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ABSTRACT

With the availability of genome-wide transcription data and massive comparative sequencing, the discrimination of coding from
noncoding RNAs and the assessment of coding potential in evolutionarily conserved regions arose as a core analysis task. Here
we present RNAcode, a program to detect coding regions in multiple sequence alignments that is optimized for emerging
applications not covered by current protein gene-finding software. Our algorithm combines information from nucleotide
substitution and gap patterns in a unified framework and also deals with real-life issues such as alignment and sequencing errors.
It uses an explicit statistical model with no machine learning component and can therefore be applied ‘‘out of the box,’’ without
any training, to data from all domains of life. We describe the RNAcode method and apply it in combination with mass
spectrometry experiments to predict and confirm seven novel short peptides in Escherichia coli and to analyze the coding
potential of RNAs previously annotated as ‘‘noncoding.’’ RNAcode is open source software and available for all major platforms
at http://wash.github.com/rnacode.
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INTRODUCTION

Distinguishing protein-coding from non-protein-coding
sequence is the first and most crucial step in genome anno-
tation. While the coding regions are subsequently investi-
gated for properties of their protein products, a completely
different toolkit is applied to the nucleic acid sequences of
the noncoding regions. The quality of the analysis of coding
potential therefore also affects the annotation of putative
noncoding RNA (ncRNA) genes.

Discrimination between coding and noncoding regions
poses technical as well as biological challenges not addressed
by standard gene finders (Dinger et al. 2008). Ironically, in-

vestigators interested in noncoding RNAs hence have re-
peatedly implemented their own custom solutions to detect
coding regions (see, e.g., Mourier et al. 2008; Shi et al. 2009).
The tarsal-less gene in Drosophila melanogaster (also known
as polished-rice in Trilobium) illustrates some of these chal-
lenges (Rosenberg and Desplan 2010). The transcript lacks a
long open reading frame (ORF) and was originally annotated
as noncoding RNA. Later it was found to produce several
short, independently translated peptides of 11–32 amino
acids (Galindo et al. 2007; Kondo et al. 2007) with a regula-
tory role in epidermal differentiation (Kondo et al. 2010).
How many such short functional peptides may be hidden
among RNAs remains an open question (Rosenberg and
Desplan 2010).

The detection of protein-coding genes in genomic DNA
data is a well-studied problem in computational biology
(Burge and Karlin 1998). Using machine learning tech-
niques, sophisticated models of genes have been built that
can be used to annotate whole genomes (Brent 2008) and that
have been constantly improved over the years (Flicek 2007;
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Brent 2008). Regular community meetings demonstrate
a density of high-quality software not usually seen in other
fields (Guigó et al. 2006; Coghlan et al. 2008). New types of
high-throughput data, such as genome-wide transcription
maps, massive comparative sequencing, and meta-genomics
studies, however, have led to new challenges beyond classical
gene finding. Many transcripts are found that do not
overlap known or predicted genes (Carninci et al. 2005;
The ENCODE Project Consortium 2007). Statistical
methods are necessary to assess the coding potential of this
‘‘black matter’’ transcription (Frith et al. 2006). Similarly,
comparative sequencing has revealed a plethora of evo-
lutionarily conserved regions without other annotation
(Siepel et al. 2005). A reliable analysis of the coding po-
tential of these regions is an essential step preceding any
downstream analysis.

Evolutionary analysis has previously proved useful for de
novo detection of coding regions. Various algorithms have
been developed to predict coding potential in pairwise
alignments (Badger and Olsen 1999; Rivas and Eddy 2001;
Mignone et al. 2003; Nekrutenko et al. 2003), and the power
of multi-species comparison for the purpose of coding region
prediction was demonstrated impressively in yeast (Kellis
et al. 2003), human (Clamp et al. 2007), and more recently in
12 drosophilid genomes (Stark et al. 2007; Lin et al. 2008).
There is no doubt that these types of analysis are powerful
and useful additions to classical gene finders.

In this study, we introduce ‘‘RNAcode,’’ a program to
detect protein-coding regions in multiple sequence align-
ments. The initial motivation was to use RNAcode in com-
bination with the widely adopted structural RNA gene-
finding program RNAz (Washietl et al. 2005). Similar in
spirit to the program QRNA (Rivas and Eddy 2001), the goal
is to produce more accurate annotations of ncRNAs by
combining information from explicit models for structural
RNAs and protein-coding RNAs. The direct identification
of conserved regions as protein coding can reduce the
number of false-positive ncRNA predictions, which is still
the main problem in large-scale screens (Washietl et al.
2007).

More generally, RNAcode was designed to fill a specific
gap in the current repertoire of comparative sequence anal-
ysis software. It provides the following features for which, to
our knowledge, no other program is available: (1) RNAcode
relies on evolutionary signatures only and is based on a direct
statistical model. No machine learning or training is in-
volved, and it can thus be applied in a generic way to data
from all species. (2) It makes use of all evolutionary sig-
natures that are known to be relevant rather than focusing on
one particular feature. (3) It predicts local regions of high
coding potential together with an estimate of statistical
significance in the form of an intuitive P-value. (4) RNAcode
deals with real-life issues such as sequencing and alignment
errors. (5) It is provided as a robust, platform-independent,
and easy-to-use C-implementation that is applicable to the

analysis of selected regions and that can be integrated in
annotation pipelines of larger scale.

ALGORITHM

Evolutionary changes in the nucleotide sequence of coding
genes typically preserve the encoded protein. This type of
negative (stabilizing) selection leads to frequent synonymous
and conservative amino acid mutations, insertions/deletions
preserving the reading frame, and the absence of premature
stop codons. Our algorithm integrates this information in a
unified scoring scheme. It takes as input a multiple nucleo-
tide sequence alignment including a ‘‘reference’’ sequence,
which is the one we wish to search for potential coding
regions, and predicts local segments that show statistically
significant protein-coding potential. Figure 1 shows an over-
view of the algorithm that is described in more detail in
the following sections. First, we introduce a scoring scheme
that acts on pairwise alignments and considers amino acid
substitutions and gap patterns. Second, we describe how
maximum scoring regions under this scheme can be com-
puted for a multiple alignment by considering all pairwise
combinations of a reference sequence to the other sequences
in the alignment. Third, we indicate how assessment of the
statistical significance of these regions can be performed.

Amino acid substitutions

Consider two aligned nucleotide triplets a and b that corre-
spond to two potential codons. To see if they encode synon-
ymous or biochemically similar amino acids, we can translate
the triplets and use amino acid similarity matrices such as
the widely used BLOSUM series of matrices (Henikoff and
Henikoff 1992). Let Aa and Ab be the translated amino acids
of the triplets a and b, respectively, and S(Aa,Ab) their
BLOSUM score. In absolute terms, this score is of little value:
Highly conserved nucleotide sequences will get high amino
acid similarity scores upon translation even when noncoding.

We need to ask, therefore, what is the expected amino acid
similarity score assuming that the two triplets evolve under
some noncoding (neutral) nucleotide model. Deviations
from this expectation will be evidence of coding potential.
To this end, we estimate a phylogenetic tree for the input
alignment using a maximum-likelihood method under
the well-known HKY85 nucleotide substitution model
(Hasegawa et al. 1985). Furthermore, we note that two aligned
triplets can have zero, one, two, or three differing positions,
i.e., they can have a Hamming distance h(a, b)2 {0,1,2,3}. It is
straightforward to calculate the expected score for a given
protein matrix, a parametrized HKY85 background model,
and a given Hamming distance x:

Æsæh=x = +
a;b

h a;bð Þ=x

SðAa;AbÞpa1
pa2

pa3
Probða! b j tÞ: ð1Þ
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Here a1, a2, and a3 denote the first, second, and third
nucleotide in triplet a; p is the stationary frequency in the
HKY85 model; and Prob(a / b|t) is the probability that
triplet a changes to b after some time t. The analytic ex-
pression for this probability is given by Hasegawa et al.
(1985). The pairwise evolutionary distance t between two
sequences is calculated as the sum of all branch lengths
separating the two sequences in the estimated phylogenetic
tree.

Put in simple terms, the score Æsæ is the average score over
all possible pairs weighted by the probability of observing
such a pair under our background assumption. We condition
on the observed Hamming distance h(a, b) because this
reduces the effect of implicit information on average amino
acid frequencies contained in the BLOSUM matrix, and was
found to give better results. We can use this expected score
Æsæ to normalize our observed scores s arriving at the final
protein-coding score s for an aligned triplet:

s = s� Æsæ: ð2Þ

To illustrate this with an example, consider the aligned
triplets GAA and GAT. The triplets encode glutamic acid
and aspartic acid, respectively, and score s = +3 in the
BLOSUM62 matrix. Furthermore, assume that under some
background model, the expected score for pairs with one
difference is Æsæh = 1 = �1. The overall score is thus s = 3 �
(�1) = +4. The positive score reflects the conservative
mutation between the biochemically similar amino acids. A

synonymous mutation usually gives the strongest support
for negative selection. Since it also gives the highest scores
in any protein matrix, there is no need to treat it differently
from conservative mutations, and we can score both types
of mutations using the same rules. Under this simple
scoring scheme, the average triplet score in a coding
alignment under negative selection will be positive, while
in noncoding alignments, it will be 0 on average. We found
that the HKY85 substitution model accurately models non-
coding regions for this particular purpose (see the Results
section).

Reading frames and gaps

It is straightforward to score an alignment that does not
contain gaps. The alignment can simply be translated in all
reading frames and the resulting triplets assigned a sub-
stitution score s as described above. Real alignments, how-
ever, usually contain gaps. For the purpose of finding coding
regions, gap patterns contribute valuable information (Kellis
et al. 2004). Negative selection not only acts on the type of
amino acid but also on the reading frame that is generally
preserved when insertions/deletions occur. Our algorithm
incorporates this information into the scoring scheme and,
in addition, also deals with practical problems that occur in
real-life data such as alignment and sequencing errors. Figure
2 shows some selected gap patterns to illustrate the basic
principles. A more formal specification of the algorithm can
be found in the Appendix.

FIGURE 1. Overview of the RNAcode algorithm. First, a phylogenetic tree is estimated from the input alignment including a reference sequence
(darker line) under a noncoding (neutral) nucleotide model. From this background model and a protein similarity matrix, a normalized sub-
stitution score is derived to evaluate observed mutations for evidence of negative selection. This substitution score and a gap scoring scheme are
the basis for a dynamic programming (DP) algorithm to find local high-scoring coding segments. To estimate the statistical significance of these
segments, a background score distribution is estimated from randomized alignments that are simulated along the same phylogenetic tree. The
parameters of the extreme value distributed random scores are estimated and used to assign P-values to the observed segments in the native
alignment.
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In real coding regions we will frequently encounter gap
lengths that are multiples of three that do not break the
coding frame (Fig. 2A). We treat this kind of gap neutrally
and give it a score of 0. The aligned triplets before and after
the gap are in the same phase and thus can be assigned a score
of s.

Any gap not a multiple of three will result in a frameshift
and the sequences are out-of-phase. We assign a penalty
score V < 0 for the frameshift event and each subsequent
aligned triple that is out-of-phase receives an additional
smaller penalty v < 0. Changing the frame back is also
penalized, again by V (Fig. 2B). The basic idea is that
noncoding regions have many frameshifts, and long stretches
in the same frame are rare. In contrast, coding regions should
not have any frameshifts at all. In real data frameshifts can
also be observed in coding regions because of alignment
errors. However, they usually get reverted soon by another
gap. Consequently, only relatively short regions are out-
of-frame.

Gaps in coding regions that are not a multiple of three can
also be the result of sequence errors. This is particularly
problematic for low-coverage sequencing. In order not to
miss substantial parts of true coding regions that appear to be
out-of-frame because of a single sequence error, we allow
change of the phase and penalize this event with a negative
score D (Fig. 2C). Clearly, this event should be rare and hence
the penalty must be high; the condition D < 2V must be met
at least, or otherwise a sequence error event would always be
chosen as a more favorable explanation than the frameshift-
ing gaps in the optimization algorithm described below.

Stop codons

Under normal conditions, a reading frame cannot go beyond
a stop codon. To reflect this in our algorithm, stop codons in

the reference sequence get a score of �N. We allow re-
laxation of this for stop codons in the other sequences
because if they are of low quality, erroneous stop codons
might be observed. These should not automatically destroy
a potentially valid coding region but rather be penalized with
a relatively large negative score.

Calculating the optimal score for a pairwise
alignment

Using the scoring scheme introduced above, we need to find
the interpretation of a given alignment as aligned codons in
a particular reading frame, out-of-frame codons, and se-
quence errors that maximizes the score. This is achieved by
a dynamic programming algorithm that is described in full
detail in the Appendix.

Finding maximum scoring segments
in a multiple alignment

To find regions of high coding potential in a multiple
sequence alignment, we first consider the pairwise combi-
nations of the reference sequence with each other sequence.
In these pairwise alignments, we calculate the optimal score
of each alignment block delimited by two columns i and
j using the dynamic programming algorithm. Once the
maximum scores have been found for each pairwise align-
ment, we take the average of all pairs and store the optimal
scores for the blocks between any two columns i and j of the
multiple alignment in a matrix Sij (for details, see Appendix).
In this matrix, we identify maximal scoring segments, i.e.,
segments with a positive score that cannot be improved by
elongating the segment in any direction. This approach is
meaningful because in noncoding regions the average sub-
stitution score is �0 and gaps can only contribute negative
scores.

Statistical evaluation

To assess the statistical significance of high scoring segments,
we empirically estimate the score distribution of neutral
alignments conditional on the phylogeny derived from the
alignment under consideration. Again, we use the phyloge-
netic tree estimated under the HKY85 model as our null
model. We simulate neutral alignments along this tree and
calculate high-scoring segments in exactly the same way as
for the native alignment. The score distribution follows an
extreme value distribution, and we found that it is well
approximated by the Gumbel variant with two free param-
eters (see the Results section). Fitting this distribution allows
us to calculate a P-value for every high-scoring segment
actually observed. This P-value expresses the probability that
a segment with equal or higher score would be found in the
given alignment by chance.

FIGURE 2. Examples of typical gap patterns and scoring paths in a
pairwise alignment assumed to be coding. Nucleotides are shown as
blocks, codons as three consecutive blocks of the same shading. (A) A gap
of length three does not change the reading frame and in-frame-aligned
codons are scored with the normalized substitution score s. (B) A single
gap destroys the reading frame but gets corrected downstream by another
gap. The triplets that are out-of-phase because of this obvious alignment
error are penalized by the two frameshift penalties V and v. (C) A single
gap that, in principle, destroys the reading frame is interpreted as a se-
quence error. Penalized by a high negative score D, this frameshift is
ignored, and downstream codons are considered to be in-phase.
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RESULTS

Classification accuracy

We tested RNAcode on six different comparative test sets.
These test sets were created from genome-wide alignments
(Blanchette et al. 2004; Schneider et al. 2006; Kuhn et al.
2009) typical of those that are widely used for comparative
analysis today. The set consisted of alignments of E. coli with
nine enterobacteria, Methanocaldococcus jannaschii with
10 methanogen Archaea, Saccharomyces cerevisiae with six
other Saccharomyces strains, Drosophila melanogaster with 11
drosophilid species and three other insects, Caenorhabditis
elegans with five other nematode species, and Homo sapiens
aligned to 16 vertebrate genomes. From these alignments, we
extracted both annotated coding regions/exons and ran-
domly chosen regions without coding annotation. We then
calculated the maximum coding potential score and its as-

sociated P-value for each alignment. We did not include
explicit information on the reading direction, i.e., the coding
regions were randomly either in forward or reverse comple-
ment direction and both directions were scored.

A typical score distribution (Fig. 3A) shows that random
noncoding regions generally do not contain maximal scoring
segments with scores higher than 15, whereas coding regions
show a wide range of maximal scoring segments of much
higher scores. The score efficiently discriminates coding and
noncoding regions. Receiver operating curves (ROC) show
the sensitivity and specificity of the classification at different
score cutoffs (Fig. 3B). In general, we observe the area under
the curves (AUC) of the ROCs to be close to 1, i.e., close to
perfect discrimination. Usually, the high specificity range
(Fig. 3B, insets) is of particular interest for large-scale anal-
ysis. At a false-positive rate of 0.05%, for example, we can
detect z90% of coding regions in all six test sets.

FIGURE 3. RNAcode results on comparative test sets from various species. (A) Score distributions of annotated coding regions and randomly
chosen noncoding regions in the Drosophila test set. (B) ROC curves for all six test sets. The full curve for all ranges of sensitivity/specificity from
0 to 1 is shown in the main diagrams. (Insets) The high specificity rate with false positive rates from 0 to 0.1. (C) Score distribution of noncoding
alignments. The same distribution of the Drosophila test set as shown in A is shown in more detail. The fitted Gumbel distribution is shown as
dotted line. (Upper right diagram) Comparison of the calculated P-values (via simulation and fitting of the Gumbel distribution) to the empirical
P-values, i.e., the actual observed frequencies in the test set.
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Accuracy of P-value estimates

The fact that the amino acid similarity scores used in our
scoring scheme are adjusted by the expected score under
a neutral null model ensures that the RNAcode score is
properly normalized with respect to base composition
and sequence diversity (phylogeny). In other words, the
RNAcode score is independent of sequence conservation and
GC content. Unlike other abstract classifiers, it is therefore
possible to interpret and compare scores in absolute terms.
However, even more important is an accurate estimate of the
statistical significance of a prediction. Similar to the well-
known statistics of local alignments (e.g., BLAST), RNAcode
scores follow an extreme value distribution (Fig. 3C). This
allows us to calculate P-values (see the section ‘‘Statistical
Evaluation’’).

To test the accuracy of this approach, we compared
P-values calculated by this procedure to empirically deter-
mined P-values on a set of noncoding Drosophila alignments.
To this end, we calculated the P-value for each alignment in
the set and compared each to the proportion of alignments
with better scores than the given one (Fig. 3C, inset). The
excellent agreement of the P-values calculated by RNAcode
and the actual observed frequencies confirms that the
Gumbel distribution is an accurate approximation of the back-
ground scores. In addition, it also confirms that the HKY85
nucleotide substitution model and our simulation procedure
accurately model real noncoding data.

Influence of parameter choice

The frameshift penalties in our algorithm are user-definable
parameters. We found that the algorithm is relatively robust
with respect to the particular choice of these parameters.
Three different sets of parameters gave almost identical re-
sults (Supplemental Fig. 1). However, ignoring information
from gap patterns altogether by setting all penalties to a
neutral value of zero leads to a drop in classification per-
formance. This shows that gap patterns do, indeed, hold
relevant information for classification although most in-
formation is contained in the substitution score, a result that
is consistent with previous reports (Lin et al. 2008).

Comparison to other comparative metrics

To further evaluate the performance of our new approach, we
have created a more extensive data set that systematically
covers alignments with varying numbers of sequences and
different conservation levels (see Materials and Methods).
On this data set, we have compared the RNAcode substitution
score to two other commonly used metrics that are based on
evolutionary signatures.

The ratio of nonsynonymous (dN) to synonymous sub-
stitutions (dS) gives information on the type of selection
acting on a protein-coding sequence (Yang and Nielsen

2000). A low dN/dS ratio indicates negative selection, which
was found to be a reliable way to detect coding regions in
pairwise (Nekrutenko et al. 2003) and multiple alignments
(Lin et al. 2008). The structure of the genetic code leads to a
periodic pattern of evolutionary rates (Bofkin and Goldman
2007), another characteristic of protein-coding regions that
was applied, for example, to assess the coding potential of
unannotated transcripts in S. cerevisiae (David et al. 2006)
and in human in the ENCODE pilot project (The ENCODE
Project Consortium 2007).

We calculated the dN/dS ratio for all alignments in our
data sets using a maximum likelihood method (Yang and
Nielsen 2000). To quantify the substitution rate periodicity,
we re-implemented a likelihood test described previously
(Materials and Methods) (The ENCODE Project Consor-
tium 2007). In essence, it compares a null model with equal
rates for each nucleotide position to an alternative model
allowing for a periodic pattern ‘‘. . .ABCABCABC. . .’’ of
rates. It thus captures the periodicity of the codons without
the need to explicitly determine the reading direction or
frame.

We found that the RNAcode substitution score consis-
tently outperforms the dN/dS ratio and the periodicity score
(Fig. 4). The difference is particularly pronounced for align-
ments of low sequence conservation. These alignments pre-
sumably contain more conservative amino acid substitu-
tions, which RNAcode—in contrast to the dN/dS ratio—can
take advantage of. Interestingly, the fact that the dN/dS ratio
and the periodicity score are calculated over a phylogenetic
tree for the complete alignment does not lead to better per-
formance than the RNAcode score, which is calculated from
pairwise comparisons.

Influence of alignment properties

The performance of RNAcode depends on the evolutionary
information contained in the alignment. The results shown
in Figure 4 illustrate this dependency in terms of alignment
size and sequence diversity. In the extreme case of pairwise
alignments with very low sequence diversity (90%–100%
mean pairwise sequence identity), the classification perfor-
mance is relatively poor (AUC < 0.9). Adding more se-
quences (N = 4) and higher sequence diversity (identities
below 90%) leads to much better performance (AUC �
0.99). Adding even more sequences (N = 8) results in further
improvement and almost perfect discrimination. We con-
clude that alignments with as few as four sequences that are
<90% identical will give satisfactory results in practical
applications of RNAcode.

The alignment method used might affect performance.
All tests in this study were run on genome-wide align-
ments generated by MultiZ (Blanchette et al. 2004). We
found that re-aligning with other commonly used align-
ment programs did not change our results (Supplemental
Fig. 2).
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Automatic annotation of Drosophila genome

The main purpose of RNAcode is to classify conserved
regions of unknown function, to discriminate coding from
noncoding transcripts, and to analyze the coding potential
in non-standard genes (e.g., short ORFs or dual-function
RNAs; see below for examples). RNAcode’s algorithm is built
on a direct statistical model that deliberately ignores any
species-specific information and does not resort to machine
learning. RNAcode is thus not optimized for the genome-
wide annotation of protein-coding genes in well-known
model organisms. However, to demonstrate that RNAcode
is also efficient for this purpose and to study our algorithm in
direct comparison to today’s best gene finders, we auto-
matically annotated chromosome 2L (�23 Mb) of the
D. melanogaster genome. We ran RNAcode with standard
parameters and a P-value cutoff of 0.001 on MultiZ align-
ments available at the UCSC Genome Browser and compared

the results to FlyBase (Drysdale and FlyBase Consortium
2008) annotation. Of the 10,535 annotated coding exons in
FlyBase, 9245 overlapped (by at least one nucleotide) with an
RNAcode prediction (sensitivity 87.8%). In total, RNAcode
predicts 13,166 high-scoring coding regions with p < 0.001.
Of these, 12,207 had overlap with one of the annotated exons,
i.e., 959 were false positives (specificity: 92.7%). This result is
surprisingly close to the currently best ‘‘full’’ gene finders. In
the same overlap statistics, CONTRAST (Gross et al. 2007)
achieves 91.0%/97.0% (sensitivity/specificity) and NSCAN
(Gross and Brent 2006) 91.8%/97.2%. These algorithms can
take advantage of species-specific features such as splice
site signals, codon usage, exon length distributions, etc., in-
formation that is not available when studying non-model
organisms or atypical genes (see below for examples). Our
results show that evolutionary events alone hold a consider-
able amount of information and that RNAcode efficiently
makes use of it.

FIGURE 4. Comparison of the RNAcode substitution score with other comparative metrics. The ROC curves show the classification
performance of the dN/dS ratio, substitution rate variation, and the average substitution score s used by RNAcode. Results are shown for
alignments of length 30 from vertebrates, archaebacteria, yeasts, and drosophilid species grouped by the number of sequences in the alignment
(N) and the mean pairwise sequence identity (MPI). The area under the ROC curve (AUC) as a measure for classification performance is shown
for all methods and sets.
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Novel peptides in E. coli

The E. coli genome was one of the first completely sequenced
genomes and is generally well annotated. However, even in
this compact and extensively studied genome, the protein
annotation is far from perfect. Protein gene annotation is
largely based on compositional analysis and homology with
known protein domains. The statistical power of these
criteria is limited for small proteins. Standard gene-finding
software is usually run with an arbitrary cutoff of 40–50
amino acids to avoid an excess of false positives and suffers
from the lack of training data of verified short peptides.

Here, we attempted to produce a set of predictions based
on evolutionary signatures only. We created alignments
of the E. coli reference strain K12 MG1655 to 53 other
completely sequenced enterobacteria strains including
Erwinia, Enterobacter, and Yersinia (see Materials and
Methods) (Supplemental Table 1). A screen of these align-
ments with RNAcode and a P-value cutoff of 0.05 resulted in
6542 high-scoring coding segments. We discarded all pre-
dictions that overlapped annotated proteins. For the remain-
ing RNAcode predictions, we tried to identify a complete
ORF (starting with AUG and ending in a stop codon) in the
E. coli reference sequence (see Materials and Methods). This
step is necessary because the boundaries of high-scoring
segments usually do not correspond exactly to the ORF (a
main problem here is the relatively short alignment blocks
produced by MultiZ, which do not always cover an ORF over
its full length). This procedure gave 35 potential new protein-
coding genes between 11 and 73 amino acids in length (see
Supplemental Table 2).

To assess the quality of these predictions, we first looked at
the overall sensitivity of our screen on already annotated
proteins. Of the 4267 RefSeq proteins, 3987 overlapped with
a RNAcode prediction (sensitivity 93.4%). Hemm et al.
(2008) revisited the annotation of small proteins in E. coli
and found 18 novel examples using a combination of dif-
ferent bioinformatics and experimental methods. In a set of
18 new and 42 literature-curated proteins between 16 and 50
amino acids compiled by Hemm et al. (2008), 30 (50.0%)
overlap with RNAcode predictions. These results show that
our screen not only gives almost perfect results on typical E.
coli proteins, but also recovers a substantial fraction of small
proteins that are particularly difficult to detect. Moreover,
our final list of 35 candidates for novel proteins is rather short
and shows the high specificity in this screen.

For additional support, we compared our list of pre-
dicted candidates with publicly available transcriptome data
(Tjaden et al. 2002; Cho et al. 2009). These data sets cover
a broad range of experimental conditions and therefore
reflect a comprehensive genome-wide transcription map of
E. coli. Eight candidates (23%) overlap with regions that show
clear evidence for transcription (Supplemental Table 2).

To further substantiate our predictions, we used mass
spectrometry (MS) as a direct experimental test for the ex-

istence of the novel peptides in E. coli cells. MS is particularly
well suited to screen simultaneously for a large set of proteins
without resorting to cloning or recombinant expression
(Aebersold and Mann 2003). Many, but by no means all,
proteins of an organism are expressed and detectable under
the actual applied conditions by current MS-based proteo-
mics. Detecting small peptides in complex protein mixtures
is particularly challenging for various reasons. Compared to
the overall protein expression level, short peptides often
show low abundance, they are easily lost using standard
proteomic protocols, and only a limited number of pro-
teolytic peptides can be obtained (Klein et al. 2007). To meet
these challenges, we developed a protocol that is specifically
optimized for small proteins by avoiding sample loss by
a simple extraction method and a combined purification
and enrichment step using filtration (Müller et al. 2010;
Materials and Methods). In order to improve the reliability
of our results, we applied two different buffer systems for
extractions, and for an improved coverage of peptides, we
used two different proteases. This strategy led to an increased
detection rate as well as to higher confidence in the hits by
confirmation in independent experiments.

Using this protocol, we were able to identify 455 small
molecular weight proteins (MW < 25 kDa) representing 27%
of the 1672 known E. coli proteins below this size listed in the
SWISS-PROT protein database (UniProt Consortium 2010).
In a search against the list of 35 newly predicted proteins, we
obtained evidence for the expression of seven candidates
(20%) (Supplemental Table 3). For the rest of the candi-
dates, we cannot distinguish whether they are false-positive
RNAcode predictions or false negatives in the MS experi-
ment. However, considering that the success rate of the MS
experiments is roughly the same on known and predicted
proteins (27% and 20%, respectively), we would expect a
good fraction of our candidates to be true proteins not
detectable by this particular growth conditions and MS
approach.

Although it is not possible to give a conclusive statement
on all predictions without additional experiments, compel-
ling evidence from evolutionary analysis, transcriptomics
data, and the MS experiments strongly suggests that several
of the candidates are bona fide proteins. Figure 5 shows two
examples in more detail. In both cases, RNAcode reported
short but statistically highly significant (p � 10�8 and p �
10�6, respectively) signals between two well-annotated pro-
teins. The loci overlap with transcribed regions as deter-
mined by Cho et al. (2009). In addition, our MS experiments
detected several proteolytic fragments that can be assigned to
these proteins.

The coding potential of ‘‘noncoding’’ RNAs

In addition to assisting and complementing classical pro-
tein gene annotation strategies, a major area of application
of RNAcode is the functional classification of individual
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FIGURE 5. Examples of novel short proteins in Escherichia coli. Sequence, genomic context, the high-scoring RNAcode segment, and fragment
ion mass spectra are shown. Genome browser screenshots were made at http://archaea.ucsc.edu (Schneider et al. 2006). Arrows within annotated
elements indicate their reading direction. The shading of mutational patterns was directly produced by the RNAcode program. The full species
names for the abbreviations can be found in Supplemental Table 1. The mass spectra are shown for two selected proteolytic peptides, which were
scored with 80% probability and used in combination with the detection of additional peptides to confirm the expression of the candidates (for
details, see Supplemental Table 3). The proteins shown in A and B correspond to candidates 28 and 19, respectively, listed in Supplemental Tables
2 and 3.
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conserved or transcribed regions. As an illustrative example,
we analyzed the bacterial RNA C0343, which is listed in the
Rfam database (Gardner et al. 2009) as noncoding RNA
(ncRNA) of unknown function. The RNA originally detected
by Tjaden et al. (2002) is also detected as transcript in the
study of Cho et al. (2009) (Fig. 6). In our screen of the E.
coli genome, we found a high-scoring coding segment with
p � 10�9 overlapping the C0343 ncRNA. The prediction
corresponds to a potential ORF encoding 57 amino acids
(Fig. 6A; candidate 8 in Supplemental Table 2). Analysis
of the secondary structure using RNAz (Gruber et al. 2010)
does not give any evidence for a functional RNA. Given
the strong coding signal, we conclude that the ‘‘noncoding
RNA’’ C0343 is, in fact, a small protein. This is also
confirmed by our MS experiments that detected proteo-
lytic fragments of this protein in E. coli cells (Supplemental
Table 3).

To test RNAcode on another example from Rfam, we
analyzed RNAIII, an ncRNA known to regulate the expres-
sion of many genes in Staphylococcus aureus (Boisset et al.
2007). In addition to its role as regulatory RNA, the RNAIII
transcript also contains an ORF coding for the 26-amino-
acid-long delta-haemolysin gene (hld). We ran RNAcode
with standard parameters on the Rfam seed alignment.
It reports one high-scoring segment below a P-value cutoff
of 0.05, which corresponds to the hld gene (Fig. 6B). The
annotated alignment shows that the ORF is highly conserved
with only few mutations. Nevertheless, these few mutations
are sufficient to yield a statistically significant signal that
allows RNAcode to locate the correct ORF. Again, we also
ran RNAz on the alignment, which reports a conserved
RNA secondary structure with a probability of 0.99. The
combination of RNAcode and RNAz clearly shows the
dual function of RNAIII. This example demonstrates how
RNAcode can assist the classification of ncRNAs in partic-
ular for non-standard and ambiguous cases (Dinger et al.
2008).

As another example, we analyzed the SR1 RNA of Bacillus
subtilis that was originally found by Licht et al. (2005) (Fig.
6C). Although the investigators noticed a potential short
ORF in the transcript, the corresponding peptide could not
be detected. Further experiments (Heidrich et al. 2006, 2007)
clearly showed a function of SR1 in the arginine catabolism
pathway by RNA/RNA interaction with the ahrC mRNA,
thus confirming its nature as functional noncoding RNA.
Using RNAcode, we found clear evolutionary evidence
for a well-conserved small peptide deriving from SR1 (p �
10�12), arguing for a role as dual-function RNA. Only
recently, Gimpel et al. (2010) showed that the gapA operon
is regulated by a short peptide encoded in SR1, which exactly
corresponds to the high-scoring coding segment found by
RNAcode (Fig. 6C).

Finally, we analyzed the tarsal-less gene mentioned in the
Introduction (Galindo et al. 2007; Kondo et al. 2007). The
small peptides produced by this unusually organized poly-

cistronic gene were overlooked originally, and it was thought
to be noncoding. Analysis using RNAcode predicts three
significant high-scoring coding segments (P-values = 2.4 3

10�5, 5.5 3 10�5, 0.010) in this transcript, covering one
known peptide and partially covering a second. Using a re-
laxed P-value cutoff, four of the five known peptides are
identified (Supplemental Fig. 3).

Implementation and performance

RNAcode is implemented in ISO C. The program takes an
alignment in either CLUSTAL W format or MAF format
(popularized through the UCSC Genome Browser). It out-
puts relative coordinates and/or genomic coordinates of
predicted coding regions, the raw score, and the P-value in
either a human readable tabular format or as standard GTF
annotation format. In addition, RNAcode offers an option to
generate color annotations of the alignment. This kind of
visualization helps to quickly identify mutational patterns,
which allows visual discrimination between alignments of
high and low coding potential. RNAcode produces publica-
tion-quality vector graphics in Postscript (EPS) format (see,
e.g., Figs. 5, 6). To generate the color annotated images, it is
not enough to know just the region and score of the high-
scoring segments, but we also have to infer the state path that
led to this prediction. Therefore, we have also implemented
the backtracking step for the dynamic programming algo-
rithm. In addition to the mutation patterns, this allows
annotation of regions that are likely to be out-of-phase and
the location of potential sequence errors inferred by the
algorithm.

The dynamic programming algorithm used to score an
alignment of N sequences with n columns requiresO(N � n2)
CPU time and memory. Large genomic alignments are
therefore broken up into windows of several hundred nu-
cleotides in length in practical applications (see Materials and
Methods). There is nothing to be gained by feeding RNAcode
with alignment windows that are longer than actual contig-
uous pieces of coding sequence.

The analysis of 1 Mb of Drosophila MultiZ alignments
with up to 12 species (10,426 alignment blocks) took 2 h and
6 min on a single Pentium 4 CPU running at 3.2 GHz. This
includes calculation of P-values with 100 randomizations
for all predictions. However, it is generally not of interest to
calculate exact P-values for hits that are clearly not statisti-
cally significant. Therefore, we added an option to stop the
sampling procedure as soon as too many of the random-
izations score better than the original alignment (e.g., for
1000 randomizations and a significance level of p < 0.05,
the sampling would stop after 50 random alignments with
a better score than the native alignment). Depending on the
density of coding regions in the input alignments, this simple
heuristic can speed up the process considerably. Using this
option, the 1 Mb of fly alignments could be scored in 1 h and
4 sec without any loss in sensitivity or specificity.
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FIGURE 6. Examples of ambiguities between the coding and noncoding nature of three RNAs. (A) The RNA C0343 from E. coli is listed as
a noncoding RNA in Rfam. However, it overlaps with an RNAcode-predicted coding segment. While there is no evidence for a RNA secondary
structure according to the RNAz classification value, the highly significant RNAcode prediction and MS experiments suggest that C0343 is an
mRNA and not an ncRNA. (B) RNAIII of Staphylococcus aureus (Rfam RF00503) contains a short ORF of a hemolysin gene. RNAcode predicts
the open reading frame at the correct position, while RNAz clearly detects a structural signal. These results are consistent with the well-established
dual nature of this molecule. (C) The Bacillus subtilis RNA SR1 is known to have function on the RNA level by targeting an mRNA. RNAcode
detects a short ORF that was shown by Gimpel et al. (2010) to produce a small peptide and is thus another example of a dual-function RNA.
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DISCUSSION

We have introduced RNAcode as a comparative genomics
tool for the identification of protein-coding regions. Inspired
by our own experiences in analysis of comparative sequence
data in the context of ncRNA annotation, the design em-
phasized practicability and robustness and focused on the
single task of discriminating protein-coding from noncoding
regions. RNAcode therefore is not a gene-finder. By design, it
neither uses nor predicts any features related to transcript
structure such as splice sites, processing sites, or termination
signals. Its direct statistical model is based on universal
evolutionary signatures of coding sequence only. RNAcode is
therefore a true ab initio approach that can be applied to data
from all living species. In fact, it does not need any informa-
tion on the source of its input data, facilitating, e.g., the
application to meta-genomics data (Meyer et al. 2009; Shi
et al. 2009).

We evaluated a variety of alternative possible metrics and
algorithms, but found that pairwise BLOSUM-derived sub-
stitution scores together with the relatively simple gap
scoring scheme presented was the most efficient solution.
We were surprised that this algorithm also outperformed
more sophisticated phylogenetic models acting on the whole
tree. An exact dynamic programming scheme is used to
determine high-scoring coding blocks in the input alignment
in a way that is robust against sequence and alignment errors.

Although we do not include any species-specific features
such as codon usage or splicing signals, the approach shows
remarkable accuracy. Without any training or specifically
optimizing the parameters, RNAcode could successfully dis-
criminate between coding and noncoding regions in verte-
brates, insects, nematodes, yeasts, bacteria, and even archaea
that show a highly biased GC content. We also showed that
it can reproduce accurately the current annotation in D.
melanogaster and identified novel peptides in E. coli that have
previously evaded annotation in this intensively studied
organism. Case studies on individual examples of ncRNAs
showed that RNAcode can help to identify mis-annotated
ncRNAs and, in combination with RNAz, can identify dual-
function RNAs.

The high discrimination performance in combination
with accurate P-values, visualization, and the readily avail-
able open source implementation make RNAcode, we hope,
an attractive and easy-to-use solution for many different
applications in comparative genomics.

MATERIALS AND METHODS

Implementation details

To estimate the phylogenetic tree for the null model, we use a
maximum likelihood implementation provided by PHYML
(Guindon and Gascuel 2003). To simulate random alignments
along this tree, we use code from Seq-Gen (Rambaut and Grassly
1997).

As a technical detail, we note that our simulation procedure
does not simulate gap patterns. Instead, we simulate the align-
ments without gaps and introduce the original gap patterns
afterward. The P-values for true coding regions are thus conser-
vative because we use the coding gap pattern also for the back-
ground. There are algorithms to simulate the evolution of insertions
and deletions. However, it is hard to estimate realistic parameters for
these models, and thus we chose this conservative approach that has
been successfully used in other applications (Goldman et al. 1998;
Gesell and Washietl 2008).

We used the versions of the BLOSUM matrices that are
provided with the EMBOSS package (Rice et al. 2000). The
current implementation of RNAcode includes the EMBOSS62
and the EMBOSS90 matrices.

For fitting the extreme value parameters to the empirical score
distributions, we used an implementation from Sean Eddy’s
HMMER package (http://hmmer.janelia.org).

Alignment data and benchmarks

Multiple sequence alignments were downloaded from the UCSC
Genome Browser (http://genome.ucsc.edu; http://archaea.ucsc.edu).
We used the following assemblies, alignments, reference annota-
tions, and (if applicable) selected chromosomes, respectively: H.
sapiens: hg18, multiz18, UCSC Genes, chr22; D. melanogaster: dm3,
multiz15, FlyBase Genes (version 5.12), chr2L; C. elegans: ce6,
multiz6, WormBase Genes (version WS190), chr5; S. cerevisiae:
sacCer1, multiz7, SGD Genes (version from 01/30/2009), chr4;
E. coli: eschColi_K12, multizEnterobacteria, GenBank RefSeq; M.
jannaschii: methJann1, multizMethanococcus, GenBank RefSeq.
All data from UCSC were downloaded around the middle of 2009.

To generate the positive test set of known exons, we first ex-
tracted alignment blocks corresponding to the annotated exons in
the reference annotation. If an exon was covered by several blocks,
these were merged. If the resulting alignment was longer than 200
columns, we only used the first 200 columns. As negative control,
we selected a comparable number of random blocks that do not
overlap annotated coding exons or repeats.

For the tests shown in Figure 4, we selected from the complete
set of coding exons a balanced subset of alignments of varying
window length (30 nt, 60 nt, 90 nt), varying number of sequences
(N = 2, 4, 8), and mean pairwise identity (60%–100%). We
discarded alignment windows that contained gaps and stop
codons in any of the sequences so that they could be directly
analyzed using PAML. It is unclear how to handle frameshifts and
internal stop codons when calculating a phylogenetic model using
PAML, which is not gene-finding software per se. By limiting the
analysis to in-frame-aligned sense codons, we ensure a fair com-
parison to RNAcode that can take advantage of information in
gap patterns and stop codons. To calculate the dN/dS ratio, we
used the codeml program with the default codon model (‘‘model
0’’). The periodicity score is calculated as the log-likelihood ratio
between two models. As the null model, we used an HKY nu-
cleotide substitution model (‘‘model 4’’ in PAML’s baseml) with
equal rates for each site. The alternative model considers three rate
classes in a periodic pattern ‘‘. . .ABCABCABC. . .’’. The maximum
likelihood tree under this model was calculated using the partition
model functions of baseml. We used the option ‘‘Mgene = 0’’
keeping all other parameters (k and p) of the HKY model con-
stant in all three rate classes. The results in Figure 4 are shown for
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length = 30; sets of length 60 and 90 show qualitatively similar
results but saturate earlier to perfect discrimination (data not
shown).

E. coli screen

For the screen of novel proteins in the E. coli genome, we generated
multiple sequence alignments of our own because we noticed that
the available alignments at UCSC missed many known coding
regions. Moreover, we wanted to improve the evolutionary signal
by adding additional species. We used the MultiZ alignment
pipeline to align 54 species available from GenBank (Supplemental
Table 1).

We then screened the alignments using the default parameters
of RNAcode and a P-value cutoff of 0.05. This resulted in 20,528
high-scoring coding segments. This number is much higher than
the actual number of ORFs mainly because the MultiZ alignments
of such a high number of species fragmented the ORFs into rel-
atively small blocks. We combined high-scoring coding segments
if they were closer than 15 nt apart and in the same frame, yielding
6542 regions. We discarded all regions that overlapped with an
annotated ORF, leaving 229 regions. For these regions, we inferred
potential ORFs starting with an ATG and ending in a canonical
stop codon. If we did not find an ORF within the RNAcode high-
scoring segment, we extended the prediction by 51 nt upstream
and downstream and repeated the search. We found 35 loci with
a potential ORF (Supplemental Table 2).

Transcriptomics data

The analysis of Cho et al. (2009) represents a comprehensive
transcription map for E. coli. The corresponding supplemental
data were downloaded from http://systemsbiology.ucsd.edu/
publication and the Gene Expression Omnibus web page http://
www.ncbi.nlm.nih.gov/geo/. The data were converted into BED
and WIG formatted files and loaded as custom tracks into the
UCSC for visualization and comparison to the novel predicted
proteins.

Mass spectrometry experiments

Cell growth

E. coli strain K12 cells were grown in LB medium to stationary
phase. One liter of fresh medium was inoculated with 100 mL of
a starter culture grown under the same conditions. Cells were
collected by centrifugation (10 min, 8000g, 4°C).

Protein preparation

Cells were resuspended in urea lysis buffer (40 mL, 8 M urea, 10
mM DTT, 1 M NaCl, 10 mM Tris/HCl at pH 8.0) (Klein et al.
2007) or acidic lysis buffer (40 mL, 0.1% TFA) (Dai et al. 1999)
and disrupted using ultrasonication (5 min, 50% duty cycle,
Branson Sonifier 250; Emerson, USA). Cell debris was removed
by centrifugation (15 min, 10,000g, 4°C). High-molecular-weight
proteins were depleted by centrifugation through a filter mem-
brane (cutoff molecular weight 50 kDa, Pall Macrosep 50K; Pall
Life Science, USA) (Harper et al. 2004). The flow-through was
split into aliquots of 1200 mL. Where TFA was used for cell lysis,
the samples were titrated to neutral pH by adding NH4HCO3

(final concentration 250 mM), and protein disulfide bonds were
reduced by adding DTT (10 mM). Cysteine alkylation was
conducted by adding 2-iodoacetamide (51.5 mM) and incubation
for 45 min at room temperature in the dark.

Gel electrophoresis

Prior to protein separation by 1D gel electrophoresis, the proteins
were desalted and concentrated by TCA precipitation (final
concentration 20% [w/v]). The protein pellet was redissolved
with SDS loading buffer (2% [w/v] SDS, 12% [w/v] glycerol, 120
mM 1,4-dithiothreitol, 0.0024% [w/v] bromophenol blue, 70 mM
Tris/HCl) and adjusted to neutral pH by adding 103 cathode
buffer solution (1 M Tris, 1 M Tricine, 1% [w/v] SDS at pH 8.25).
Gel electrophoresis was performed according to Schägger (2006)
(with slight modifications). In brief, a 20% T, 6% C separation
gel combined with a 4% T, 3% C stacking was used. As protein
marker, a prestained low-molecular-weight protein standard (mo-
lecular weight range 1.7 kDa–42 kDa, multicolor low-range pro-
tein ladder; Fermentas, Germany) was applied. For each cell lysis
experiment, eight aliquots were used, of which two were stained
with colloidal Coomassie, two were stored as a reserve, and four
were used for further analysis. Nine gel slices per lane were excised
between 1 and 25 kDa and used for in-gel digestion.

Protein digestion

The gel slices were washed twice with water for 10 min and once
with NH4HCO3 (10 mM). The low-molecular-weight proteins
were digested by adding modified porcine trypsin (100 ng; Sigma-
Aldrich) or endoprotease AspN (100 ng; Sigma-Aldrich) in NH4HCO3

(10 mM, 30 mL volume). Digestion was performed overnight at
37°C. The supernatant and the solutions from two subsequent gel
elution steps (first elution step 40% [v/v] acetonitril, second elution
step 80% [v/v]) were collected and united. The samples were dried
using vacuum centrifugation.

Mass spectrometry

For validation of the existence of the predicted protein by mass
spectrometry, an unbiased bottom-up approach and a targeted
analysis were applied. Peptides were reconstituted in 0.1% formic
acid. Samples were injected by the autosampler and concentrated
on a trapping column (nanoAcquity UPLC column, C18, 180 mm 3

2 cm, 5 mm; Waters) with water containing 0.1% formic acid at
flow rates of 15 mL/min. After 4 min, the peptides were eluted
onto the separation column (nanoAcquity UPLC column, C18, 75
mm 3 250 mm, 1.7 mm; Waters). Chromatography was per-
formed with 0.1% formic acid in solvents A (100% water) and B
(100% ACN). Peptides were eluted over 90 min with an 8%–40%
solvent B gradient using a nano-HPLC system (nanoAcquity;
Waters) coupled to an LTQ-Orbitrap mass spectrometer (Thermo
Fisher Scientific). For an unbiased analysis, continuous scanning
of eluted peptide ions was carried out between m/z 350 and 2000,
automatically switching to CID-MS/MS mode upon detection of
ions exceeding an intensity of 2000. For CID-MS/MS measure-
ments, a dynamic precursor exclusion of 3 min was applied. For
a targeted analysis, a scan range of m/z = 400–1800 was chosen.
CID-MS/MS measurements were triggered if a precursor of a
given inclusion list was measured with an error of <20 ppm. The
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inclusion lists contained all theoretically proteolytic peptides
within a molecular weight range of 600 Da to 4000 Da of all
predicted proteins considering methionine oxidation, cysteine
carbamidomethylation, and up to one (for trypsin) or three (for
AspN) proteolytic miscleavages.

Data analysis

Raw spectra were analyzed with ProteomeDiscoverer 1.0 software
(Thermo Fisher Scientific, USA). Mascot (Perkins et al. 1999),
Sequest (Yates et al. 1995), and X!Tandem (Craig and Beavis 2004)
searches were conducted on a protein sequence database, which
contains all sequences predicted by RNAcode (RNAcode database)
as well as on an extended SWISS-PROT database containing pro-
tein sequences predicted by RNAcode and all validated proteins
of Hemm et al. (2008). The searches were performed tolerating up
to one proteolytic missed cleavage, a mass tolerance of 7 ppm for
precursor ions, 0.5 Da for MS/MS product ions allowing for
methionine oxidation (optional modification), and cysteine car-
bamidomethylation (fixed modification). Scaffold (version Scaffold_
2_06_00; Proteome Software Inc.) was used to validate MS/MS-
based peptide and protein identifications. Peptide identifications
were accepted if they could be established at >50% probability as
specified by the Peptide Prophet algorithm (Keller et al. 2002).
Protein identifications were categorized to be unambiguously iden-
tified if they could be established at >99% probability and con-
tained at least two identified peptides that had to achieve a score
higher than 80%. Less stringent evidence for proteins was assigned
if two peptides were observed with at least one peptide scored
higher than 80% and the protein identification probability exceeds
90%. Protein probabilities were assigned by the Protein Prophet
algorithm (Nesvizhskii et al. 2003). Additionally, the fragment
spectra were checked manually.

Availability

RNAcode is open source software released under the GNU general
public license version 3.0. The latest version is available at http://
wash.github.com/rnacode.

The package includes a ‘‘Getting Started’’ guide that describes
all steps involved in using RNAcode, including obtaining an
alignment for analyses that start with a single sequence that is to
be assessed for coding potential.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article. Additional data
files can be downloaded from http://www.tbi.univie.ac.at/papers/
SUPPLEMENTS/RNAcode.
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APPENDIX: DYNAMIC PROGRAMMING
ALGORITHM

In the following, we formally describe the algorithms implemented
in RNAcode. The core algorithm is a dynamic programming
algorithm to find the optimal score for a pairwise alignment from
all possible interpretations of the aligned sites as in-frame codons,
out-of-frame codons, or sequence errors (cf. Fig. 2). The scores
from pairwise alignments are then combined to find optimal
scoring segments in a multiple alignment.

We start from a fixed multiple sequence alignment A and assume
that the first row is the reference sequence. The projected pairwise
alignment of the reference sequence with sequence k is denoted by Ak.
Now consider a position i in the reference sequence. It corresponds
to a uniquely determined alignment column a(i), which, in turn,
determines ik , the last position of sequence k that occurs in or before
alignment column a(i).

Suppose i is a third codon position. Then the alignment block
A [a(i � 3) + 1, a(i)] corresponds to the (potential) codon ending
in i. We define a score:

sk
i = score A

k a i� 3ð Þ+ 1;a ið Þ½ �
� �

: ð3Þ

In the ungapped case, sk
i is the normalized BLOSUM score

that was introduced in the main text. Let gk
i denote the number of

gaps in sequence k in this block. We observe that sequences 1
(reference) and k stay in-frame if and only if gk

i � g1
i [ 0; mod 3:

Otherwise, the two sequences change their phase within this
interval. The local shift in frame between sequence k and the
reference sequence is therefore:

zk
i =

0 if gk
i � g1

i [ 0 mod 3
+ 1 if gk

i � g1
i [ 1 mod 3

�1 if gk
i � g1

i [ 2 mod 3

8<
: ð4Þ

As discussed in the main text, alignment errors or sequence
errors may destroy coherence between aligned codons and give
zk

i 6¼ 0: Therefore, we introduce the penalties (negative scores) V

for switching from in-frame to out-of-frame or back, as well as v

for every out-of-frame codon in between, and D for silently
changing the phase and assuming subsequent codons are still in-
frame (sequencing error). All penalties are negative; in particular,
1
2 D<V<v<0: Furthermore, we set sk

i =�‘ if zk
i 6¼ 0 to mark the

fact that we lose coherence of the frame and force the algorithm to
select a frameshift or sequence error penalty and not a substitution
score that would be meaningless for out-of-frame triples.

Having defined all possible states and the associated scores, we
now describe a dynamic programming algorithm to calculate the
optimal score for a pairwise alignment. Let S0;k

b;i be the optimal
score of the pairwise alignment A

k[a(b), a(i)] subject to the
condition that i is a third codon position and sequence k ends in-
frame, i.e., also with a third codon position. Analogously, we
define S+;k

b;i and S�;kb;i for those alignments where sequence k ends
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in the first and second codon position, respectively. Clearly, we
initialize Sx;k

b;b = 0 for x 2 f0;+;�g:
The entries in these matrices satisfy the following recursions:

S0;k
b;i =

S0;k
b;i�3 + sk

i if zk
i = 0

max
S0;k

b;i�3 + D;

S�k
b;i�3 + V

(
if zk

i = +1

max
S0;k

b;i�3 + D;

S�k
b;i�3 + V

(
if zk

i =�1

8>>>>>>><
>>>>>>>:

ð5Þ

The expressions for the two out-of-frame scores are analogous.
We show only one of them explicitly:

S +;k
b;i =

S +;k
b;i�3 + v if zk

i = 0

max
S0;k

b;i�3 + V

S +k
b;i�3 + D

(
if zk

i = +1

max
S +;k

b;i�3 + D

S�k
b;i�3 + V

(
if zk

i =�1

8>>>>>>><
>>>>>>>:

ð6Þ

A state diagram corresponding to the above algorithm is shown
in Figure 7. As presented here, the algorithm assumes that any
sequence errors (penalized by D) occur in sequence k, not in the
reference.

Now we determine the optimal score Sbi of the multiple
alignment A[a(b), a(i)], subject to the condition that b is a first
codon position and i is a third codon position.

Sbi = max

+
k >1

max
x2f0;+ ;�g

Sx;k
b;i

Sb;i�1 + D

Sb;i�2 + D

8><
>: ð7Þ

The second and third terms here correspond to frameshifts in
the reference sequence.

It is easy now to determine the best scoring segment(s) of A

from the maximal entries in the matrix (Sbi). If we were to score
only pairwise alignments, it would be possible to use a local
alignment-like algorithm that does not keep track of the beginning
of the segment, b. In the multiple alignment, however, the
individual pairwise alignments are constrained by the requirement
that a coding segment starts in the same column for all sequences,
forcing us to keep track of b explicitly. The algorithm scales as
O(N � n2) in time and space, where n is the length of the reference
sequence and N the number of rows in the alignment.
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