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SUMMARY

This paper addresses the dose-finding problem in cancer trials in which we are concerned with the gra-
dation of severe toxicities that are considered dose limiting. In order to differentiate the tolerance for
different toxicity types and grades, we propose a novel extension of the continual reassessment method
that explicitly accounts for multiple toxicity constraints. We apply the proposed methods to redesign a
bortezomib trial in lymphoma patients and compare their performance with that of the existing methods.
Based on simulations, our proposed methods achieve comparable accuracy in identifying the maximum
tolerated dose but have better control of the erroneous allocation and recommendation of an overdose.
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1. INTRODUCTION

Phase | trials of a new drug are typically small studies that evaluate its toxicity profile and identify a safe
dose for further studies. This objective is usually achieved by the determination of the maximum tolerated
dose (MTD), defined as the dose that causes a dose-limiting toxicity (DLT) with a prespecified probabil-
ity. While the precise definition of DLT varies from trial to trial, a DLT is typically defined as a grade 3
or higher toxicity according to the National Cancer Institute Common Terminology Criteria for Adverse
Events (National Cancer Institut2003, from 0 indicating no toxicity to 5 indicating toxic death. Many
statistical designs have been proposed to address this dose-finding objective as a sequential quantile esti-
mation problem. A few examples in the growing literature are the continual reassessment method (CRM;
O’Quigley and others 1990, the biased coin desigm(rhamand others 1997, stepwise procedures
(Cheung 2007, and the interval-based methall &nd others2007). These designs, utilizing the binary
DLT data for estimation, provide clinicians with convenient options without reference to the nature of
toxicity for the specific clinical situations. In many settings, however, it is important to differentiate grade
3 from the higher-grade toxicities and to distinguish between toxicities types of the same grade.
Consider, for example, a phase | trial in lymphoma patients treated with bortezomib plus the standard
CHOP-Rituximab (CHOP-R) regimehdonardand others2005. The objective of the trial was to de-
termine the MTD of bortezomib, a potent and reversible proteasome inhibitor that could cause neurologic
toxicity. In the trial, a grade 3 or higher peripheral neuropathy with grade 3 neuropathic pain resulting
in discontinuation of treatment and a very low platelet count were considered dose limiting. The MTD
was defined as the dose associated with a 25% DLT probability. While grade 3 neuropathy is a symp-
tomatic toxicity interfering with activities of daily life, it may be resolved by symptomatic treatment.
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In contrast, a grade 4 neuropathy is life threatening or disabling and hence irreversible. Thus, while 25%
grade 3 neuropathy is acceptable in the bortezomib trial, the tolerance for grade 4 neuropathy is much
lower. Another shortcoming of using only the DLT, in this example, is that it does not differentiate be-
tween a grade 4 neuropathy and very low platelet count. Both are considered DLT, however, the tolerance
for grade 4 neuropathy is much lower.

Motivated by these concernBekele and Thal(BT, 2004 introduce the concept of severity weights
and define the MTD as a dose associated with a prespecified expected total toxicity burden (TTB). In brief,
a TTB is the sum of severity weights for the grades of toxicities across different toxicity types, where the
weights are elicited from the physicians for each toxicity type and grade. To describe the relationship
between TTB and dose, the authors propose a model motivated by latent variables for the joint probability
distribution of the severity weights. The model is highly complex as the dimension of the joint distribution
equals the number of types of toxicity considered. As a result, the BT method is computational intensive,
and it is time-consuming to perform a thorough investigation of the method’s robustness via simulations.
Yuan and others(2007) subsequently propose a simpler quasi-likelihood estimation approach based on
equivalent toxicity scores and aim to identify a dose associated with a prespecified expected equivalent
toxicity score. Since an equivalent toxicity score is essentially a TTB when only one toxicity type is
considered, the dose-finding objectivevimanand otherg2007) is the same as the BT method. However,
the authors do not consider the more realistic situations where there are multiple toxicity types. In practice,
it is difficult to apply either method because the TTB objective does not correspond to the conventional
percentile definition of MTD, and physicians may find it an abstract endeavor to specify a target TTB
value. As an alternative to the TTBee and otherq2009 propose to summarize the toxicity profile by
a single numerical index, called the toxicity burden score (TBS), which is calibrated through a regression
model by fitting the TBS using historical data. Both the TTB and the TBS summarize toxicities using a
weighted sum of grades and types of toxicities.

In this article, we propose a novel extension of the CRM that defines the MTD with respect to multiple
toxicity constraints applied on a continuous or ordinal toxicity measure such as toxicity grades, TBS, or
TTB. By applying the method on a toxicity summary measure and using multiple toxicity constraints,
the method incorporates information on both grades and types of toxicity for the estimation of the MTD.
Briefly, our proposed method is different from the BT method in 2 ways. First, the method can be used with
any continuous or ordinal toxicity outcome, thus, the dimension of the probability model is much reduced,
and a systematic design calibration process is feasible. Second, we expect that the proposed method has a
better ability to control for the probability of recommending an overdose through the explicit constraints
on higher-grade toxicities. Secti@uescribes the probability model and the dose-finding algorithm. As in
the CRM, it is important to calibrate the design to obtain good operating characteristics under a variety of
real life scenarios. Ideally, the calibration process can be done solely based on clinician input. However,
the necessary information is seldom available in the setting of phase | trials. Thus, a design calibration
approach is proposed in SectiBnin Section4, the proposed method and the calibration approach are
illustrated in the context of the bortezomib trial. A numerical illustration of the method in the context of
the bortezomib trial and a simulation study are presented in Segtiddiscussion of the method is given
in Section6.

2. CRMWITH MULTIPLE CONSTRAINTS
2.1 Problem formulation

Consider an ordinal or continuous toxicity outconTg guch as toxicity grades in the one toxicity case,
TTB as defined byBekele and Thal(2004 or TBS as defined bizee and otherg2009 in the multiple
toxicity case. We define the MTD, denoteddyas the maximum dose that satisfieprespecified toxicity
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constraints in terms of . Precisely, let RiT > t|x) denote the tail probability of under dose. Then

0=argrr)1(ax{Pr(T2t||x)<p|,I=1,...,L}, (2.2)

wheret; < --- < t| are prespecified toxicity thresholds apd > --- > p_ > 0 are their respective
target probabilities.

To build the dose—toxicity model, leZ denote a normally distributed random variable with mean
a+ Bxsothaty < T < tyqifandonlyify; < Z < y4forl =0,..., L, with the convention that
to = —oo andt, 41 = oo. In addition, to ensure that the model is identifiable, the variancg isfset to
be 1,y0 = —oo andy1 = 0. This model, motivated by a latent variable modeling approach as also used in
Bekele and Thal{2004), is particularly useful because the trial objecti2el] is invariant to the specific
distribution of T within each intervalf, tj+1) once Pft) < T < t41|x) is fixed for any dose. Under
this model, the tail probability dt can be expressed as

Pr(T > 4|x) = O(a + X —p1), (2.2)

where @ is the distribution function of a standard normal. Under the special case when there is only
L = 1 constraint (i.e. DLT only), the formulation reduces to the traditional phase | quantile estimation
objective. In fact, the probit mode2 () is very similar to the commonly used logit model in the CRM
literature where the intercept tereis taken as fixedg@oodmanand others 1995. Postulating such a
strong model assumption avoids the rigidity problem prescribéthieung(2002 who shows that using

an over-flexible model in conjunction with sequential dose finding will confine a trial to a suboptimal
dose with a nonnegligible probability. Therefore, we shall consider the intesicaptfixed, specifically

a = 3, in line with the CRM convention. Since there drdree parametergg, yo, ..., yL), the model
can adequately characterize the tail probabilitieg,at ., t| simultaneously at any given doge
In general, withL > 2, the objectiveé) can be written a8 = min{0y, ..., 0.} = 6,, where, satisfies

the individual constraint T > t/|6) = p andA = argmin 6. Furthermore, under mode2.Q),
each constrained objectie = {y; + ®~(p) — 3}/ is an explicit function of the model parameters.
In practice, the test doses are limited to a discrete sé& t#vels, denoted byd, ..., dk}. Thus, the
operating objective is arg mipn|dx — 8. This is chosen in convention with the CRKaIl{eung and Elkind
2010. In practice, the highest dose less than or equéldan be assigned.

2.2 Dose-escalation algorithm

We adopt the same dose assignment strategy as the CRM by which the next patient is treated at an up-
dated model-based MTD estimate, and whereby the estimation is done under a Bayesian framework.
In particular, we assume that the prior distributiorpofy», andy, — yi_1,1 =3, ..., L, are independent
exponential variables with rate 1 in line with the CRM conventidnQuigley and others 199Q Yuan
and others 2007). This choice of prior distributions guarantees that the probability of DLT is strictly
increasing in dose and that®y, < --- < y.

A natural estimate fof at the start of the trial is its prior median, denoteddpythat is, the Bayes
estimator with respect to the absolute error loss. Generally, with observations from tmegfasénts,
we estimate) by its posterior median, denoted By and defined such that @r > d,|data = 0.5.
Computationally, letk; and T; be the dose and toxicity score of patiéntrespectively, then the joint
posterior distribution given the firstobservations is proportional to

(8, v2,...,yL)
n L+1

=exp(—f =)l 2 <+ <70 [[ [TIOG+ % —n1-1) = @@+ % — ) O2STW,
i=11=1
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The joint posterior distribution of model parametégs yo, ..., yL) can be obtained using Markov
chain Monte Carlo (MCMC), and hence the joint posteriof@f . .., 8, ). The next patient is treated at
Rn4+1 = arg miny, [dk — nl, whered, is the posterior median @& . This method is referred to as CRM-
MC;. We opt to use the posterior median instead of the posterior meamapplications to sequential
trials because the former will provide more stable estimation than the latter. It is known that the posterior
distribution of a parameter whose definition involves ratios is likely to be heavy tailed, especially when
the sample size is small, thus causing an effect on its mean.

Because the MTD¥, is a minimum of several parameters, the posterior me#jjanay underestimate
6. Therefore, we also consider a second estimator that is hoped to attenuate the bias. Precisely, we define
Oy = 0 Whereﬁm denotes the marginal posterior mediandpfyiven the firstn observations, and

n = arg m|n QnJ. The next patient is givefin+1 = argmiry, |k — n|. This method is referred to as
CRM-MC;.

There are various ways to start a trial. One can use a predetermined dose sequence to dictate dose
escalation until the first appearance of toxicity. Specificallyxset x; o for theith patient, where o €
{d1, ..., dk} is a nondecreasing sequence of doses With< Xj+1,0 and switch toX,;+1 or Xh+1 once
{Ti >t} is observed for some< n and somé (Cheung2005. Alternatively, as done in the bortezomib
trial, one may start the first patient at the prior MTD. Using the proposed method, we therefare-sii
or = X1 depending on the choice of estimator. With either start-up rule, the reassessment process is to be
continued until a prespecified sample size is reached. In addition, to avoid aggressive escalation, one can
set rules to restrict the trial from skipping an untested dose or escalating after a DLT is observed.

3. DESIGN CALIBRATION

In any model-based design, it is important to calibrate the model so as to yield good operating character-
istics under a realistic set of scenarios. We propose a design calibration that is similar to the approach sug-
gested by ee and Cheun(009 for the CRM which has the same specification problem. As in the CRM,

the dosesls, ..., dk used in the proposed methods are not the actual doses administered, but are defined
on a conceptual scale that represents an ordering of the risks of toxitieug and Elkind2010. These

doses are obtained using backward substitution by matching the initial guess of DLT probability (denoted
by po.k) associated with dose levieland the prior model-based DLT rate, thatdg3 + Podk) according

to the probit modelZ.2), wherey; = 0 by convention ang is a prior guess of. That is,

dk = {@ " (pox) — 3}/ho (3.1)

fork =1, ..., K. Naturally, in the current context, we tajég as the prior median of.

Ideally, the initial guessepp ks are elicited from the clinicians as they reflect the prior belief about
the DLT rates associated the test doses. In practice, such information is seldom avagialaled Cheung
(2009 propose eliciting the starting dose level and taking a pragmatic approach to cafipiatevith
respect to the sensitivity of the working model; model sensitivity is in turn measured by the half-width of
the indifference interval of the model. The indifference interval is an interval centered around the target
DLT probability such that the CRM may select a neighboring dose level of the MTD whose toxicity
probability falls in this interval Cheung and ChappelR002. The narrower the indifference interval, the
closer the CRM recommended dose converges to the MTD. Since indifference interval is an asymptotic
concept, it is also necessary to examine its operating characteristics for finite-sample sizes. Specifically,
under model Z.2), in order to achieve an indifference interval with a prespecified half-wigjthve may
rescale the doses by first settidg= {®~1(p1) — 3}/Ao and then iterating recursively:

@ 11— p1+0)+3

> 11-pL—0)+3 (3.2)

Oi—1 =
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fork=2,...,v;and

@ 11— p1—9)+3
O-11-p1+9)+3

Oi+1 = (3.3)

fork =v, ..., K —1. The backward substitution process \B8a2 and @3.3) reduces the number of model
parameters fronkK (for pos) to 1 (ford) while providing a theoretical basis with respect to model sensi-
tivity. As a result, the half-widthd) is the only design parameter to be specified in each application. The
design parameteris chosen via simulation over a grid of candidates to maximize the average percentage
of correct selection (PCS) under a wide variety of calibration scenarios. This is illustrated in the context
of the bortezomib trial in Sectiof.2.

A starting dose should be set to be the lowest dose or, ideally, match the clinician’s prior guess of the
MTD. However, wherlL > 2, specifying such a prior MTD requires a clinician to make prior guesses on

multiple parameter8s, ..., 6 andl = argmin 6,, which in practice is infeasible. On the other hand, it
is comparatively feasible for a clinician to make a prior guess on a single paramesat,, as is done in
the current paper. Sinée= min{fy, ...,0,} < 64, it is reasonable to believe that a prior guess of MTD

should be somewhere belaly. In light of this, we call a starting dosq permissible ifx; < d,.

When the scaled doses are obtained via backward substit@ifn foth Xx; andX; are permissible
starting doses. To see this, fet= min{do.1, . .., fo,L }, wherefl, is the prior median of, | =1, ..., L.
Sinced, is by construction one of the doses under stigys= o is  permissible. To prove, is perm|SS|bIe
we need to show thdk < 6. Suppose, we hawé > 6. Let fp = arg min 60| thendp = 00 P and

0.5= Pr(min{y, ..., 6.} > o) < Pr0,, > O,io) = 0.5, which is impossible. Thereforéy, and hence
X1, is also permiSS|bIe.

We emphasize the DLT constraint (i.p1) in defining a permissible starting dose since DLT is the
primary toxicity andd, is easy to calculate vigB(1). For a higher toxicity constraint, sap for some
| > 2, a permissible starting dose can be obtainehasthe prior median of}. There is no closed form
for do,, but it can be determined numerically.

4. APPLICATION
4.1 The study design for the bortezomib trial

The original bortezomib trial was a dose-finding study in patients with previously untreated diffuse large B
cell or mantle cell non-Hodgkin's lymphomadonardand others20085. Its main objective was to deter-

mine the MTD of bortezomib when administered in combination with CHOP-R. The DLT was defined as
life threatening or disabling neurologic toxicity, very low platelet count, or symptomatic nonneurologic or
nonhematologic toxicity requiring intervention. The main neurologic toxicity of interest was neuropathy.
The target probability of DLT was 0.25. Eighteen patients were treated for six 21-day cycles (126 days).
The standard dose for CHOP-R was administered every 21 days. There were 5 dose levels of bortezomib,
and the dose escalation for this trial was conducted according to the CRM. The dose—toxicity model was
assumed to be empiric, that is, the probability of DLT at doseas modeled as®™#), with the prior
distribution fors being normal with = 0 ands? = 1.34. The initial guesses of the probabilities of DLT

at the 5 doses were 0.05, 0.12, 0.25, 0.40, and 0.55, respectively. These were selected based on extensive
simulations evaluating the operating characteristics of various initial guesses of the probabilities of DLT.
The starting dose was therefore the dose at the third level. The CRM did not allow dose skipping during
escalation nor dose escalation immediately after a DLT was obse®reifig 2005. In this section, we

adopt the general setting of this bortezomib trial for our numerical studies and choose TBS as the ordinal
toxicity outcome on which to apply the CRM in the context of multiple toxicities.



CRM with multiple toxicity constraints 391

4.2 Redesign of the bortezomib trial

For patienti, letY; ; € {0,1,...,5} be the toxicity grade experienced for treatment-related toxicity
type j andW; be an overall measure of toxicity unrelated to the treatment, whetel, ..., J andJ is

the number of treatment-related toxicity types. Thefi (..., Yi s, Wi) summarizes the entire toxicity
profile experienced by patientThe method proposed theeand otherg2009 to summarize the severity
of multiple toxicities into a TBS is defined as

J 5

Ti=mini > > ajcl (Yij =c)+bW,5¢, (4.1)

j=1lc=1

whereajcs andb are constants preestimated by fitting a linear mixed effects model to historical data
for drugs of the same mechanism am@ = 5. By definition, Ti = 5 when there is a treatment-related
death.Leeand otherq2009 illustrate their method using the bortezomib trial data. Two main toxicities,
neuropathy, and low platelet count, are identified as related to bortezomib, thati?. The number of
grade 3 or higher-grade nonhematologic toxicities unrelated to bortezomib is included as Wafiable
(4.2) because it is believed that excessive toxicities, possibly due to the CHOP-R regimen, are concerning
even though they may not be a direct result of bortezomib. To obtain the coeffigjgatandb, multiple
clinicians are asked to assign a severity score based on the toxicity grades and types experienced by
each patient in the bortezomib trial, with the guideline that a score of 1 should amount to a DLT, O to
no toxicity, and 5 to treatment-related death. These assigned severity scores are used as the dependent
variables in a linear mixed-effects model that gives the following significant fixed-effects coefficients:
a;1 = 0.19 a;2 = 0.64 a;3 = 1.03, andag4 = 2.53 for neuropathya21 = agy = 0.17 andayz =
0.4Q az4 = 0.85 for low platelet count, anlol= 0.17.

To implement and assess the proposed methods, we consider the bortezomib trial with 3 toxicity
levels interm of TBST < 1,1 < T < 15, andT > 15. Thus,L = 2,1 = 0,t1 = 1, and
to = 1.5. We set; = 1 as the DLT constraint in accordance with how the TBS is elicitedeaand
others(2009. The threshold toxicity probabilities aqgg = 0.25 andp, = 0.10. We call the constraint
PrT > 1|x) < p1 = 0.25, the primary constraint and(®r > 1.5x) < p2 = 0.10, the secondary
constraint. As in the original CRM design, we consi#ter= 5 test doses with a starting dose at level 3
and a sample size of 18 in our proposed design. In addition, we do not allow for dose skipping and dose
escalation immediately aftér > 1 is observed. By backward substitution with= 3, p; = 0.25, and
ﬁo = 0.69, the scaleds = —5.30. The remaining design parameters are the scaled ¢iselbs, ds, ds)
defined via the half-widthj, using 8.2) and @.3).

To calibrate the parametéywe take a similar approach to thatline and Cheun2009 and consider
a set of 10 calibration scenarios, where a scenario is a complete specification of the toxicity probabilities
Pr(T > 1|dk) and P(T > 1.5/dk) fork = 1, ..., 5. Precisely, for any fixed* € {1, 2, 3, 4, 5}, we first
set the toxicity probability folT > 1 as P(T > 1|dk-) = 0.25, P(T > 1|dk) = 0.14 fork < k*, and
Pr(T > 1|dk) = 0.40 fork > k*. This is the plateau configuration used.iee and Cheun{009. Then
we determine the toxicity probability fofF > 1.5 by lettings = 0.30 or 0.70 in

logit{P(T > 1.5d)/P(T > 1|dk)} = logit(0.10/0.25) + s(k — k) (4.2)

fork = 1,..., K. By constructionk* is the true MTD under the 2 calibration scenarios corresponding
tos = 0.30 ands = 0.70, respectively. The positive paramedatetermines the conditional probability
of T > 1.5 givenT > 1 at any dose level, and a bigger valuesarresponds to a more drastic increase
of the probability P€T > 1.5dk) ask increases. Equatiod (2) is equivalent to the conditional log-odds
model used for ordinal categorical dakdissand others2003.
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The design parameteris chosen over the gri¢D.02 0.04 0.06 0.08 0.10 such that the average
PCS over the 10 calibration scenarios is maximized. The upper limitiofset to be 0.10 because an
indifference interval beyond 0.26 0.10 is considered clinically unacceptable. The average PCS for any
givend is estimated by the CRM-M£method based on 1000 simulations with 100 simulations performed
under each of the 10 different calibration scenarios. The simulations are performed using WinBuwaS (
and others 2000. For the MCMC, a burn-in of 1000 with 10 000 iterations keeping every fifth sample
provides adequate convergence. The initial values for B@hdy, are set as 1 for the MCMC. Based on
these simulations, the average PCS corresponding=td0.02 0.04 0.06 0.08 and 0.10 are 0.43, 0.47,
0.49, 0.51, and 0.51, respectively. Thus, bbtlalues of 0.08 and 0.10 yield an average PCS of 0.54. A
value of 0.08 is chosen as it yields a smaller indifference interval. USi2ygnd @.3), the corresponding
scaled doses alh = —7.0Q d» = —6.09 d3 = —5.30 d4 = —4.61, andds = —4.01.

5. SMULATION STUDY

To illustrate our proposed methods, we simulated a single trial using the design parameters specified
in Section4.2 The toxicities were generated using a latent uniform approach. Specifically, a random
variable with a uniform distribution over intervéd, 1) was sampled using the same seed for each patient
and denoted as. Supposing that this patient is assigned to diise¢hen we set the toxicity outcome of
this patientad’ < 1ifu < PrT < 1dk); 1 < T < 15ifPAT < 1|dk) < u < PT < 1.5dk); and
T > 1.5 if otherwise. This approach implied that given the same dose the toxicity outcome for a patient
is the same, and therefore, ensured that the results obtained using the 2 proposed methods P &Section
were comparable.

Table 1 displays the prior estimates, the dose levels assigned, and the outcomes for the 18 patients
in the trial. Sincefp = —5.51 anddyp = —5.30, both methods recommended dose level 3 hence were

Table 1. Simulated trial using CRM-M#,) and CRM-MG(#, = min{fn 1, fn.2}) methods with the
5-scaled doses being7.00, —6.09, —5.30, —4.61, and —4.01. T level= 1if T < 1, T level= 2 if
1<T <15 andTleve=3ifT > 15

n  Doselevel Tlevel 4y Dose level Tlevel fn1 On.2 On
0 —-5.51 -530 -459 -5.30
1 3 1 —-3.00 3 1 —-291 -256 -291
2 4 1 —-2.71 4 1 —-260 —-223 -2.60
3 5 1 —-2.54 5 1 —-243 =219 -2.43
4 5 3 —4.90 5 3 —455 —-479 —-4.79
5 4 1 —4.66 4 1 —431 —-458 —-4.58
6 4 3 —-5.50 4 3 -5.02 547 547
7 3 1 —5.26 3 1 —-480 -5.23 -5.23
8 3 1 —5.22 3 1 -4.74 =519 -5.19
9 3 1 -5.11 3 1 -466 -5.10 -5.10
10 3 1 —-5.03 3 1 —-456 -5.01 -5.01
11 3 1 —4.96 3 1 —450 —-494 -494
12 3 1 —-4.91 4 1 —-439 -482 —-4.82
13 4 2 —4.99 4 2 —4.65 —-487 —-4.87
14 3 1 —-4.92 4 1 —458 —-4.82 -4.82
15 4 1 —4.88 4 1 —-452 —-476 —-4.76
16 4 1 —4.80 4 1 —447 —-470 -—-4.70
17 4 1 —-4.73 4 1 —441 —-4.65 -4.65
18 4 1 —4.69 4 1 —-4.37 -461 —-4.61
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permissible. The first patient was treated at dose level 3 with no toxicity, resultifig +n —3.00 and
6, = —2.91. However, since we did not allow for dose skipping, dose level 4 was recommended for the
second patient. This was the only occasion in this trial that the no dose-skipping restriction was in effect,
indicating that the estimators stabilized quickly after very few observations. In this simulated trial, the
recommended MTD and the dose assigned based on both estimators were the same except for patients 12
and 14 who were assigned dose level 3 basebipr= —4.96 and@lg = —4.99, respectively, but dose
level 4 based o1 = —4.94 anddy3 = —4.87, respectively. At the end of the trial, dose level 4 was
recommended as the MTD by both methods. Figusemmarizes graphically the dose assignments and
outcomes for the 18 patients using the CRM-M@ethod. The dose was escalated after each of the first
2 patients with no toxicities being observed. The fourth patient experienced a severe toxicity at dose level 5
and the dose was deescalated. The dose was deescalated again after the sixth patient experienced another
severe toxicity. As a result, the following 5 patients were treated at dose level 3. With no toxicities being
observed, the dose was escalated after the eleventh patient and the method recommended dose level 4
for the remaining 7 patients. One toxicity was observed among these 7 patients. At the end of the trial,
toxicities were reported in 3 out of the 18 patients (17%), with 2 (11%) patients having a severe toxicity.

The performance of the 2 proposed methods, CRM:M@d CRM-MG, was assessed with further
simulations under 6 scenarios that might be encountered in practice and compared with those of the CRM
(i.e. ignoring the higher toxicity constraint@r > 1.5x) < p2 = 0.10) and the BT method which is
the only alternative in the literature for multiple toxicities. One thousand simulations were performed for
each scenario with 18 subjects for each simulation using the 5 doses specified at the end ofiSection

The complete configuration of the true toxicity probabilities for the 6 scenarios is depicted ir?Table
Unlike the 10 calibration scenarios used to select the optimallue in the calibration process, these
6 scenarios were selected in collaboration with clinicians. In the first 4 scenarios, the true probabilities
of T > 1 correspond to the probabilities of DLT that were originally used in the calibration of the CRM
design for the bortezomib trial. In these scenartbss 61 = 6. In Scenario 59 = 61 < 02. Thus,

10— o +
<~ - o o + o e o 0 0 0 O
©
>
3
> @ ° o o o o o
@
o]
[a]
Al —
o TBS <1
e 1<TBS<1.5
+TBS>15
T T T
5 10 15
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Fig. 1. Simulated trial using CRM-M£method.
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there is no risk of ignoring the secondary constraint sthee 61. However, in Scenario &, = 6> < 6.
This means that if the secondary constraint is ignored and only the primary constraint is used, the wrongly
believed MTD would b&; = ds, resulting in an inflated chance of severe toxicity sina@Pg 1.5d3) =
0.23> 0.10= py. This is a scenario in which the higher toxicity constraint should not be ignored.

To compare our results with those of the BT method, we excluded the vaviafitem the definition of
T in (4.1). Thus, in the context of the bortezomib tridl,= 0.19 (Y1 = 1)+0.64 (Y1 = 2)+1.03l (Y1 =
3) + 253 (Y1 =4)+0.17 (Y2 = 1, 2) + 0.40 (Y2 = 3) 4+ 0.85l (Y2 = 4). This was equivalent to the
definition of TTB used byBekele and Thal(2004 with the coefficients being the toxicity weights. We
obtained the joint probability distributions of the 2 toxicities from the 2 marginals under independence.
The marginal probabilities for the grades of neuropathy and low platelets were chosen such that they
corresponded to the prespecified Pr> 1.5dk) and P(1 < T < 1.5dk). For example, for dose level 1
under Scenario 1, PF > 1.5d;)) = Pr(Y1 = 49 +Pr(Y1 =3, Y2 =4 =0014and Rl < T <
1.5d1) =Pr(Yr =3,Y2 <4) +Pr(Yys =2,Y2 > 3) + Pr(Y1 = 1, Yo = 4) = 0.035.

For the BT method, the prior means of the intercept parameters for the 2 toxicity types were 0.5 and
the prior means of the slope parameters were 1.0. The prior precision for all regression parameters was
1.0. The doses are 1, 2, 3, 4, and 5. The target TTB score was set at 0.72. The method did not allow for
dose skipping.

Table 3 displays the percentage of recommending a particular dose (% Recommended) and the per-
centages of toxicities (%4 > 1 and %T > 1.5) for each of the 4 methods. For the BT method,
E(TTB) = 0.193,1 4+ 0.64r12 + 1.03r1,3 + 2.5371 4 + 0.1772,10r2 + 0.4072,3 + 0.8577 4, Wheren,—,c
is the marginal probability of toxicity for a gradetoxicity of type j. When#, = 6> (Scenarios 1-4), the
PCS using either CRM-MCor CRM-MC; method is similar to the one using CRM. Compared to the
BT method, CRM-MG and CRM-MG have similar accuracy and are occasionally superior (Scenario 3).
CRM-MC4, CRM-MCy, and BT recommend dose levels above the MTD less frequently than the CRM.
Compared with CRM-Mg, the CRM-MG_method recommends a dose above the MTD less frequently
and has lower percentages of toxicities across the 6 scenarios but yields a lower PCS when the true MTD
is high.

Whend; < 6, (Scenario 5), CRM-Mgand CRM-MG methods perform similar to the CRM in terms
of percentage of dose recommended and percentage of toxicities. Howevewhefy (Scenario 6),
the CRM is more likely to recommend a toxic dose as it does not take into account the secondary con-
straint. Both CRM-MG and CRM-MG methods recommend the correct dose more than 50% of the time
with much lower frequencies of recommending a toxic dose. Both CRM-&t@ CRM-MG methods
outperform the BT method in terms of the PCS, the frequency of recommending a dose above the MTD
and the percentage of toxicities. However, the overdosing of the BT method is an artifact since the target
is misspecified, and in both Scenarios 5 and 6, the target TTB of 0.72 falls in between dose levels. For ex-
ample, under Scenario 5, the target TTB value of 0.72 lies somewhere between the expected TTB of dose
level 3 (0.59) and dose level 4 (0.90). Therefore, it is not unexpected that the BT method recommends
dose level 4 with a somewhat high probability. In this sense, the simulation comparison is unfair. On the
other hand, it reveals the limitations of the target TTB both in terms of interpretation and elicitation. The
objective of the BT method is to find the dose associated with a target TTB that is not directly related to a
probability of toxicity.

6. DiscussION

Our work is primarily motivated by the concern with the gradation of severe toxicities that are considered
dose limiting as well as the severity differences between toxicities types of the same grade. In this article,
we achieve this goal by applying multiple toxicity constraints in conjunction with the use of the CRM. This
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Table 3. Operating characteristics of the CRM, BT, CRM-M@nd CRM-MG methods

Dose level %l > 1 %T >15

1 2 3 4 5
Scenario 1
Probability of T > 1 0.05 0.25 0.40 0.45 0.55
Probability of T > 1.5 0.01 0.10 0.21 0.29 0.41
E(TTB) 0.37 0.72 1.00 1.24 1.56
% recommended by CRM 12 55 27 6 1 30 15
% recommended by BT 18 61 20 2 0 26 12
% recommended by CRM-MC 24 58 16 3 0 26 13
% recommended by CRM-ML 20 57 19 4 0 27 14
Scenario 2
Probability of T > 1 0.05 0.05 0.25 0.45 0.55
Probability of T > 1.5 0.01 0.01 0.10 0.24 0.35
E(TTB) 0.33 0.37 0.72 1.13 1.48
% recommended by CRM 1 17 62 19 1 26 12
% recommended by BT 0 27 60 12 1 22 10
% recommended by CRM-MC 2 25 62 11 0 24 11
% recommended by CRM-MLC 1 23 62 13 1 25 12
Scenario 3
Probability of T > 1 0.05 0.05 0.08 0.25 0.45
Probability of T > 1.5 0.01 0.01 0.02 0.10 0.24
E(TTB) 0.33 0.37 0.45 0.72 1.13
% recommended by CRM 0 1 22 60 17 23 10
% recommended by BT 0 3 36 46 14 20 9
% recommended by CRM-MC 0 3 31 57 9 22 9
% recommended by CRM-ML 0 2 26 59 13 23 10
Scenario 4
Probability of T > 1 0.05 0.05 0.08 0.12 0.25
Probability of T > 1.5 0.00 0.01 0.02 0.04 0.10
E(TTB) 0.30 0.33 0.45 0.54 0.72
% recommended by CRM 0 0 5 29 65 18 7
% recommended by BT 0 1 14 28 57 16 6
% recommended by CRM-MC 0 2 6 36 57 18 7
% recommended by CRM-MLC 0 1 5 31 63 18 7
Scenario 5
Probability of T > 1 0.05 0.05 0.25 0.45 0.55
Probability of T > 1.5 0.00 0.01 0.05 0.10 0.20
E(TTB) 0.33 0.37 0.59 0.90 1.16
% recommended by CRM 1 17 62 19 1 26 6
% recommended by BT 0 8 48 39 6 30 7
% recommended by CRM-MC 1 17 64 17 1 26 6
% recommended by CRM-MC 1 15 64 18 2 27 6
Scenario 6
Probability of T > 1 0.05 0.16 0.25 0.45 0.55
Probability of T > 1.5 0.01 0.10 0.23 0.35 0.43
E(TTB) 0.25 0.51 0.81 1.28 1.56
% recommended by CRM 3 30 49 18 1 27 22
% recommended by BT 5 52 37 5 1 22 17
% recommended by CRM-MC 16 52 27 4 0 22 16
% recommended by CRM-MC 15 52 28 5 0 23 17

Note: Bold indicates the maximum tolerated dose (MTD).

is a natural extension of the regular CRM, with an explicit objective defined in terms of the probability
of severe toxicity. The proposed method is intuitive and in line with current practice. By setting multiple
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constraints, it decreases the frequency of recommending doses above the MTD compared to the CRM.
Since the high risk of overdosing is one of the main disadvantages of the CRM, the method can be used in
the traditional maximal toxicity case to curb the erroneous allocation and recommendation of an overdose.

The objective of our work is to be distinguished from thatBefkele and Thal(2004), Yuan and
others(2007), Ilvanova and Kin(2009, andBekeleand otherg2009, who define the MTD with respect
to a target value that is essentially the mean of a continuous outcome. Not only does this target value
require a labor intensive and potentially irreproducible elicitation process but also the elicited target may
not correspond to a clinically sound definition of MTD (cf. TaBleScenarios 5 and 6). From a statistical
viewpoint, in fact, matching the expected TTB with a target value is in discordance with the conventional
dose-finding objective where the MTD is defined to control for the tail probability of toxicity since the
expected TTB does not correspond to any explicit cutoff value of the tail probability of toxicity. This may
partly explain the bimodal distribution of the estimated MTD under Scenarios 5 and 6. In addition, the BT
method assumes parallel regressions of the ordinal probit model that may affect the performance of their
method even when the target TTB coincides.

In this article, we apply the CRM with multiple constraints to the TBS introducddemand others
(2009. The TBS is a precalibrated outcome measure of toxicity with respect to the conventional definition
of DLT. The proposed method can also be applied with other continuous or ordinal toxicity measure (e.g.
TTB) as long as the outcome is well calibrated. From a modeling viewpoint, the proposed approach, which
involves fewer parameters, has a clear practical advantage in design calibration as it avoids postulating a
joint model for a number of toxicity types.

Two approaches for estimation, namely CRM-M&d CRM-MG, are proposed in this paper with
the latter being slightly less conservative. The choice between these 2 options depends on the specific
clinical settings. For example, for oncology trials where patients are in urgent need of treatment, CRM-
MC> would be the preferred choice to yield a dose high enough to benefit the patients.

In some clinical situations such as in cancer prevention trials, it may be desirable to control also for
the rate of lower-grade toxicities; see, for exam@enonand otherg1997). In our specific application,
this is implicitly achieved via the use of the TBS formutal). Additionally, the methods proposed here
can be altered to explicitly accommodate these situations by including a threshold valigehsays less
thant; in the objective 2.1).
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