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Abstract
Quantitative imaging methods using high-frequency ultrasound (HFU) offer a means of
characterizing biological tissue at the microscopic level. Previously, high-frequency, three-
dimensional (3D) quantitative-ultrasound (QUS) methods were developed to characterize 46
freshly-dissected lymph nodes of colorectal-cancer patients. 3D ultrasound radio-frequency data
were acquired using a 25.6-MHz center-frequency transducer and each node was inked prior to
tissue fixation to recover orientation after sectioning for 3D histological evaluation. Backscattered
echo signals were processed using 3D cylindrical regions-of-interest (ROIs) to yield four QUS
estimates associated with tissue microstructure (i.e., effective scatterer size, acoustic
concentration, intercept, and slope). These QUS estimates, obtained by parameterizing the
backscatter spectrum, showed great potential for cancer detection. In the present study, these QUS
methods were applied to 112 lymph nodes from 77 colorectal and gastric cancer patients. Novel
QUS methods parameterizing the envelope statistics of the ROIs using Nakagami and
homodyned-K distributions also were developed; they yielded four additional QUS estimates. The
ability of these eight QUS estimates to classify lymph nodes and detect cancer was evaluated
using ROC curves. An area under the ROC curve of 0.996 with specificity and sensitivity of 95%
were obtained by combining effective scatterer size and one envelope parameter based on the
homodyned-K distribution. Therefore, these advanced 3D QUS methods potentially can be
valuable for detecting small metastatic foci in dissected lymph nodes.
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INTRODUCTION
High-frequency (i.e., >15 MHz) ultrasound (HFU) permits investigating biological tissue at
microscopic levels with spatial resolutions on the order of 100 μm. Recent, successful HFU
studies have permitted imaging shallow or low-attenuation tissues for biomedical
applications. For instance, HFU already has been successfully used for small-animal
(Turnbull, 2000; Turnbull and Foster, 2002; Aristizábal et al, 1998; Mamou et al, 2009a),
ocular (Silverman et al, 2008, 1995), intravascular (de Korte et al, 2000; Saijo et al, 2004),
and dermatological imaging (Vogt and Ermert, 2007; Huang et al, 2007).

Our group has demonstrated the ability of quantitative ultrasound (QUS) to characterize
lymph-node tissues from cancer patients (Mamou et al, 2010). Reliable determination of the
presence or absence of metastatic cancer in lymph nodes is essential for staging disease and
planning its treatment. Most human lymph nodes have sizes ranging from 2 to 10 mm in
diameter and are sufficiently small to be imaged in their entirety in three dimensions (3D)
using HFU. The long-term objective of our lymph-node studies is to develop QUS imaging
methods that are capable of detecting small nodal metastases using echo-signal data from
freshly-excised nodes for staging disease in patients who have known primary cancers in
neighboring organs (e.g., breast, colon, stomach, etc.). In routine pathology procedures, this
method would direct the pathologist to suspicious regions that might be overlooked in
conventional histology. In sentinel-node procedures, the method would serve as a basis for
identifying sentinel nodes, detecting metastatic cancer, and initiating formal (i.e., complete)
node dissections when sentinel nodes are positive for cancer. To achieve this long-term
objective, QUS studies that were previously undertaken successfully (Mamou et al, 2010)
have been improved, refined to include envelope statistics, and applied to a larger number of
lymph nodes.

This manuscript focuses on two different categories of QUS methods. The first category
quantifies the backscattered spectrum deduced from the radio-frequency (RF) echo signals
and the second category quantifies the statistics of the envelope-detected echo signals. The
spectral methods were first established by Lizzi et al (1983), and since this foundation work,
many others (Insana et al, 1990; Feleppa et al, 1986; Oelze et al, 2002; Oelze and Zachary,
2006; Mamou et al, 2008, 2010) have pushed this field forward and developed methods for
tissue characterization and cell characterization (Kolios et al, 2002; Baddour et al, 2005). In
these studies, the frequency-dependent backscattered information was used to assess tissue
microstructural properties quantitatively and relate them to histological properties (Insana et
al, 1990; Feleppa et al, 1986; Oelze et al, 2002). In particular, our group recently has shown
promising results using backscatter-derived QUS estimates for the detection of metastases in
freshly-dissected lymph nodes from colorectal-cancer patients (Mamou et al, 2010).

Many QUS studies have also been performed by modeling the envelope statistics for tissue
characterization. These methods fit a specific distribution model to the observed distribution
of the envelope-detected signals statistics. QUS estimates are obtained from the fit
parameters, and similar to the QUS methods from backscatter quantification, the hypothesis
is that these envelope-statistics-based QUS estimates provide a means of distinguishing
between different tissue types. Many different distribution models (e.g., Rayleigh, K,
Nakagami, etc.) have been used for ultrasound tissue characterization (Wagner et al, 1987;
Shankar et al, 2000, 2001; Shankar, 2000). In a recent HFU study, the generalized gamma
distribution showed promise at detecting structural changes during cell death in acute
myeloid leukemia cells (Tunis et al, 2005).

In our studies, we decided to use the homodyned-K (HK) distribution. This distribution is
more involved computationally, but it can model more-complex ultrasound scattering
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situations (Dutt and Greenleaf, 1994; Hao et al, 2002). All the previously-mentioned
distribution models, their relationships to one another, and their physical interpretation
recently have been theoretically studied and described (Destrempes and Cloutier, 2010); this
study concluded that the HK distribution is the only model for which the distribution
parameters retain a physical meaning in the case where the diffuse scattering vanishes.
Additionally, the HK distribution can model low scatterer densities correctly and also can
quantify the coherent component in backscattered signals that originates from organized
(sub-resolution) scatterers (Destrempes and Cloutier, 2010). Because of its analytical
complexity, the HK distribution model has been criticized (Shankar, 2000; Eltoft, 2005; Tsui
and Chang, 2007), and its use has been somewhat limited while other, more analytically
tractable models such as the Nakagami distribution (Shankar, 2000; Tsui and Chang, 2007),
Weibull distribution (Raju and Srinivasan, 2002), Rician inverse Gaussian distribution
(Eltoft, 2005), and the generalized gamma distribution (Raju and Srinivasan, 2002) have
been used. The HK distribution is defined by three independent parameters: 1) the μ
parameter, which quantifies the number of scatterers per resolution cell, 2) the s parameter,
which quantifies the coherent signal, and 3) the σ parameter, which quantifies the incoherent
signal. A fourth parameter, the k parameter, is the ratio of the coherent to in-coherent signal
components. The richness of the parameterization improves interpretation of results when
compared to estimates from other distributions, e.g., the Nakagami distribution, which is a
function of only two parameters. Nevertheless, in a recent study, the HK distribution was
used in conjunction with computationally-extensive algorithms to characterize cardiac
tissues (Hao et al, 2002). More recently, a new parameter-estimation algorithm for the HK
distribution was developed that is efficient and robust (Hruska et al, 2009; Hruska and
Oelze, 2009). This improved parameter-estimation algorithm provides more accurate
information to elucidate better the relationships between the envelope statistics and the
underlying structures responsible for the signals. In the present study, the ability of the HK
distribution to quantify lymph-node properties was assessed and fit parameters using the
Nakagami distribution were also obtained for comparison. The Nakagami distribution had
shown success in characterizing breast masses and was used here as a reasonable, high-
quality reference (Shankar et al, 2001; Tsui et al, 2010).

The current standard histopathology procedure for lymph-node evaluation has many
limitations, and the possibility of detecting easily-overlooked but clinically significant small
metastases, particulary metastases that have a size between 0.2 and 2 mm) in excised lymph
nodes using QUS approaches in quasi real-time, could be valuable in mitigating these
limitations. Currently, most lymph nodes dissected from a cancer patient either are sent to
pathology for a postoperative thorough histological preparation and evaluation, or they first
undergo a rapid intraoperative “touch-prep” procedure (e.g., for sentinel nodes of breast-
cancer patients). Neither approach is able to detect all small metastases in lymph nodes,
particularly micrometastases. Furthermore, the touch-prep approach produces a large
number of false-negative determinations because the pathologist only examines cells
exfoliated from two adjacent surfaces of the lymph node, and the cells derived from these
surfaces may not reveal the presence of a small cancerous region within a metastatic node.
Additionally, a thorough histology preparation takes several days to produce results because
several thin sections are evaluated by a pathologist, but it suffers fewer false-negative
determinations.

The remainder of the present paper is organized into the following three sections: the
Methods section briefly reviews our methods from surgery and lymph-node preparation to
QUS image formation and presents the new methods for characterization based on envelope
statistics ; the Results section presents results from the 112 lymph nodes studied to date; and
finally, the Discussion section presents a detailed overview of the study to date and the next
steps of the study.
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METHODS
Surgery, lymph-node preparation, and ultrasound data acquisition

The surgery, lymph-node preparation and ultrasound data-acquisition protocols for this
study were identical to the previously-described protocols (Mamou et al, 2010), and they are
summarized below for completeness. Lymph nodes were dissected from patients with
histologically-proven primary cancers at the Kuakini Medical Center (KMC) in Honolulu,
HI. The dissected nodes were prepared for pathology according to the current standard of
care for surgical treatment of colorectal and stomach cancers. After surgical excision,
dissected nodes were brought to the pathologist for gross preparation. Then, individual,
manually-defatted lymph nodes were placed in a water bath containing isotonic saline (0.9%
sodium chloride solution) at room temperature and ultrasonically scanned while pinned
through a thin margin of fat to a piece of sound-absorbing material.

Ultrasound data were acquired with a focused, single-element transducer (PI30-2-R0.50IN,
Olympus NDT, Waltham, MA) that had an aperture of 6.1 mm and a focal length of 12.2
mm. The transducer had a center frequency of 25.6 MHz and a -6-dB bandwidth that
extended from 16.4 to 33.6 MHz. The theoretically predicted axial and lateral resolutions of
the HFU imaging system were 43 and 116 μm, respectively. The 6-dB depth of field was
measured to be 1.6 mm extending from 11.4 mm to 13.0 mm. The transducer was excited by
a Panametrics 5900 pulser/receiver unit (Olympus NDT, Waltham, MA), and the radio-
frequency (RF) echo signals were digitized using an 8-bit Acqiris DB-105 A/D board
(Acqiris, Monroe, NY) at a sampling frequency of 400 MS/s. The spacing between adjacent
A-lines was 25-μm. A 3D scan of each lymph node was obtained by scanning adjacent
planes uniformly spaced every 25 μm over the entire lymph node. The RF data were
oversampled to limit noise effects and to increase the robustness of some of the processing
steps (e.g., 3D segmentation and attenuation compensation).

Three-dimensional backscatter and envelope characterization methods
Two different approaches were used to characterize and quantify the microstructural tissue
properties of lymph nodes. The first approach was based on backscatter spectral
quantification and the second approach modeled the envelope statistics of the backscattered
signal. These two approaches were used to test the hypothesis that QUS estimates obtained
from backscatter spectral and envelope quantification are statistically different between
cancerous (i.e., metastatic) and non-cancerous tissue in lymph nodes. Subsequent sections in
this paper describe in great detail the envelope-statistics quantification, but they only briefly
review the methods used for backscatter spectral quantification because they were
previously published (Mamou et al, 2010).

Three-dimensional segmentation and cylindrical regions of interest
The 3D RF data sets were segmented using a semi-automatic algorithm to separate nodal
tissue, from saline and remaining fibroadipose tissue. The segmentation algorithm has been
presented and evaluated in great detail before and has not been modified significantly except
for improvements in its computational efficiency (Coron et al, 2008; Mamou et al, 2010).
Following segmentation, the complete 3D RF data set was separated into overlapping 3D
cylindrical regions-of-interest (ROIs) having a diameter of 1 mm and a length (i.e., along the
axis of the transducer) of 1 mm. The size of the ROI was chosen based on the resolution cell
of our imaging system. The overlap between adjacent ROIs depended on the total number of
voxels of the 3D RF data set; it was adjusted to permit smaller data sets to have a sufficient
number of ROIs for statistical stability and to avoid overly-long computation times for larger
data sets. (See Table 1 in (Mamou et al, 2010).)
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Parameter estimation and QUS-image formation
Estimates of spectral intercept (I in dB), spectral slope (S in dB/MHz), effective scatterer
sizes (D in μm) and acoustic concentration (i.e., CQ2 expressed in dB mm−3) were obtained
using the previously published methods (Mamou et al, 2010). Briefly, these estimates were
computed by fitting two different scattering models to normalized and attenuation-
compensated ROI power spectra. Specifically, I and S were obtained by fitting a straight line
to normalized power spectra and D and CQ2 were obtained assuming a spherical Gaussian
scattering model (Mamou et al, 2010). Attenuation compensation was performed
independently for each ROI, assuming straight-line propagation from the transducer surface
to the ROI. This attenuation-compensation approach took into account propagation through
fat and lymph-node tissue using two different attenuation values. The value for fat was
estimated to be 0.97 dB/MHz/cm and the value for tissue was assumed to be 0.5 dB/MHz/
cm; these values were assumed to be the same for every lymph node. Attenuation
compensation previously was presented in great detail (Mamou et al, 2010).

In this study, four new QUS parameters were computed by fitting distribution models to the
envelope statistics of each ROI. The first two parameters α and Ω were obtained using a
maximum-likelihood estimator to fit a Nakagami probability density function (PDF) to that
of the ROI envelope. The PDF of the Nakagami distribution is (Nakagami, 1960):

(1)

where Γ and U are the Gamma function and unit step function, respectively. The parameter
Ω is termed the scaling parameter while α is usually called the Nakagami parameter. If R is a
random variable with a Nakagami PDF, then

(2)

(3)

where E is the expected-value operator. The likelihood ratio was obtained by assuming that
every envelope value within the ROI was independently and identically distributed. Then,
the parameters α and Ω were found by maximizing the likelihood ratio using a descent
algorithm.

The Nakagami parameter is a shape parameter for the PDF, and when it is equal to 1, the
Nakagami distribution reduces to a Rayleigh distribution. Additionally, when α is between 0
and 1, the envelope distribution is said to be pre-Rayleigh (Nakagami, 1960). Finally, when
α > 1, the distribution is said to be post-Rayleigh (Shankar, 2000). When the ROI contains
randomly-located scatterers with varying scattering cross sections, the envelope statistics are
likely to be pre-Rayleigh and α is typically between 0.5 and 1 (Shankar, 1995). Similarly,
when some spatial periodicity exists among scatterers within the resolution cell, then the
envelope statistics are Rician or post-Rayleigh, and α becomes larger than unity (Shankar,
2000). Typically, α is used as a means to quantify the effective number of scatterers in the
resolution cell. This interpretation can be obtained by noting that the random variable, Z =
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R2, follows a Gamma distribution and interpreting the physical relationships between α and
the effective number obtained from the Gamma distribution (Shankar et al, 2001).

Two additional QUS parameters, k and μ, were obtained using the HK distribution to model
the envelope statistics within the ROI. The HK distribution was first introduced in 1980
(Jakeman, 1980). This distribution incorporates a capability to model situations with low or
high scatterer densities, but also includes a capability to model situations where a coherent
signal component exists because of periodically located scatterers (Dutt and Greenleaf,
1994).

The PDF of the HK distribution is given by the following integral expression:

(4)

where J0 is the zeroth-order Bessel function of the first kind, s2 is the coherent signal
energy, σ2 is the diffuse signal energy, and μ is a measure of the effective number of
scatterers per resolution cell. A derived parameter, k = s/σ, the ratio of the coherent to the
diffuse signal, can be used to describe the degree of structure or periodicity in scatterer
locations. (No closed-form expression exists for fHK, but a truncated converging series is
used in practice (Hao et al, 2002).) We estimated k and μ for the HK distribution. Because of
the complexity of Eq. (4), no straightforward method exists to obtain these estimates.
Methods using the first three even moments have been described, but were computationally
expensive and could lead to complex estimates (Dutt and Greenleaf, 1994). Instead, we used
an algorithm that relied on moments of small orders (Hruska and Oelze, 2009). For
completeness, the algorithm is summarized below.

The new algorithm extended previous work (Martin-Fernandez et al, 2007) and estimated
envelope-statistics parameters by calculating the signal-to-noise ratio (SNR), skewness, and
kurtosis of fractional-order moments of the envelope samples in each ROI. The use of
fractional-order moments was motivated by previous studies (Dutt and Greenleaf, 1995;
Ossant et al, 1998) that found that parameter estimates based on fractional-order moments
were more robust than parameter estimates based on higher-order moments for the simpler,
but related, K distribution. The optimal pair of fractional-order moments (i.e., 0.72 and 0.88)
to use in the estimation routine was determined by construction of level curves for SNR,
skewness, and kurtosis. The SNR, skewness (Skν ), and kurtosis (Kuν) of samples of the echo
envelope of moment ν can be expressed as (Prager et al, 2002):

(5)

(6)
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(7)

The optimal pair of fractional-order moments was found by calculating the maximal
intersection angles between the six level curves generated at each pair of k and μ values over
a range of values expected to be encountered in ultrasonic imaging (Hruska and Oelze,
2009). For a given ROI size, using the optimal moment orders results in the smallest
variance of envelope-parameter estimates over the range of possible parameter space
expected for ultrasonic imaging. Assuming homogeneous scattering statistics in the ROI,
larger ROIs result in smaller bias and variance in parameter estimates because the parameter
estimates depend on acquiring a good statistical representation of the signal envelope. The
sizes of the ROIs chosen for parameter estimation in this study were sufficiently large to
assure a good statistical representation of the underlying signal (Hruska, 2009).

Using this approach, estimates of the k and μ parameters for each ROI were obtained in three
steps. First, the envelope of the signal was detected and the values of the envelope
corresponding to the ROI location were stored in a vector. Second, the SNR, skewness, and
kurtosis were calculated using Eqs. (5)-(7) for the vector of envelope values corresponding
to the ROI using the chosen moment orders. Third, level curves previously generated and
stored for the SNR, skewness, and kurtosis corresponding to different values of the k and μ
parameters for the two fractional-order moments (i.e., 0.72 and 0.88) were used to find the
intersection of the six level curves generated from the envelope values from the ROI in the
k-μ plane.

The parameters μ and α were corrected to account for variations in the size of the resolution
cell due to attenuation and diffraction effects. The correction algorithm multiplied the
estimates by the term, κ, which varied for each ROI:

(8)

where fc is the natural center frequency of the transducer (i.e., 25.6 MHz in the present
case), B6 dB is the -6-dB bandwidth of the transducer (i.e., 33.6 – 16.4 = 17.2 MHz), and

 and  are the same quantities, but estimated within the ROI by taking into account
diffraction effects (using the calibration spectrum acquired at the depth corresponding to the
ROI center) and attenuation effects (based on the sound path from the transducer to the
ROI). Details about the calibration spectrum and attenuation estimation were previously
presented (Mamou et al, 2010). The rationale behind Eq. (8) is that the resolution cell of a

single-element system is proportional to  (Kino, 1987). Therefore, multiplying
estimates of μ and α by κ permits comparison (and averaging) of these QUS estimates
among different ROIs and different lymph nodes.

The parameter, Ω, is the only envelope-statistics parameter sensitive to the absolute range of
the envelope values within the ROI. For example, multiplying the envelope values by a
constant, δ, changes the value of Ω by a factor of δ2, but does not change the values of α, k,
and μ. Therefore, Ω is the envelope parameter that is most sensitive to attenuation and
diffraction effects. To mitigate the effects of attenuation and diffraction on Ω, envelope
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values for each ROI were multiplied by an ROI-dependent parameter, χ, which corrected for
estimated attenuation and diffraction effects at 25.6 MHz, i.e., at the center frequency of the
transducer:

(9)

where zROI is the depth at the center of the ROI, Soil is the calibration spectrum acquired at a
depth equal to zROI and A(f) is the attenuation-compensation function obtained for this ROI.
The terms A(f) and Soil are defined in Eqs. (1) and (5) of (Mamou et al, 2010), respectively.
Finally, because of their wide dynamic-range estimates, μ, α, and Ω were compressed using
a base-10 logarithm function.

These eight QUS parameters were estimated for all adjacent ROIs within the entire
segmented lymph-node tissue. 3D QUS images were formed by color-coding and overlaying
the parameter values on the conventional B-mode volume. However, ROIs that were not
fully contained in depths between z = 10.8 mm and z = 13.5 mm were not processed because
they were judged to be too far away from the nominal focal depth of the transducer.

Materials used
The results described in the next section pertain to 112 lymph nodes excised from 77
different patients diagnosed with colorectal or gastric cancers. These lymph nodes either
were entirely negative for metastases (N = 92), or were nearly completely filled with
metastases (N = 20). The great majority (i.e., 98) of nodes were excised from colorectal-
cancer patients, but 14 nodes acquired from gastric-cancer patients were also included in the
study because of their availability. Although these lymph nodes were associated with
cancers from different organs, they were grouped together for these studies because they
present the same histopathologic features in healthy and diseased states (Mills, 2006).
Combining nodes of gastric with colorectal cancers is reasonable histologically because the
basic architecture of non-neoplastic lymph nodes is similar among different organ systems
in healthy and diseased states (van der Valk and Meijer, 1987). Gastric and colorectal
carcinomas are part of a diverse group of glandular epithelial neoplasms of the
gastrointestinal tract that are composed of complex neoplastic glands in well- to moderately-
differentiated lesions. Although subtle histologic differences may exist among them, these
tumors generally present with the basic architecture of differentiated adenocarcinomas, i.e.,
neoplastic gland formation. From this standpoint, colorectal and gastric carcinomas and their
metastases are similar histologically. Metastatic lesions to lymph nodes tend to retain the
histologic appearance of the primary cancer, which is uniform among primary
adenocarcinomas of the gastrointestinal tract, i.e., in gastric as well as colorectal cancers.
Combining nodes in this manner is further justified by the results themselves, as presented in
the next section. The nodes were diagnosed by a pathologist by looking at hematoxylin and
eosin (H&E) stained sections.

The Institutional Review Boards (IRBs) of the University of Hawaii and the KMC approved
the participation of human subjects in the study. All participants were recruited at KMC and
gave written informed consent as required by both IRBs.

RESULTS
Illustrative parametric cross-section images and envelope PDFs

To illustrate the results of the 3D QUS processing, Fig. 1 displays the three B-mode cross
sections of an entirely non-metastatic lymph node; each B-mode image is augmented by the
color-coded estimates of log (μ). A color bar and histogram of the entire node distribution of
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log (μ) are shown in Fig. 1d. The log (μ) estimates show a fairly large distribution with a
mean of −0.14 and a standard deviation of 0.22. For comparison, Fig. 2 displays the log (μ)
cross sections of an entirely metastatic lymph node from a different patient. The color scales
of Figs. 1 and 2 are the same for easier comparison. For this lymph node, the log (μ) values
were lower with a mean of −0.34 and a standard deviation of 0.22. (The difference in the
QUS voxel sizes between Figs. 1 and 2 is due to the change in overlap between adjacent
ROIs depending on the total number of ultrasound voxels in the data set. (See Table 1 in
(Mamou et al, 2010).)

The large variations in the estimates of log (μ) shown in Figs. 1 and 2 illustrate how
differentiating a metastatic node from a non-metastatic node potentially would be possible,
but difficult using μ alone. The metastatic node globally has lower log (μ) values and its
QUS images are blue whereas the QUS images of the non-metastatic node contain some
yellow and red in addition to some blue.

Typical cross-section images of other QUS parameters have been published previously and,
in particular, scatterer-size images demonstrated significant potential for diagnosis and
cancer localization (Mamou et al, 2010, 2009b,c).

Figures 3a and 3b display the estimated PDFs from two ROIs located near the center of each
of the lymph nodes displayed in Figs. 1 and 2. The Nakagami and HK fit obtained using our
estimators are also shown. In the case of the HK model, our estimator only returns two (μ
and k) of the three independent parameters of the HK model, Eq. (4). The third parameter, σ,
was obtained from the second-order moment of the HK distribution (Hruska and Oelze,
2009):

(10)

Examination of Figs. 3a and 3b indicates that the ROI PDFs are fitted better using the HK
model because smaller root-mean-squared-errors (RMSEs) were obtained. Additionally,
these figures demonstrate that both estimated PDFs are not satisfactorily fit using the
Nakagami model. Another interesting feature is that the values of the RMSEs from both
models obtained in the case of the metastatic node (Fig. 3b) are more than twice those
obtained in the case of the non-metastatic node (Fig. 3a).

Lymph-node classification based on QUS estimates
For each lymph node, we averaged the eight QUS estimates over all of the ROIs that
returned QUS estimates. The estimation algorithm was set to reject all QUS estimates from
ROIs for which the scatterer-size estimate was smaller than 5 μm. The algorithm also
included a noise threshold to exclude ROIs for which the noise was judged to be too
significant (Mamou et al, 2010). In the current study, over 98% of all ROIs of all nodes
returned QUS estimates and only six lymph nodes had ROIs in which the algorithm did not
return estimates. Using the averaged estimates, we evaluated whether correctly classifying
lymph nodes was possible based on these eight QUS estimates. Table 1 displays the average
and standard deviations of the QUS estimates for the metastatic and non-metastatic nodes.

The statistics of the four QUS estimates based on backscatter quantification are in strong
agreement with our previously published results derived from a significantly lower number
of lymph nodes (Mamou et al, 2010). The trend observed in Table 1 indicates that metastatic
nodes have significantly larger effective scatterer-size estimates (i.e., D) and higher intercept
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estimates (i.e., I), and significantly lower slope (i.e., S) and acoustic-concentration estimates
(i.e., CQ2). (Note that the ANOVA test showed statistical differences (p < 0.05) in
metastatic and non-metastatic values for these four QUS parameters, which confirms results
previously obtained with significantly fewer lymph nodes (Mamou et al, 2010).

The other four QUS estimates were obtained from the envelope statistics and the two
distribution models (Table 1). No statistically significant differences were observed between
the cancer-free and cancer-filled nodes for log(Ω) and k, but estimates of log(α) and log(μ)
were significantly lower in the metastatic lymph nodes. This is consistent with the physical
interpretation of μ and α being related to scatterer number density. Metastatic nodes, which
have larger effective scatterer-size estimates than non-metastatic nodes, are likely to have a
concomitantly lower number density. Note that although statistically significant differences
were observed for μ and α, the standard deviations of the estimates were fairly large and
significant overlap existed between the estimates obtained between the two types of nodes.
This also was illustrated in Figs. 1d and 2d for the μ parameter.

To visually illustrate the potential of the eight QUS estimates for classification, Fig. 4
displays the scatter plots of the QUS estimates obtained for the two different scattering
models and the two different envelope-statistics models. Figure 4a shows good separation
between the metastatic and non-metastatic nodes for size and concentration estimates. Some
overlap exists in the range of sizes between 31 and 35 μm, but overall, the spherical
Gaussian form-factor estimates show strong potential for detection of metastases. Similarly,
Fig. 4b shows satisfactory separation, but more overlap is visible for S values between 0.05
and 0.22 dB/MHz. The other two panels show the results obtained by modeling envelope
statistics with the Nakagami distribution (Fig. 4c) and the HK distribution (Fig. 4d). Overall,
very poor separation is apparent; only a suggestion of smaller α and μ values is observed for
metastatic nodes. This observation is consistent with the values reported in Table 1.
Nevertheless, Fig. 4d reveals an interesting feature of the k estimates: every lymph node
with an average value below 0.40 is non-metastatic and therefore, although the means of the
k estimates are not statistically different (Table 1), the spread of the k estimates is larger for
the non-metastatic nodes. This observation also indicates that nodes for which the incoherent
signal energy is at least 2.5 times greater than the coherent signal energy are non-metastatic.
In Fig. 4, the data points outlined in black denote the gastric-cancer nodes. These scatter
plots suggest that all QUS estimates obtained from gastric-cancer nodes are very similar to
those obtained from colorectal-cancer nodes for metastatic and non-metastatic node types.
(For both node types, the ANOVA test failed to find a statistical difference between gastric
and colorectal nodes for any of the eight QUS estimates.)

To further quantify these observations, the software package SPSS (SPSS Inc., Chicago, IL)
was used to generate ROC curves for each individual QUS estimate and for several
combinations of the eight QUS estimates using linear-discriminant analysis (Table 2). SPSS
also was employed to evaluate classification performance using a leave-one-out procedure
and the resulting specificity, sensitivity and percentage of correctly-classified nodes were
computed (Table 2). Looking first at the numbers obtained with the four QUS estimates
quantifying backscatter power spectra, the results indicate that using D alone, nearly perfect
classification performance can be achieved with an area under the ROC curve (AUC) of
0.986 ± 0.009. Specificity and sensitivity also were excellent with both values above 91%.
The moderate overlap among the acoustic-concentration values (Fig. 4a) produced an AUC
value of 0.829 ± 0.056, a specificity of 80%, and a sensitivity of 70%; therefore, acoustic-
concentration estimates alone would classify lymph nodes only moderately well. Finally,
combining D and CQ2 only marginally improves classification performance over D alone
(AUC value of 0.988). I alone performs moderately well and as well as CQ2 alone, and S
performs well with a performance only slightly inferior to D alone. Finally, combining I and
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S together produces an AUC value of 0.970 ± 0.015, with sensitivity and specificity values
of 90%.

Results for the other four QUS estimates based on envelope statistics indicate that diagnostic
performance using any of these estimates alone would be unsatisfactory. AUC values
obtained from Ω or k were smaller than 0.6. The Nakagami parameter, α, performed
significantly better, but it still produced a mediocre AUC value of 0.768. Finally, the best
performance was obtained using μ leading to an AUC value of 0.815, with sensitivity and
specificity values above 70%. Interestingly, combining the Nakagami model parameters, α
and Ω, led to an AUC value of 0.848, meaning that the Nakagami envelope model would
classify lymph nodes moderately well. However, combining the two HK model parameters,
k and μ, did not improve classification performance over μ alone. Nevertheless, the HK and
Nakagami model classification performance only remains moderately satisfactory. These
results indicate that the HK model produced the best QUS estimate (i.e., μ) for classification
based on envelope quantification, but they also indicate that the Nakagami model slightly
outperformed the HK model when the two independent QUS estimates from each model
were combined.

Interestingly, the best classification results were obtained by combining D and k, which led
to an AUC value of 0.996 ± 0.003 and sensitivity and specificity values of 95%. (No other
combination of two or more QUS estimates led to a better performance.) Figure 5 shows the
scatter plot of these two parameters and indicates that the separation between the cancer-
containing and cancer-free nodes is better than on any of the other scatter plots shown in
Fig. 4. Although the mean and standard deviation of k between each node type were
essentially the same (Table 1), this parameter was able to improve classification
performance over D alone. To investigate this fact, we looked at the distribution of k values
among the nodes that had D estimates between 28.4 and 37.0 μm. This range of sizes was
obtained by considering the mean of the two average values of D for each node class (i.e.,
32.7 μm) and adding or removing the ensemble standard deviation of D (i.e., 4.3 μm). This
procedure led to the selection of 60 nodes (49 non-metastatic nodes and 11 metastatic nodes)
that had overlapping values of D for non-metastatic and metastatic nodes. The average k
estimates within this selection were found to be 0.61 ± 0.11 and 0.53 ± 0.12 for metastatic
and non-metastatic nodes, respectively. Additionally, the ANOVA test returned a p-value of
0.067 for these k estimates. These numbers indicate that in the region where a classifier
based on D alone would be most likely to make classification errors, k estimates tend to be
different for non-metastatic and metastatic nodes, and can positively influence classification
performance; this is consistent with Table 2 and Fig. 5.

Additionally, Fig. 5 illustrates how a 100%-specificity or a 100%-sensitivity classifier could
be designed using a linear combination of k and D. The green solid line passes through the
two non-metastatic lymph nodes that are the closest to the mean of all the metastatic nodes;
therefore, if this line is established as a classifier threshold and all nodes above the line are
declared to be metastatic and all nodes below the line to be non-metastatic, then 100%
specificity will be achieved with a sensitivity of 90%. Similarly, the red solid line would
lead to a classifier with 100% sensitivity (all metastatic nodes are classified correctly) at a
specificity of 97.5%. Clinically, the 100% sensitivity approach is more relevant; it
guarantees that no cancer will be missed and potentially could significantly reduce the
number of nodes requiring histological evaluation by reliably identifying cancer-free nodes,
and more important, could identify suspicious regions for detailed histological evaluation
that contain small metastases that would be overlooked using standard histology procedures.
Here, instead of 112 nodes, only 22 would be sent to histology and no cancer would be
overlooked. These methods would serve as an adjunct to histopathology that would improve
the efficiency of histological procedures for node evaluations.
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In summary, Tables 1 and 2 and Figures 4 and 5 present very satisfactory results. Our QUS
methods are able to classify the nodes that either are completely metastatic or are completely
free of metastatic tissue nearly perfectly using only one (D) or two QUS estimates (D and k).
Finally, based on the current results, the spherical Gaussian scattering model slightly
outperforms the straight-line model. Additionally, the results indicate that of the four QUS
estimates from the two proposed envelope models, the μ parameter obtained from the more-
advanced HK model provides the best classification performance.

DISCUSSION
The studies presented herein initially were motivated by earlier studies performed at lower
frequencies (i.e., 10 MHz) that suggested spectral intercept estimates produced a very high
AUC value for lymph-node classification (Feleppa et al, 1997). More-recent studies
performed at higher frequencies on 46 lymph nodes resulted in perfect classification using D
or S alone (Mamou et al, 2010). Subsequently, we significantly extended these studies by
investigating 112 lymph nodes, and also quantifying envelope statistics using a commonly-
used classic model (i.e., Nakagami) and a more-involved model (HK) employing an efficient
and robust algorithm (Hruska and Oelze, 2009).

Estimating the four QUS envelope parameters using a maximum-likelihood estimator for α
and Ω and the fractional-order moment algorithm for μ and k increased computation time by
only 15% when compared to estimating only the four other QUS estimates; however,
computation times remained far from real-time. To obtain the eight QUS estimates for an
entire lymph node required an average time of 20 minutes. In their present form, all the
algorithms were implemented in MATLAB (The Mathworks Inc., Natick, MA) because of
its convenience for research-oriented signal and image processing. Nevertheless, this time
frame is amenable to intraoperative characterization. (Conventional histology usually takes
at least one day to provide diagnostic results.) Eventually, the final algorithms will be
converted and compiled as efficient executables using C++. Additionally, once we have
isolated the best QUS estimates for classification, only those would need to be computed.
For example, based on the results to date and presented in Table 2, only k and D would need
to be estimated. A decrease in computation time of about 30% was observed when only
estimates of k and D were computed for an entire lymph node using MATLAB.

The 3D QUS methods presented in this study permitted virtually perfect classification of a
relevant number of lymph nodes that either were nearly completely metastatic or were
entirely non-metastatic. Therefore, in the future, we will apply and evaluate these methods
in studies of lymph nodes with smaller micrometastatic foci that do not fill the node. The
hypothesis we will test in partially-metastatic lymph nodes is that 3D QUS estimates can
reliably detect small cancer-containing regions including clinically-significant
micrometastasis. Because we also have the 3D histology data with histologically-defined
cancer regions, we easily will be able to evaluate the performance of the QUS methods. In
particular, an important question would be to determine the smallest size of metastatic foci
that we can detect. To detect clinically-relevant micrometastases (i.e., diameter between 0.2
mm and 2 mm), we may need to decrease the size of the ROIs to improve the QUS-image
spatial resolution. Based on empirical published criteria, using cylindrical ROIs with a
diameter of 0.6 mm and a length of 0.4 mm with our imaging system should not increase
bias or variance of QUS estimates quantifying backscatter significantly (Oelze and O’Brien,
2004a), but such ROIs would significantly improve 3D QUS image resolution. Further
resolution improvements also may be possible using methods that correct for ROIs with sub-
optimal lengths (Oelze and O’Brien, 2004b). Additionally, another option would be to use
an ultrasound transducer with a higher center frequency, which would allow smaller ROIs;
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however, the trade-off would be the decreased penetration depth of the higher-frequency
ultrasound and therefore a reduced ability to obtain QUS estimates deep into lymph nodes.

In this study, the same ROIs used for the spectral estimates were used to produce the
envelope statistics. Envelope statistics are notorious for large variances if the sample size
(i.e., the size of the ROI) is too small. In the future, the variances of the envelope statistics
could be reduced with larger ROIs. Regions of suspicion within a node could be determined
based on estimates of effective scatterer size. Within the suspicious regions, larger ROIs
could be selected to produce envelope-statistics estimates with smaller variances. Envelope
statistics would produce images with poorer spatial resolution, but with improved
classification resulting from a reduction in the variance of the estimates.

Finally, we have initiated analyses of RF data from axillary lymph nodes, including sentinel
nodes of breast-cancer patients based on what we have learned from the more-available and
architecturally simpler abdominal nodes of colorectal- and gastric-cancer patients. Axillary
nodes present complications associated with intra-nodal inclusions, which appear to be small
fatty deposits. Therefore, our approach must be modified to exclude these fatty regions from
QUS processing. To achieve this goal, efforts are being directed toward improving the 3D
segmentation methods to detect these regions even though they are surrounded by nodal
tissue.
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Figure 1.
a)-c): QUS cross-section images of log(μ) of a non-metastatic lymph node. d) Histogram of
log(μ) estimates. White arrows in a) and b) indicate the focal depth of the transducer.
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Figure 2.
a)-c): QUS cross-section images of log(μ) of a completely metastatic lymph node. d)
Histogram of log(μ) estimates. White arrows in a) and b) indicate the focal depth of the
transducer.

Mamou et al. Page 17

Ultrasound Med Biol. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
a)-b): Estimated PDF and overlayed fits using the Nakagami and HK PDFs of an ROI near
the center of the lymph nodes shown in Figs. 1 and 2, respectively.
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Figure 4.
Scatter plots of estimates by model. a) Effective scatterer size and acoustic concentration
(Gaussian form factor), b) intercept and slope (straight-line model), c) Nakagami envelope
model and d) homodyned-K envelope model. Gastric cancer nodes are outlined in black.
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Figure 5.
Scatter plot of best estimate combination for classification (k and D) and illustration of
possible classification performance at 100% specificity (green solid line) or 100% sensitivity
(red solid line). Gastric cancer nodes are outlined in black.
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Table 1

Average QUS estimates (means ± standard deviations) for non-metastatic and metastatic nodes. (The symbol
“*” indicates statistical significance based on ANOVA results giving p < 0.05.)

QUS estimate Non-metastatic nodes (N = 92) Metastatic nodes (N = 20)

D (μm) 28.6 ± 3.1* 36.7 ± 2.5*

CQ2 (dB mm−3) −3.73 ± 2.48* −7.77 ± 4.31*

I (dB) −63.1 ± 3.8* −57.7 ± 4.7*

S (dB/MHz) 0.30 ± 0.11* 0.01 ± 0.11*

log [α] −0.26 ± 0.05* −0.32 ± 0.06*

log [Ω] (dB V2) −6.54 ± 0.22 −6.62 ± 0.39

log [μ] −0.09 ± 0.19* −0.35 ± 0.22*

k 0.56 ± 0.12 0.58 ± 0.10
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