This is roughly equivalent to the assumption that the top
1% of probes represent almost completely methylated regions.

Since methylation estimates are derived from the log ratio of signal intensity in the 2 channels, the
presence of background signal biases these estimates toward zero. To address this, we implement back-
ground removal prior to the log-ratio calculation using a modified robust multichip average (RMA) con-
volution model (Irizarry and others, 2003) that takes advantage of background signal probes as detailed
in Section 3 of the Supplementary Material available atBiostatisticsonline.

4.2 Between-sample normalization

In many situations of particular interest in DNA methylation studies, such as comparisons between cancer
and normal tissues, samples might be expected to exhibit significant global differences in methylation
levels. In these cases, we propose the use of subset quantile normalization (Wu, 2009), a modified version
of quantile normalization that avoids assumptions about total signal level. It takes advantage of control
probes representing regions known to exhibit the same behavior across samples. While spike-in controls
can serve this purpose, it has recently been shown that negative control probes can also be used (Wu,
2009). Since negative controls by design measure nonbiological signals they provide a good basis for
assessing technical variation between arrays. We find that probes from non-CpG regions (Section4.1)
serve this purpose well. Such probes measure quantities that are not dependent on the methylation status
of individual samples and technical variation due to probe effects can be expected to be constant across
samples. Since the control probes will be used as reference points during between-sample normalization,
a further consideration is that their sequence characteristics should represent those of the array as a whole,
particularly in terms of GC content.

Due to significant probe effects (Wu, 2009), the negative control features from unmethylated regions
span almost the entire dynamic range of signal within the enriched channel (Figure2(b)). This is explained
by the observation that differences in individual probe hybridization efficiencies and the effects of varying
amounts of cross-hybridization are frequently of similar magnitude as the biological differences of interest
(Irizarry and others, 2003; Johnsonand others, 2006; Li and Wong, 2001; Wu and others, 2004).

The use of subset quantile normalization allows us to take advantage of the facts that the individual
negative control features should show the same behavior across all samples, and that they also cover the
dynamic range of the signal probes. In this approach, the control probes are used as “anchors” when
normalizing the data. First, an empirical reference distribution is created by quantile normalizing the
control features. A target distribution is created from a weighted average of this empirical distribution
and normal mixture distribution to allow extrapolation beyond the range of control probe signals. We then
map probes that fall in theqth quantile of control probes on their array to theqth quantile of the target
distribution.

We have adapted subset quantile normalization, originally proposed in the context of single-color
microarray data, to the 2-color setting. Figure2 motivates the use of subset quantile normalization on
the enriched channel data rather than directly on the methylation log ratios (M). On the M scale, where
probe effects have mostly been cancelled out, the control probes span a smaller fraction of the signal
probe dynamic range and are therefore less useful as normalization anchors. Prior to normalizing the
enriched channel we establish a common baseline by first normalizing the total input channel, leaving
M-values unchanged. As the total input channel represents genomic DNA which can be assumed to be



Percentage DNA methylation estimates from microarray data 203

Fig. 2. While negative control features representing unmethylated regions have lower signals than the signal probes
on the M (log ratio) scale (a), they span almost the entire dynamic range of signal in the enriched channel (b) as a
result of probe effects.

essentially identical in all samples, it is reasonable to make an even stronger assumption than that of
quantile normalization, and instead set each total input probe to its median value across all samples.

4.3 Percentage methylation estimates

The final preprocessing step involves estimation of percentage methylation from the normalized data.
The use of a Bayesian estimator ensures that the values are constrained to the appropriate range. The
procedures described in Sections4.1 and 4.2 serve to remove the major within- and between-sample
biases. The observed signal intensities in the total input (T) and enriched (E) channels for probei can
be then be modeled asI T

i = φi ε
T
i and I E

i = (1 − pi )φi ε
E
i respectively.pi represents the proportion of

methylated CpGs at a given locusi , φi captures the probe effect, andεi are error terms. The log ratio of the
observed intensities is given bymi = qi + ei , whereqi = − log(1− pi ) andei = logεT

i − logεE
i . Larger

values ofqi represent more methylation with zero representing no methylation. Preprocessing ensures
that the error term,ei , is centered at 0 and examination of empirical distributions (supplementary Figure3
available atBiostatisticsonline) suggests a log-normal model is reasonable. To allow for the nonzero
probability of no methylation (qi = 0), we modelqi as a mixture of a point mass at 0 and an exponential
distribution. Under these conditions, we are able to derive a closed-form estimator ofqi . This model is
similar to the RMA convolution model with the differences that the normal component,ei , is centered at
0 and not truncated, and that the signal component,qi , is modeled as a mixture rather than an exponential
distribution. We calculate the expected value ofqi given the observed log ratio,mi , and then solve forpi .

E(qi | mi ) =
(

ai + σ
φ(ai /σ )

8(ai /σ)

)
∙ P(qi > 0), (4.1)
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whereai = mi −ασ 2 andα andσ are hyperparameters corresponding toqi andei , respectively. Parameter
estimation and the derivation of (4.1) are detailed in Section 1 of the Supplementary Material avialable at
Biostatisticsonline.

5. RESULTS

5.1 Within-sample normalization

Figure 3(c) shows the methylation signal in unmethylated regions following our control probe Loess
procedure. Data from the 25 individual samples is shown in gray with the median across samples in black.
Unlike Loess normalization (Figure3(b)), our procedure effectively establishes the baseline zero level
necessary to make accurate estimates of absolute methylation levels. In addition, we find that over 80% of
the variation due to the wave effect in McrBC/CHARM DNA methylation data is explained by a nonlinear
function of the individual channel intensities and can therefore be mitigated by our control probe Loess
procedure.

5.2 Between-sample normalization

As might be expected, when comparing samples with significantly different overall levels of DNA methy-
lation, we find that quantile normalization introduces biases that can obscure true biological differences.
This is evident in a hierarchical clustering dendrogram of the colon tissue data set (Figure4). Panel (a)
shows samples clustered following subset quantile normalization. The biological differences between can-
cer and normal tissue clearly divides the samples into 2 groups. On the other hand, the sample clustering
breaks down following quantile normalization (panel b), suggesting that artifacts have been introduced,
obscuring the biological differences.

As a second metric of ability to retain biological variation while suppressing technical variation, we
also examined the behavior of the top 10 000 most variable probes by calculatingF-statistics for group
differences. Probes with low-quality scores were excluded from the analysis (Section 2 of the Supplemen-
tary Material available atBiostatisticsonline. Given that we expect true differences between tumor and
nontumor tissue, largerF-statistics are desirable and indicative of better ability to detect between-group
differences. The meanF-statistics following quantile and subset quantile normalization are 4.8 and 8.5,
respectively, suggesting that subset quantile normalization retains considerably more real biological signal
while reducing technical variability. On the other hand, when comparingF-statistics for the normal tissue
data set where the samples have similar global methylation levels, full quantile normalization achieves
greater between-group separability.

5.3 Validating microarray percentage methylation estimates

We compared array-derived estimates of percentage methylation with an independent bisulfite sequenc-
ing data set targeting 10 regions. We summarized the sequencing reactions by the median percentage
methylation across the CpGs in the region for a total of 110 methylation estimates across the 25 samples.
Corresponding microarray estimates are derived from the median of the 2–8 probes in the region.

Figure5 plots array-derived percentage methylation estimates against the bisulfite sequencing data.
The correlation between the microarray estimates and bisulfite sequencing data is high at 93% with an
average discrepancy of 10%, suggesting that the microarray-derived estimates are a good proxy for bisul-
fite sequencing data. The most accurate estimates are obtained in regions with high (>70%) and low
(<30%) methylation levels, while the correlation is significantly lower when only regions of intermediate
methylation are considered.
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Fig. 3. Methylation log ratio across 30 unmethylated control regions in a CHARM microarray. The light gray lines
show individual sample profiles while the dark lines represent the median signal across samples, clearly showing
strong conservation of the “wave” artifact between samples. Neither the raw data (a) nor the standard Loess normal-
ized (b) signals are zero centered as is desirable for unmethylated regions. Control probe Loess normalization (c)
achieves both a mean-zero signal for unmethylated regions and an 80% reduction in variation compared to the raw
signal.

Our results also highlight the importance of background subtraction when estimating methylation
levels. Figure6 shows the error in microarray estimates of percentage methylation made with and without
background removal, as compared to the bisulfite sequencing verification data. Only when background
removal is used as part of the preprocessing procedure are the microarray-derived estimates centered on
the gold-standard methylation values.
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Fig. 4. Hierarchical clustering dendrogram of 5 normal colon and 5 colon tumor samples following (a) subset quantile
normalization and (b) quantile normalization. Subset quantile normalization results in perfect group separation. The
top 10 000 most variable probes are used in each case.

Fig. 5. Percentage methylation estimates. They-axis shows microarray DNA methylation estimates derived from the
median of the probes in each validation region. Thex-axis shows methylation from an independent gold-standard
validation data set obtained by bisulfite treatment and sequencing. The mean difference between microarray and
gold-standard estimates is 10%, with highest accuracy at high (>70%) and low (<30%) methylation levels.

6. DISCUSSION& CONCLUSION

The strategy presented here involves a closed-form Bayesian estimator of percentage methylation coupled
with normalization methods tailored to DNA methylation microarray data. We demonstrate that the tech-
nique, together with data generated using the McrBC methylation-sensitive restriction enzyme and the
CHARM DNA methylation microarray, achieves a high degree of correlation with bisulfite sequencing
data with an average discrepancy of 10%.
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Fig. 6. Error in microarray estimates of percentage methylation with and without background removal. Bisulfite
sequencing was used as the gold-standard measurement.

Both the within-sample (between-channel) and between-sample normalization methods hinge on iden-
tifying suitable control probes from unmethylated regions. Since adult mammalian cells are almost exclu-
sively methylated at CpG sites, this can typically be achieved by identifying stretches of CpG-free DNA.
Depending on the properties of the methylation assay, it may be possible to relax this CpG-free require-
ment. Since most methylation-sensitive restriction enzymes only recognize CpGs when flanked by specific
bases, other CpGs are essentially invisible to the enzyme and need not be excluded when selecting con-
trol regions. Choosing suitable control probes is slightly more difficult in systems where cells may have
significant levels of non-CpG methylation, as has been demonstrated in stem cells (Lister and others,
2009; Ramsahoyeand others, 2000). One solution is to choose to study only CpG sites through the use of
a CpG-specific enrichment strategy. In this case, non-CpG methylation is undetectable and the standard
control probe selection procedure can be applied.

Between-sample normalization is complicated by the possibility of significantly different levels of
total DNA methylation between samples. Such comparisons, such as between cancer and normal cells,
are often of particular interest from a DNA methylation perspective. Our results suggest that in situations
where we have stronga priori reason to believe that global methylation differences exist, subset quantile
normalization is superior to quantile normalization since it avoids the assumption of equality in global
methylation levels. When this assumption is significantly violated, quantile normalization introduces sig-
nificant bias that may mask the underlying biological signal. In situations where overall methylation levels
are not drastically different, on the other hand, the stronger assumptions of quantile normalization are to
be preferred. Since subset quantile normalization makes weaker assumptions about the data, it therefore
has less ability to correct large between-sample biases. In effect, successful use of subset quantile normal-
ization is dependent on high-quality data to a greater extent than quantile normalization.

While this paper has focused on DNA methylation data from the McrBC/CHARM platform, much of
the statistical methodology is applicable more widely. The control probe loess procedure can be applied
in the context of other 2-color tiling array DNA methylation protocols, regardless of enrichment strategy
since the wave artifact is a general feature of these data. The subset quantile normalization procedure is
even more widely applicable as it is not tied to microarray data. It will be useful in any DNA methylation
assay where samples exhibit significant global methylation differences. This will remain true as assays
increasingly shift away from microarrays to high-throughput sequencing.
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As genomics seeks to unravel the diverse methylomes represented across cell types, it will be essential
to have accurate and affordable high-throughput methods to query methylation. The analytical methods
presented here will help provide a cost-effective means to globally profile DNA methylation by leveraging
what we already know about genome structure and methylation patterns.

SUPPLEMENTARY MATERIAL

Supplementary material is available athttp://www.biostatistics.oxfordjournals.org.
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