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the release of insulin by pancreatic 
b-cells involves a complex interplay 

of conductances that generate oscilla-
tions and drive secretion. a recent report 
identifies a new player in this process, 
the ion channel tRpm5. tRpm5 was 
originally identified in taste cells, where 
it forms a ca2+-activated cation channel 
that is required for sensory responses to 
bitter and sweet tastes. new research now 
shows that tRpm5 is expressed within 
the pancreatic islets of langerhans, 
where it regulates the frequency of ca2+ 
oscillations and contributes to insulin 
release by β-cells.

The primary sensor regulating blood glu-
cose levels is the pancreatic β-cell, which 
releases insulin to stimulate entry of glu-
cose into muscle and fat. The cellular 
events that underlie insulin secretion have 
been well-described and many of the key 
molecular components have been identi-
fied. In the first step, glucose is transported 
into the b-cells by the Glut2 transporter, 
producing a change in the ATP/ADP 
ratio. This generates membrane depolar-
ization, through a direct blocking effect of 
ATP on a specific class of potassium chan-
nel (KATP) composed of KIR/SUR sub-
units.1,2 Voltage-gated calcium channels 
open upon depolarization, leading to an 
elevation of intracellular Ca2+. From there, 
Ca2+ levels and the membrane potential 
oscillate, which drives pulsatile secretion 
of insulin.3 This oscillatory behavior is 
highly complex and still poorly under-
stood. It involves cyclical changes in intra-
cellular Ca2+ levels which affect the gating 
of a number of ionic conductances and the 
rate of glucose metabolism.4

In addition to the known conduc-
tances, it has been hypothesized that there 
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must be a Na+ permeable “background” 
current in β-cells to drive membrane 
depolarization upon closure of KATP 
channels.5 Such Na+ permeable currents 
have been described in pancreatic b-cells 
and in related cell lines. For example, sin-
gle channel recordings revealed the pres-
ence of a Na+ and K+ permeable cation 
channel that was activated by intracellular 
Ca2+, referred to as Ca-NS.6 These chan-
nels are characterized by a conductance 
of 20–25 pS and sensitivity to block by 
adenine nucleotides. A link between these 
channels and insulin secretion has been 
suggested by experiments showing that in 
β-cells the insulinotropic hormone, gluca-
gon-like peptide-1a activates a nonselective 
conductance sensitive to Ca2+ and cAMP7,8 
and that release of Ca2+ from intracellular 
stores activates a conductance sensitive to 
maitoxin, a toxin that promotes insulin 
release.9 Until now, the molecular identity 
of these Ca-NS channels was unknown.

Several TRP channels form Ca2+-
activated nonselective cation channels and 
thus are candidates to underlie the Ca-NS 
current of pancreatic β-cells. Ca2+ is con-
sidered the physiological activator for two 
TRP channels, TRPM4 and TRPM5, 
both of which are permeable to monova-
lent cations, but impermeable to Ca2+.10-

13 More recently, it has been reported 
that TRPM2 is activated by intracellular 
Ca2+.14,15 TRPM4 is widely distributed and 
has some of the features of the Ca-NS of 
pancreatic cells, such as block by adenine 
nucleotides.16 However, animals that carry 
a targeted deletion of TRPM4 do not have 
any defects in glucose tolerance or insulin 
secretion.17 Several other TRP channels 
have been found in islets, but none has 
been definitively linked to insulin secre-
tion by b-cells.18



332 Islets Volume 2 Issue 5

TRPM5-/- islet cells retain slow oscillations 
but are completely devoid of fast oscilla-
tions. This has led the authors to propose 
that TRPM5 functions to depolarize the 
membrane at the end of the silent phase 
of the cycle. How might this occur? One 
possibility is that at the end of the silent 
phase, Ca2+ levels may gradually begin to 
creep up as voltage-gated channel recover 
from inactivation.5 This elevation of Ca2+ 
may provide the stimulus to open TRPM5 
channels, leading to a rapid depolariza-
tion. Indeed, mathematical modeling by 
Colsoul and collaborators supports this 
possibility. However, things may not be 
so simple, as Brixel et al. find that insulin 
secretion in TRPM5-/- islet cells is reduced 
in response to stimulation with argine, 
which passively depolarizes the cells with-
out changing metabolic status. Under 
these conditions, KATP channels should 
be open and TRPM5 currents should be 
ineffective. Based on this result, Brixel and 
collaborators propose that TRPM5 plays 
a direct role in insulin secretion, possibly 
forming part of the secretory machinery. 
Clearly more work will be needed to deter-
mine the precise role of TRPM5 in insulin 
secretion.

Regardless of mechanism, the remark-
able convergence of results from two labs 
provides strong evidence that TRPM5 is 
an important regulator of insulin secre-
tion by pancreatic β cells. Deregulation 
and impaired insulin secretion contrib-
ute to type 2 diabetes, a widespread and 
debilitating disorder. Could TRPM5 be a 
target for the treatment of diabetes? With 
work already underway by pharmaceutical 
companies to identify agents that modu-
late TRPM5, it may not be too long before 
we know the answer.
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Two groups now report, surprisingly, 
that TRPM5 plays a key role in insulin 
secretion. TRPM5 is a protein of 1,165 
amino acids in human19 and 1,158 amino 
acids in mouse20 with highest homol-
ogy to TRPM4. It is distantly related to 
other TRPM channels, such as the cold 
and menthol receptor TRPM8. Like other 
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tain 6 transmembrane domains and to 
assemble as a tetramer.
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sory cells.23,24 In taste cells, TRPM5 is 
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receptors, signal through phopholipase 
C (PLC) β2 and the ensuing elevation 
of intracellular Ca2+ gates TRPM5 chan-
nels.25 TRPM5 is activated by micromolar 
concentrations of intracellular Ca2+; it is 
~five times more sensitive to intracellular 
Ca2+ as compared with TRPM4 under the 
same conditions.26,27 TRPM5 channels 
desensitize with prolonged Ca2+ elevation, 
a response that is partially attributed to 
depletion of PIP

2
, a positive regulator of 

channel gating.12

New evidence from two groups now 
extends the distribution of TRPM5 to 
include pancreatic β-cells and its function 
to include a role in insulin secretion.28,29 
Previous work had shown that TRPM5 
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