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Abstract

Mycobacterium tuberculosis remains a significant global health concern largely due to its ability to persist for extended
periods within the granuloma of the host. While residing within the granuloma, the tubercle bacilli are likely to be exposed
to stress that can result in formation of aberrant proteins with altered structures. Bacteria encode stress responsive
determinants such as proteases and chaperones to deal with misfolded or unfolded proteins. pepD encodes an HtrA-like
serine protease and is thought to process proteins altered following exposure of M. tuberculosis to extra-cytoplasmic stress.
PepD functions both as a protease and chaperone in vitro, and is required for aspects of M. tuberculosis virulence in vivo.
pepD is directly regulated by the stress-responsive two-component signal transduction system MprAB and indirectly by
extracytoplasmic function (ECF) sigma factor SigE. Loss of PepD also impacts expression of other stress-responsive
determinants in M. tuberculosis. To further understand the role of PepD in stress adaptation by M. tuberculosis, a proteomics
approach was taken to identify binding proteins and possible substrates of this protein. Using subcellular fractionation, the
cellular localization of wild-type and PepD variants was determined. Purified fractions as well as whole cell lysates from
Mycobacterium smegmatis or M. tuberculosis strains expressing a catalytically compromised PepD variant were
immunoprecipitated for PepD and subjected to LC-MS/MS analyses. Using this strategy, the 35-kDa antigen encoding a
homolog of the PspA phage shock protein was identified as a predominant binding partner and substrate of PepD. We
postulate that proteolytic cleavage of the 35-kDa antigen by PepD helps maintain cell wall homeostasis in Mycobacterium
and regulates specific stress response pathways during periods of extracytoplasmic stress.
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Introduction

Tuberculosis remains a significant global health concern with

estimates indicating that one-third of the world’s population is

currently latently infected by the causative organism, Mycobacte-

rium tuberculosis [1]. The genetic programs required by M.

tuberculosis for establishment, maintenance, and/or reactivation

from persistent infection within the host remain poorly defined,

but are thought to include stress-adaptation systems such as

extracytoplasmic function (ECF) sigma factors and two-compo-

nent signal transduction systems. mprAB is one of 11 complete

two-component system encoded within the genome of M.

tuberculosis [2]. This system directly regulates expression of

numerous stress-responsive determinants in M. tuberculosis includ-

ing ECF sigma factors sigE and sigB, alpha crystallin gene acr2,

and serine protease pepD [3,4,5,6]. MprAB is required for in vivo

growth of the tubercle bacillus during persistent stages of

infection [7], and its expression is up-regulated within an artificial

granuloma model system [8] and under various conditions in vitro

likely to be experienced by M. tuberculosis during residence within

the granuloma [4,6,9].

PepD is a member of the HtrA-like protease family and is

encoded immediately downstream of mprAB in all Mycobacterium

species examined to date. HtrA-like proteases represent a well-

conserved family of enzymes, and are responsible for degrading or

refolding protein substrates following exposure to stress [10]. In

vitro, PepD functions as both a protease and a chaperone [11]. In

Mycobacterium smegmatis, loss of pepD enhances sensitivity of this

bacterium to various cell wall-targeting antibiotics and detergents

[12]. In contrast, pepD mutants of M. tuberculosis display a

pleiotrophic phenotype; they are unaltered in survival following

exposure to SDS [12], and they exhibit similar in vivo growth

kinetics within tissues of infected mice compared to their wild-type

counterparts [11]. However, these mutants do display an increased

time to death in mice and are associated with reduced tissue

pathology [11]. These phenotypes, coupled with the observation

that pepD deletion results in upregulation of numerous stress-

responsive determinants in M. tuberculosis under physiological
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conditions including sigE [12], underscores the complex regulation

and multifaceted activity of this protein.

PepD is 464 amino acids and contains an N-terminal

cytoplasmic domain (amino acids 1–101), a small transmembrane

domain (amino acids 102–124), a catalytic protease domain

(amino acids 166–364), and a C-terminal PDZ domain (amino

acids 368–446). While most HtrA-like proteins possess either one

or two PDZ domains [10] many of these proteins lack an N-

terminal cytoplasmic domain. Previous studies have demonstrated

that PepD processes artificial substrates including b-casein [11,12]

and pig heart citrate synthase [11]; however, natural substrates of

PepD have yet to be identified. Proteolysis of b-casein requires the

PDZ domain [12] and the catalytic serine at position 317 [11,12].

The PDZ domain is also critical for regulating the activities of

other HtrA proteases including DegS in Escherichia coli, one of the

best characterized family members [13,14,15]. Additionally (or

alternatively), interactions with PepD may localize to the N-

terminal 101 amino acids, a region predicted to be cytoplasmic.

To further understand the role of PepD in adaptation to stress, a

proteomics approach was taken to identify proteins involved in the

PepD-mediated stress response. Here we identify the 35-kDa

antigen of M. tuberculosis (Rv2744c) as a target of the PepD

protease.

Methods

Bacterial strains, media, and growth conditions
Strains and plasmids used in the study are described in Table

S1. Escherichia coli Top 10 (Invitrogen, Carlsbad, CA), XL 10-Gold

(Agilent Technologies, Santa Clara, CA), and DH5a were used for

cloning procedures. BL21(DE3)/pLysS (Novagen, La Jolla, CA)

was used to express and purify recombinant proteins in E. coli. All

E. coli strains were grown with aeration at 37uC in Luria-Bertani

(LB) broth or on LB agar (Thermo Fisher Scientific, Waltham,

MA). When required, medium was supplemented with 25 mg/ml

chloramphenicol (Sigma, St. Louis, MO), 150 mg/ml hygromycin

B (AG Scientific, San Diego, CA), 100 mg/ml ampicillin (Thermo

Fisher Scientific, Waltham, MA), and/or 50 mg/ml kanamycin

sulfate (Thermo Fisher Scientific, Waltham, MA). Mycobacterium

strains used in this study are all derivatives of Mycobacterium

tuberculosis H37Rv (ATCC 27294) or Mycobacterium smegmatis

mc2155 (ATCC 700084). Mycobacteria were grown with aeration

at 37uC in Middlebrook 7H9 broth or 7H10 agar medium (Difco,

Franklin Lakes, NJ) supplemented with 0.5% glycerol, 10% ADC

or OADC (Difco, Franklin Lakes, NJ), and 0.05% Tween 80. For

protein production, Mycobacteria were also grown in glycerol

alanine salts (GAS) [16]. When required, Mycobacteria medium

was supplemented with 25 mg/ml kanamycin sulfate (Thermo

Fisher Scientific, Waltham, MA), 50 mg/ml hygromycin B (AG

Scientific, San Diego, CA), and/or 50 mg/ml cyclohexamide

(Thermo Fisher Scientific, Waltham, MA).

DNA manipulations
Restriction enzyme digests, cloning, subcloning, and DNA

electrophoresis were done according to standard techniques [17].

Oligonucleotides and primers were synthesized by Eurofins MWG

Operon (Huntsville, AL) and are listed in Table S2. PCR was

performed using High Fidelity Platinum PCR Supermix or Taq

polymerase (Invitrogen, Carlsbad, CA). All amplified products

were cloned into pCR2.1-TOPO (Invitrogen, Carlsbad, CA) and

sequenced to confirm the absence of mutations. Ligations were

performed using the Quick Ligation Kit (New England Biolabs,

Beverly, MA) or T4 DNA ligase (Invitrogen, Carlsbad, CA). When

necessary, plasmid DNA was treated with Antarctic phosphatase

(New England Biolabs, Beverly, MA) to prevent religation of

vector ends. Electroporation or transformation of plasmid DNA

into E. coli or Mycobacterium was conducted as previously described

[18]. Plasmid DNA was prepared using the QIAprep Spin

Miniprep Kit (Qiagen, Venlo, The Netherlands) as recommended

by the manufacturer. Genomic DNA was isolated from M.

tuberculosis as described [18]. DNA fragments were purified using

either the QIAquick Gel Extraction Kit or QIAquick PCR

Purification Kit (Qiagen, Venlo, The Netherlands). The

pepDS317A mutant allele was generated using the QuickChange

XL site-directed mutagenesis kit (Stratagene, La Jolla, CA). DNA

sequencing was performed with an ABI PRISM BigDye

Terminator Cycle Sequencing Ready Reaction Kit (Applied

Biosystems, Carlsbad, CA) using an automated long capillary

method (ABI PRISM 3100 Genetic Analyzer, Applied Biosystems,

Carlsbad, CA).

Construction of epitope-tagged fusion proteins
Construction of pTZ758 encoding PepDDTM was described

previously [12]. Mycobacterium proteins containing N-terminal

3x-FLAG and C-terminal 6x-His epitope tags were generated

using a three step cloning strategy. First, complementary

oligonucleotides carrying the coding sequence for 3xFLAG were

hybridized and ligated into cloning vector pCR2.1-TOPO.

Second, the 3x-Flag coding sequence was amplified from

pTZ806 using primers FLAGfwd-NdeI and FLAGrev-NdeI and

subcloned into pET-24b (Novagen, La Jolla, CA) upstream of and

in frame with the C-terminal 6x-His epitope tag. The resulting

construct, pTZ842, served as the base plasmid for introduction of

all subsequent M. tuberculosis sequences. Finally, to express epitope-

tagged proteins in Mycobacterium, coding sequences were PCR

amplified from pTZ842 variants using primers pET24fwd-PstI

and pET24rev-HindIII and directionally subcloned into pSE100

[19]. This vector is an E. coli-Mycobacterium shuttle plasmid that

contains the highly expressed myc promoter element upstream of

the Tet operator site.

Production and purification of recombinant proteins in E.
coli

E. coli BL21(DE3)/pLysS strains containing over-expression

constructs were grown overnight on selective LB agar medium,

suspended in LB broth containing kanamycin and chloramphen-

icol, and grown to mid-exponential phase. Protein over-produc-

tion was induced by the addition of 0.1 mM IPTG (Isopropyl-b-

D-thiogalactopyranoside; Invitrogen, Carlsbad, CA) for 3 hours at

30uC. Induced cells were suspended in lysis buffer (20 mM Tris

[pH 7.9], 500 mM NaCl, 5 mM imidazol, and 6 mg of DNAse/

ml), passed 36 through a French press, and centrifuged at

25,0006 g for 30 min. Cellular supernatants were passed over a

nickel nitrilotriacetic acid-agarose column (Qiagen, Valencia, CA)

and collected fractions pooled. Some proteins were further purified

by size exclusion and anion exchange chromatography essentially

as described [12]. Purified protein fractions were pooled and

dialyzed overnight against dialysis buffer (20 mM Tris [pH 7.9],

150 mM NaCl, 20% glycerol). Purified proteins were stored at

280uC.

Expression, fractionation, and localization of endogenous
or epitope-tagged proteins in Mycobacterium

M. smegmatis or M. tuberculosis wild-type or recombinant

derivatives containing pSE100-based expression constructs were

grown in GAS medium to stationary phase (OD600.1.5). Culture

filtrate proteins (CFP) were collected by passing spent broth

Characterization of Mycobacterial PepD
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medium through 0.25 mm low-protein binding filters (Corning,

Lowell, MA) and concentrating the eluent using Amicon Ultracell-

15 (10,000 molecular weight cutoff) spin columns. Non-secreted

proteins were obtained by suspending the bacterial pellet in

phosphate-buffered saline (PBS) containing protease inhibitors and

mechanically disrupting the bacteria by bead beating. A low speed

spin (11,0006 g) was used to separate cell debris from the whole

cell lysate. The resulting supernatant was clarified by passage

through a 0.25 mm low-protein binding syringe filter (Corning,

Lowell, MA). For all preparations generated in M. tuberculosis,

protein-containing samples were checked for sterility using

viability assays prior to removing from the BSL3 laboratory.

Whole cell lysates were further separated into cell wall, cell

membrane, and cytosolic fractions by differential ultracentrifuga-

tion as described previously [20]. Protein concentrations were

determined using the BCA Protein Assay (Pierce, Rockford, IL).

Protein lysates were added to 26SDS-PAGE loading dye, boiled

for 5 min, separated on 12% SDS-PAGE gels, and transferred

onto Immobilon-P membranes (Millipore, Billerica, MA). Mem-

branes were blocked in TTBS (20 mM Tris-HCl [pH 7.5],

500 mM NaCl, 0.5% Tween 20) containing 5% skim milk for at

least 1 hour and probed with the antisera diluted in TTBS

overnight at 4uC. Anitsera included rabbit polyclonal anti-PepD

(1:10,000 dilution) [12], rabbit polyclonal anti-MprA (1:10,000

dilution; Covance, Princeton, NJ), rabbit polyclonal anti-MprB

(1:10,000 dilution; Covance, Princeton, NJ), rabbit polyclonal anti-

Mycobacterium tuberculosis strain H37Rv LAM ([1:10,000 dilution;

NR-18321] from the TB Vaccine Testing and Research Materials

Contract (BEI Resources, Manassas, VA)), and murine monoclo-

nal anti-Mycobacterium smegmatis LAM ([1:10,000 dilution; NR-

13798] from the TB Vaccine Testing and Research Materials

Contract (BEI Resources, Manassas, VA)). Membranes were

washed in TTBS and incubated for 30 min at room temperature

with goat anti-rabbit (1:5,000 dilution) or goat anti-mouse

(1:5,000) secondary antibody conjugated to horseradish peroxidase

(Pierce, Rockford, IL). Blots were developed using the SuperSignal

West Femto Chemiluminescent Substrate kit (Pierce, Rockford,

IL) and visualized on CL-XPosure X-ray film (Thermo Scientific,

Rockford, IL).

Immunoprecipitation of 3x-Flag-tagged proteins in
Mycobacterium and identification of protein-protein
interactions

Mycobacterium protein factions were collected from experimental

or control strains expressing 3x-FLAG-tagged proteins as

previously described. A 50 ml slurry of washed Anti-FLAG M2

agarose beads (Sigma, St. Louis, MO) was added to each sample

and rocked at 4uC for 2 h. Beads were washed twice with PBS/

0.1% Triton X-100 (Sigma, St. Louis, MO), and proteins eluted

using 90 mM FLAG peptide (Sigma, St. Louis, MO) suspended in

PBS/0.1% Triton X-100. Immunoprecipitated proteins were

separated on 12% SDS-PAGE gels and were stained with

GelCode Blue (Thermo, Waltham, MA) or by silver staining.

Alternatively, proteins were separated and visualized using the

Agilent 2100 Bioanalyzer and High Sensitivity Protein 250 Kit

(Agilent Technology, Santa Clara, CA). For analysis by LC-MS/

MS, protein samples were briefly run into the resolving gel to

separate out the faster-migrating FLAG peptide. Remaining

protein was excised from the gel, divided into two parts, and

subsequently processed as two individual samples. The gel in each

sample was diced into approximately 1 mm3 squares and

destained using iterations of 25 mM ammonium bicarbonate

(ABC)/50% acetonitrile (ACN) with agitation at 4uC. Gel pieces

were then dehydrated with 100% ACN with subsequent

rehydration and overnight incubation with 150 ng mass spec-

trometry grade Trypsin Gold (Promega, Madison, WI) in 50 mM

ABC/10% ACN at 37uC with gentle rocking. Peptides were

extracted using POROS 20 R2 reverse phase resin (Applied

Biosystems, Foster City, CA) in 2.5% formic acid (FA)/0.1%

trifluoroacetic acid (TFA) with agitation overnight at 4uC. Peptides

were desalted using C18 ZipTip columns (Millipore, Billerica,

MA) by washing with 0.1% TFA and eluting with 95% ACN/

0.005% TFA followed by 70% ACN/0.03% TFA. Eluates from

the same original resolving gel lane were combined and dried by

spin vacuum evaporation. Peptides were resuspended in 5%

ACN/0.1% FA, and loaded onto an ESI-LTQ XL mass

spectrometer (Thermo, Waltham, MA) for identification by LC-

MS/MS of the 6 most abundant peptides per precursor scan.

Peptide identification was carried out using the search algorithm

SEQUEST [21] by searching the M. smegmatis or M. tuberculosis

protein database. Data was analyzed using the in-house software

Visualize (http://proteomics.mcw.edu/visualize).

Bacterial two-hybrid and b-galactosidase analysis
Specific protein-protein interactions were detected using the

bacterial two-hybrid system, BACTH (Euromedex, Souffelweyer-

sheim, France), per the manufacturer’s directions. Briefly, the

Rv2744c coding sequence was amplified from M. tuberculosis

H37Rv genomic DNA and subcloned into T25- and/or T18-

fusion vectors supplied by the manufacturer. Vectors constructed

for this analysis are listed in Table S1. Plasmids were co-

transformed into the E. coli BTH101 reporter strain. Resulting

transformants were then plated on MacConkey/maltose agar

medium, incubated at 30uC for 48–72 hours, and screened for the

presence of a red colony phenotype indicative of protein-protein

interactions. The extent of protein-protein interactions were

quantified using b-galactosidase assays essentially as described

[22].

Protease activity assays
Proteolytic activity of PepDDTM against potential substrates

was determined using previously established procedures [12].

Briefly, increasing amounts of purified PepDDTM were incubated

with fixed amounts of the substrate in 50 mM potassium

phosphate buffer (pH 7.5) at 37uC. Reaction mixtures were then

separated using SDS-PAGE and stained with Coomassie blue for

visualization.

In vitro sensitivity assays
Sensitivity of M. smegmatis derivatives to antibiotic stress was

measured using disc diffusion assays. Petri dishes were poured

using 25 ml 7H9 bottom agar (1.2% agar) per dish. 100 ml aliquots

of M. smegmatis cultures were added to 3.5 ml of 0.6% 7H9 top

agar tempered to 55uC, poured onto bottom agar plates, and

allowed to solidify. Sterile filter discs (6 mm) were added on top of

the media and impregnated with 5 ml of 5 mg/ml vancomycin

(Sigma, St. Louis, MO), 50 mg/ml cycloserine (Sigma, St. Louis,

MO), 50 mg/ml isoniazid (Sigma, St. Louis, MO), or 10 ml of

50 mg/ml cefuroxime (Sigma, St. Louis, MO). Plates were

incubated at 37uC and zones of inhibition were measured after

2 days. Stock and working antibiotic concentrations were prepared

in sterile water.

Statistical analysis
All statistical analyses were conducted using a Student’s t-test.

Values were determined to be statistically significant at P,0.05.

Characterization of Mycobacterial PepD
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Results

Localization of PepD
PepD contains a single transmembrane domain and is predicted

to localize to the plasma membrane. However, recent reports from

us and others have indicated that PepD may also undergo

autocatalysis and be secreted into the CFP [11,12,23]. To

investigate PepD localization, subcellular compartments of M.

tuberculosis DpepD expressing wild-type, mutant, or epitope-tagged

forms of pepD (Table S1) were collected (Figure 1A) and subjected

to immunoblot analyses [20]. M. tuberculosis DpepD expressing wild-

type pepD from an integrated vector was observed as a ,55 kDa

protein in multiple fractions including the cytosol, cell membrane,

and cell wall (Figure 1B). Additional lower molecular mass

immunoreactive proteins were also observed in these fractions,

likely a result of PepD autocatalysis during fractionation of the

whole cell lysate as these peptides were less abundant in M.

tuberculosis DpepD expressing the pepDS317A allele (Figure 1C). A

processed form of PepD with a reduced molecular mass of

,35 kDa was also observed in the CFP (Figure 1B), similar to that

previously reported [23]. Observed proteins were PepD-specific,

as immunoreactive proteins were not detected in fractions

prepared from an M. tuberculosis DpepD strain (data not shown,

and [12]). Control proteins including response regulator MprA,

sensor kinase MprB, and glycolipid lipoarabinomannam localized

to the expected compartments, validating the differential separa-

tion procedure (Figure 1B).

It has been reported that the 35-kDa form of PepD observed in

the CFP results from a(n) autoproteolytic cleavage event(s) in the

extracytoplasmic portion of the protein and is dependent on

catalytic residue Ser-317 [11]. To determine whether this cleavage

event was required for translocation of PepD from the cell

membrane/cell wall to the CFP, analogous subcellular fraction-

ation studies were carried out using M. tuberculosis DpepD expressing

Figure 1. Localization of PepD. A) Schematic depicting the differential centrifugation protocol used to fractionate PepD in M. tuberculosis. B)
Western blot showing the localization pattern of wild-type PepD in various subcellular compartments. MprA is used as a cytosolic marker, MprB is a
cell membrane marker, and LAM is a cell envelope marker. C) Western blot showing the localization of the S317A mutant of PepD. D) Western blot
demonstrating the localization of an overexpressed 3xFLAG-PepD-6xHis variant. Lanes: CFP, culture filtrate protein; CW, cell wall; CM, cell membrane;
Cyt, cytosol.
doi:10.1371/journal.pone.0018175.g001
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pepDS317A which encodes a PepD variant exhibiting 10% of the

activity of wild-type PepD [11,12]. In contrast to wild-type PepD,

full length PepDS317A localized predominantly to the cell wall,

although protein was also detected in the cell membrane and

cytoplasm. Importantly, substantially less of the 35-kDa form of

PepD was observed in the CFP, indicating that amino acid residue

S317 is required for efficient processing of full length PepD to the

35-kDa form (Figure 1C). Finally, to confirm that over-production

and/or addition of N- or C-terminal epitope tags does not alter the

localization of PepD, fractionation studies were repeated using

Mycobacterium DpepD strains carrying pTZ1049 (a pSE100

derivative constitutively expressing 3x-FLAG-PepDWT-6xHis).

Epitope-tagged PepD over-produced in M. tuberculosis (Figure 1D)

and M. smegmatis (Figure S1) fractionated similarly to wild-type

PepD. Taken together, these data indicate that PepD traffics from

the cytoplasm through the cell membrane to the cell wall where it

is autoprocessed and eventually shed into the CFP as a 35-kDa

form.

Identification of PepDS317A interacting proteins
To identify potential interactants and/or substrates of PepD, co-

immunoprecipitation (co-IP) studies were conducted with M.

smegmatis DpepD carrying pSE100 or M. smegmatis DpepD expressing

PepDS317A containing a 3xFLAG epitope on the amino terminus

and a 6xHis sequence on the carboxyl terminus (pTZ1066). The

PepDS317A variant was chosen to minimize autocatalysis and

maximize protein-protein interactions with potential partners. In

addition, both whole cell lysates and cell wall fractions were

collected and incubated with anti-FLAG antibody conjugated to

agarose beads to capture proteins from the various subcellular

compartments that may interact with PepD. To determine the

efficiency and specificity of IP, aliquots from whole cell lysates

corresponding to the load (L), unbound (U), wash (W1 and W2),

and elute (E) fractions were first analyzed and quantified for PepD

by immunoblot using a mouse anti-FLAG monoclonal antibody.

An immunoreactive protein migrating at the expected molecular

mass was detected in samples prepared from M. smegmatis

containing pTZ1066 (Figure 2A) but not pSE100 (data not

shown). Quantification by densitometry indicated that ,20% of

the total epitope tagged PepDS317A present was pulled down

(Figure 2A). Importantly, little PepDS317A was lost during

washing and PepDS317A was enriched in the IP eluate

(Figure 2A). When analyzed on a 12% SDS-PAGE gel stained

with silver, a number of co-immunoprecipitating peptides were

also apparent in addition to PepDS317A (Figure 2B). Analysis of

IP eluants using an Agilent Bioanalyzer indicated that PepD

interacted with multiple proteins possessing a range of molecular

masses and that were present at various levels of abundance

(Figure 2C). Taken together, these results demonstrate that

PepDS317A interacts with numerous proteins in M. smegmatis.

To determine the identity of proteins co-immunoprecipitating

with epitope-tagged PepDS317A, total cell or cell wall IP eluents

from M. smegmatis DpepD containing pSE100 or pTZ1066 were

subjected to LC-MS/MS analysis. Proteins were designated

putative binding partners if they met the following criteria: (i)

possessed a minimum peptide probability cut-off of 0.85, (ii) were

represented by two or more unique peptides, and (iii) were present

in the experimental pTZ1066 but not the control pSE100 dataset.

197 proteins were identified in the total cell lysate that co-

immunoprecipitated with PepDS317A (Table S3), while 126

proteins from the cell wall fraction co-immunoprecipitated with

this derivative (Table S4). 56 of the identified proteins were

conserved in both M. smegmatis data sets (Table S5). These proteins

fell into multiple functional categories including protein synthesis,

energy metabolism, and protein fate (Table S5). The highest

scoring protein based on percent coverage in both data sets was

MSMEG_2695 (Tables S3 and S4). This protein is 91% similar

Figure 2. Immunoprecipitation of rPepD. Immunoprecipitation
with anti-Flag antibody of M. smegmatis cultures expressing a vector
containing 3xFlag-PepDS317A-6xHis. Immunoprecipitations were visu-
alized using Western blot (A) or silver stain (B). Lanes: La, ladder; L, load;
U, unbound; W1, first wash; W2, second wash; and E, elute. The arrow
indicates the predicted location of 3xFlag-PepDS317A-6xHis. C)
Electrophoretogram depicting the molecular masses and relative
abundance of proteins co-immunoprecipitated with 3xFlag-
PepDS317A-6xHis.
doi:10.1371/journal.pone.0018175.g002
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and 85% identical to M. tuberculosis Rv2744c, and is also known as

the 35-kDa antigen. Rv2744c is homologous to PspA from E. coli,

a protein involved in the phage shock response in Gram-negative

bacteria, and in homeostasis of the cell membrane including

maintenance of proton motive force [24]. To determine whether

the identified interactions were specific to only M. smegmatis, co-IP

and LC-MS/MS analyses were repeated on total cell lysates

isolated from M. tuberculosis DpepD carrying pSE100 or pTZ1066.

A total of 200 proteins co-immunoprecipitated exclusively with

PepDS317A in these samples (Table S6). Similar to M. smegmatis,

the top scoring protein based on protein coverage was the 35-kDa

antigen Rv2744c (Table S6). A variety of other proteins from

multiple functional families including intermediary metabolism

and respiration, lipid metabolism, and cell wall processes were also

identified. Twenty of the identified M. tuberculosis proteins were

also present in the list of 56 proteins conserved in both M. smegmatis

datasets (Table S5). Based on these results, we conclude that PepD

interacts with numerous proteins in both M. smegmatis and M.

tuberculosis, including the 35-kDa antigen.

Identification of PepD substrates
To determine whether any of the M. tuberculosis proteins

associated with PepD are potential substrates, IP eluants were

incubated with active PepDDTM [12], subjected to trypsin

digestion and analyzed using LC-MS/MS. Peptides resulting

solely from tryptic cleavage were removed from the dataset,

leaving a collection of 13 unique proteins with semi-tryptic

cleavage sites (Table S7). PepD was the highest scoring protein

with 33 unique non-tryptic peptides (Table S8). Several of the

identified cleavage sites match those previously reported for PepD

which undergoes autocatalysis [11], validating the utility of this

assay. Proteins not meeting the minimum peptide number and

probability requirement described previously were further re-

moved from the list, resulting in 4 candidate targets each

consisting of a single semi-tryptic peptide fragment (Table 1).

Based on protein probability, Rv2744c remained the top scoring

protein (Table 1). Other proteins identified included Rv1310

(AtpD), Rv0350 (DnaK), and Rv1266c (PknH). Thus, PepD alone

or as part of a larger protein complex interacts with and potentially

cleaves several proteins in M. tuberculosis, including the 35-kDa

antigen.

The 35-kDa antigen is a binding partner and potential
substrate of PepD

The 35-kDa antigen was previously identified to be upregulated

upon exposure to vancomycin, implicating a role for this

determinant in resistance to cell envelope stress [25]. To confirm

that this protein interacted with PepD, reverse co-IP’s were carried

out in M. smegmatis DpepD strains carrying pSE100 or pTZ1175

(pSE100 expressing 3xFLAG-Rv2744c-6xHis). M. smegmatis DpepD

strains utilized in this assay also expressed M. tuberculosis pepD or

pepDS317A [12], as the polyclonal antibody to M. tuberculosis PepD

does not recognize the homologue in M. smegmatis. SDS-PAGE

analysis of anti-FLAG IP eluants indicated the presence of proteins

migrating at molecular masses expected for both epitope-tagged

Rv2744c and PepD (Figure 3A). Western blot analysis further

confirmed the presence of these proteins in IP eluants from strains

expressing Rv2744c (Figure 3B), but not the vector only control

(Figure 3C). Interestingly, a protein running at the expected

molecular mass of endogenous MSMEG_2695 was also observed

in the M. smegmatis strain expressing M. tuberculosis pepDS317A but

not in the strain expressing wild-type M. tuberculosis pepD (Figure 3A

and Figure 2B). LC-MS/MS analysis of this protein confirmed it

as MSMEG_2695 (data not shown).

To verify that the 35-kDa antigen localized to the same

compartment(s) as PepD, fractionation and Western blot assays

were carried out on M. smegmatis strains expressing epitope-tagged

Rv2744c. The 35-kDa antigen localized to the cell wall and cell

membrane compartments (Figure 3D), consistent with the

localization pattern of PepD previously observed. Also, the

presence of a lower molecular weight protein immunoreactive

with the anti-FLAG monoclonal antibody was also present in the

strain expressing wild-type M. tuberculosis pepD but not pepDS317A

(Figure 3D), indicating that PepD potentially cleaves the 35-kDa

antigen. While the size of this lower molecular weight band is not

consistent with the cleavage site detected by LC-MS/MS (Table 1),

the two experiments utilize different detection readouts and cannot

be directly compared. Additionally, peptides from the C-terminal

region of the 35-kDa antigen were not detected by LC-MS/MS

for any of the Mycobacterium PepD immunoprecipitation experi-

ments (Supplemental Tables S3 and S4), the region of Rv2744c

predicted to be cleaved by PepD based on results from Western

blot studies (Figure 3D). Regardless, this data confirms the

interaction between the 35-kDa antigen and PepD, and further

supports the contention that this protein is a substrate of PepD.

Rv2744c over-production restores resistance to DpepD
mutants of M. smegmatis against specific cell wall-
damaging antibiotics

Previous studies have demonstrated that DpepD mutant strains

of M. smegmatis exhibit increased sensitivity to cell wall antibiotics

including cycloserine and cefuroxime [12]. To determine whether

Rv2744c may function to regulate cell wall homeostasis in

Mycobacterium [24], in vitro antibiotic susceptibility assays were

carried out with DpepD M. smegmatis mutant strains expressing

Rv2744c. DpepD strains harbouring pSE100 were significantly

more sensitive to vancomycin, cycloserine, and cefuroxime

compared to their wild-type counterparts containing pSE100

Table 1. Putative PepD substrates with semi-tryptic ends.

Rv No.a Genea Protein Probabilityb Peptide identifiedc Gene Producta

Rv2744c 1.00 F.AAQLVTAEQSVEDLK 35-kDa protein

Rv1310 atpD 0.96 V.TGPVVDVEFPR ATP synthase subunit beta

Rv1266c pknH 0.89 A.GAAAVVLVLVLGAIGIWIAIR Serine/threonine protein kinase

Rv0350 dnaK 0.89 P.DEVVAVGAALQAGVLK Chaperone protein

aProtein information based on Pasteur Institutes’ Tuberculist website (http://genolist.pasteur.fr/Tuberculist).
bProtein probability assigned by spectra following LC-MS/MS.
cSemi-tryptic peptide identification with annotated cleavage site.
doi:10.1371/journal.pone.0018175.t001
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Figure 3. Immunoprecipitation of rRv2744c. (A) Immunoprecipitation with anti-Flag antibody of M. smegmatis DpepD strains complemented
with either M. tuberculosis pepDwt (left panel) or pepD317A (right panel) and expressing a vector containing 3xFlag-Rv2744c-6xHis.
Immunoprecipitations were visualized by silver stain. Lanes: L, load; U, unbound; W1, first wash; W2, second wash; and E, elute. The arrow
indicates the predicted location of 3xFlag-Rv2744c-6xHis, the asterisk (*) indicates the predicted location of PepD, and the hatch mark indicates the
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(Table 2). In contrast, expression of Rv2744c from pSE100 in M.

smegmatis DpepD restored resistance to these antibiotics to near

wild-type levels (Table 2). The observed sensitivity of M. smegmatis

DpepD mutants but not DpepD mutants expressing Rv2744c was

specific to antibiotics targeting the peptidoglycan, as no differences

were observed between M. smegmatis strains following exposure to

isoniazid, an antibiotic that inhibits fatty acid synthase and

synthesis of cell wall mycolic acids (Table 2). Overall, these data

argue that over-expression of Rv2744c increases resistance of M.

smegmatis to peptidoglycan-disrupting antibiotics, possibly helping

to maintain cell wall homeostasis.

Discussion

M. tuberculosis must adapt to harsh environmental conditions

within the host to successfully establish, maintain, or reactivate

from acute and/or chronic infection states. As one part of its

survival strategy, the bacterium encodes proteases and chaperones

which act to either degrade and/or refold proteins whose structure

has become altered following stress exposure. Mycobacteria encode

homologs of the evolutionary conserved HtrA family of proteins,

which have been shown in both Gram-negative and Gram-positive

organisms to regulate adaptation to extracytoplasmic stress

[26,27,28,29]. In M. tuberculosis, the physiological role of HtrA-

family proteins has remained largely undefined. Here, we provide

further insight into one HtrA family member, PepD, which has

been previously shown to impact the MprAB and SigE stress

response networks in M. tuberculosis in vitro [12], and contribute to

M. tuberculosis virulence in vivo [11].

While PepD is predicted to localize to the cell membrane in M.

tuberculosis, subcellular fractionation studies carried out with M.

tuberculosis and M. smegmatis expressing wild-type or epitope-tagged

forms of PepD indicate that this protein localizes to multiple

subcellular compartments, including the cell membrane, the cell

wall, and the CFP. Interestingly, mutations to the catalytic serine

at position 317 of PepD affect not only the ability of the protein to

undergo autocatalysis [11], but also affect its pattern of localization

and its ability to be secreted into the CFP. In contrast to wild-type

PepD, PepDS317A is observed predominantly in the cell wall with

little protein observed in the cell membrane and culture filtrate.

The size of the PepD product secreted into the culture filtrate is

consistent with the ,35-kDa autoproteolytic peptide observed

previously by LC-MALDI-MS and LC-ESI-MS in vitro with

purified protein [11]. While this peptide presumably retains the

catalytic and PDZ domains, it remains unclear whether this

peptide has a biological function once secreted. We were unable to

detect by immunoblot the 10-kDa autoproteolytic product

previously reported by MohamedMohaideen et al. to contain the

PDZ domain alone [11]. It is possible that this product may

exhibit a short half-life, or may be further processed into a form

that is outside the detection parameters used in these studies.

In an effort to delineate the specific mechanism by which PepD

contributes to the M. tuberculosis stress response, a proteomic

approach was used to identify proteins or protein complexes that

interact with PepD. In M. tuberculosis or M. smegmatis, the most

prominent PepD binding protein identified was the 35-kDa

antigen, Rv2744c or MSMEG_2695, respectively. Bioinformatic

analysis indicates that Rv2744c is a member of the PspA family of

proteins. These proteins participate in the phage shock response

that has been largely studied in Gram-negative bacteria where

they are thought to participate in multiple functions. In bacteria,

PspA is involved in maintaining the proton motive force [24], and

it acts as a negative regulator of the psp operon [30,31]. A PspA

homolog in plants, VIPP1, is important in photosynthesis [32,33].

In M. tuberculosis, Rv2744c lies in an operon with upstream

transcription factor clgR and downstream gene Rv2743c encoding a

predicted membrane protein [2]. ClgR regulates its own

expression and several other genes in M. tuberculosis including

proteases and chaperones involved in protein homeostasis [34].

ClgR may also regulate determinants involved in the maintenance

of cellular redox potential and energy generation [35]. clgR is

upregulated in M. tuberculosis following exposure to various

extracytoplasmic stress including subinhibitory concentrations of

vancomycin and thioridazine [25,36]. Vancomycin interferes with

peptidoglycan biosynthesis, and thioridazine is believed to inhibit

efflux pumps in M. tuberculosis leading to a disruption in aerobic

respiration [37,38]. clgR is also upregulated following redox stress,

heat shock, acid stress, and during intramacrophage growth [35].

Interestingly, pepD and Rv2744c are both regulated by SigE,

suggesting these proteins may respond to similar stresses [39].

While both PepD and the 35-kDa antigen localize to the cell

membrane and cell wall, the nature of their interaction remains

unclear. Proteomic studies indicate that the 35-kDa antigen is a

substrate for PepD proteolysis. A processed form of epitope

tagged Rv2744c is present in cell wall and cell membrane

fractions prepared from M. smegmatis DpepD strains expressing M.

tuberculosis pepD but not the catalytic site mutant, pepDS317A

(Figure 3D). Additionally, a protein corresponding to endogenous

MSMEG_2695 is co-immunoprecipitated from whole cell lysates

prepared from M. smegmatis DpepD strains expressing M. tuberculosis

pepDS317A but not wild-type M. tuberculosis pepD (Figure 3A).

However, we have been unable to demonstrate proteolysis of

purified Rv2744c by PepDDTM in vitro (data not shown). This

could be due to a number of factors. It is possible that proteolysis

requires involvement of an accessory protein or some other

activating interaction, similar to what is seen with other HtrA

family members [14,15,40]. Consistent with this possibility, LC-

MS/MS data indicate that PepD potentially forms complexes

with multiple proteins. Alternatively, it is possible that PepDDTM

location of MSMEG_2695. (B) Western blot demonstrating the immunoprecipitation of PepD with 3xFlag-Rv2744c-6xHis using antibodies to either the
Flag epitope or PepD. (C) Western blot demonstrating the specificity of anti-FLAG immunoprecipitation from a M. smegmatis DpepD strain carrying
the pSE100 expression vector alone. (D) Western blot showing the localization of 3xFlag-Rv2744c-6xHis in various subcellular compartments in M.
smegmatis. Lanes: CFP, culture filtrate protein; CW, cell wall; CM, cell membrane; Cyt, cytosol.
doi:10.1371/journal.pone.0018175.g003

Table 2. Susceptibility of M. smegmatis strains to cell-wall
targeting antibioticsa.

Strain Vancomycinb Cycloserinec Cefuroximed INHe

mc2155/pSE100 13.760.3 18.560.3 660 46.760.3

DpepD/pSE100 1660* 20.560.3* 12.760.9* 46.760.3

DpepD/pTZ1175 14.360.3 18.860.2 8.360.3* 46.360.3

aDiameter of inhibition zones (mm) including disc diameter of 6 mm. Values are
expressed as mean 6 SEM.

b5 ml of 5 mg/ml vancomycin.
c5 ml of 50 mg/ml cycloserine.
d10 ml of 50 mg/ml cefuroxime.
e5 ml of 50 mg/ml isoniazid.
*, P,0.05 when compared to mc2155/pSE100.
doi:10.1371/journal.pone.0018175.t002
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is not capable of binding purified epitope-tagged Rv2744c or

mediating its cleavage. Interestingly, Rv2744c seems to associate

with a specific isoform of PepD that is slightly smaller than that

predicted for the full-length protein (Figure 3B). Given that

PepDDTM lacks the cytoplasmic domain and transmembrane

domain, it may be unable to assume the proper confirmation

necessary for efficient Rv2744c interaction and/or cleavage.

While we predict that the PDZ domain of PepD mediates protein

interactions with the 35-kDa antigen, PepD also possesses a large

cytoplasmic domain. A subset of proteins co-immunoprecipitating

with PepD in both M. tuberculosis and M. smegmatis are predicted to

localize to the cytoplasmic compartment, raising the possibility

that additional interactions may be mediated through this

domain. The HtrA-like protein Rv1223, which is predicted to

be essential in M. tuberculosis [11,12], also contains a large 175

amino acid cytoplasmic domain [2]; however, other HtrA-family

proteins in M. tuberculosis and in other organisms lack such a

domain. Therefore, further work is needed to delineate whether

additional interactions within the bacterial cell cytoplasm are

necessary for optimal autocatalysis or processing of substrates by

PepD in the extracytoplasmic space.

In addition to the 35-kDa antigen, three other proteins were

identified as potential substrates of PepD based on proteomic

analyses. AtpD is an ATP synthase subunit involved in

maintaining the proton motive force in Gram-positive bacteria

[41,42]. DnaK is an ubiquitous chaperone protein involved in the

heat shock response [43,44]. PknH is a membrane-associated

serine/threonine kinase involved in signal transduction, and is

necessary for arabinose metabolism [45]. The identified PepD

cleavage site for PknH occurs near the transmembrane domain

on the cytoplasmic face, a location unlikely to be accessible by the

PepD protease domain. However, it is possible that PknH is

cleaved by two separate proteases at the transmembrane interface

in a fashion similar to RseB in E. coli. This process, termed

Regulated Intramembrane Proteolysis (RIP), involves the activ-

ities of an HtrA-family protease, DegS, and a metalloprotease,

RseP (YaeL) [26]. Because the extracytoplasmic side of the

transmembrane domain of PknH contains an arginine and lysine,

Figure 4. Model of Rv2744c regulation by PepD. Under stress conditions that alter cell wall peptidoglycan, PknB becomes activated and
phosphorylates RseA. RseA phosphorylation leads to proteolytic degradation by the ClpC1P2 protease, releasing sigma factor SigE and activating
gene determinants comprising the SigE regulon. SigE positively regulates clgR, Rv2744c, and mprA. ClgR autoregulates its own expression and that of
downstream gene Rv2744c, and upregulates expression of other genes including ppk1, clpC1, and clpC2. MprA in turn upregulates sigE expression,
leading to the direct and indirect upregulation of pepD. Rv2744c traffics to the cell membrane and cell wall where it may oligomerize and help
maintain cell envelope homeostasis. PepD traffics to the same cellular compartment where it acts to maintain Rv2744c at appropriate levels.
Cessation of peptidoglycan stress results in RseA stabilization, sequestration of SigE, and subsequent downmodulation of the SigE and MprA
signaling pathways.
doi:10.1371/journal.pone.0018175.g004
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it is conceivable that PepD cleaves in this area and produces

a peptide that was missed during our semi-tryptic mass

spectrometric analysis. Alternatively, the peptide identified may

be the product of a cleavage event mediated by another protease,

as PepD was able to co-immunoprecipitate multiple proteases in

both M. tuberculosis and M. smegmatis. Regardless, the identified

binding proteins and substrates provide a starting point for

further investigations into the physiological role of PepD in M.

tuberculosis.

Based on this data, we postulate that PepD functions to

proteolytically regulate Rv2744c levels to help maintain cell wall/

cell envelope homeostasis in M. tuberculosis (Figure 4). A model is

also proposed that builds upon observations previously reported by

Barik et al [46] and others [3,47,48] concerning interactions

between the SigE and MprAB signalling pathways in M. tuberculosis

following exposure to extracytoplasmic stress. The serine/

threonine protein kinase, PknB, contains PASTA domains that

have been postulated to bind peptidoglycan and may serve as cell

wall sensors [49]. As the peptidoglycan becomes disordered due to

extracellular stress, PknB activates and phosphorylates RseA, the

anti-sigma factor of SigE. Phosporylation of RseA leads to

proteolytic degradation of this protein by ClpC1P2, releasing

SigE and inducing expression of components of the SigE regulon

including mprA and clgR [39,46,50]. MprA and ClgR in turn

upregulate gene products within their cognate regulons including

clgR itself, clpC1, clpP2, ppk1, pepD, and sigE [3,34,35]. Upregula-

tion of clp genes initiates a positive feedback loop through SigE by

enhancing degradation of RseA. Similarly, upregulation of ppk1

encoding polyphosphate kinase increases polyphosphate levels and

enhances activation of the MprAB two-component system [47],

mediating a positive feedback loop through SigE [3]. The

Rv2744c generated following upregulation of clgR is secreted

extracytoplasmically, where it functions in an as-of-yet undefined

role to help mediate resistance to the recognized stress. In

Escherichia coli and other bacterial species, PspA forms higher order

oligomers where the protein is thought to function as a structural

scaffold to help maintain proton motive force [51,52,53,54]. While

it is currently unclear if higher order oligomers are formed by

Rv2744c in M. tuberculosis, Rv2744c can interact with itself in

bacterial two-hybrid assays carried out in E. coli (Figure S2). Over-

production of Rv2744c and/or exposure of this protein to stress

that perturbs the cell wall, including that mediated through

peptidoglycan-disrupting agents, may lead to unstructured regions

of Rv2744c that become recognized by PepD. Subsequent

processing by PepD would help minimize the over-accumulation

of Rv2744c in the cell wall/cell membrane. Alternatively, cleavage

by PepD may be important for some aspect of Rv2744c function.

Finally, it is also possible that cleavage of Rv2744c by PepD may

represent a mechanism for terminating the membrane stress

response following cessation of the inducing stimulus. While none

of these possibilities are mutually exclusive, production of Rv2744c

helps restore resistance of M. smegmatis DpepD strains to

peptidoglycan-perturbing agents, allowing maintenance of cell

wall homeostasis following exposure to extracytoplasmic stress.

Future studies are aimed at delineating the specific mechanism by

which Rv2744c participates in cell wall homeostasis, and defining

the other factors that participate in this stress response pathway.

Supporting Information

Figure S1 Localization of 3xFLAG-PepD-6xHis in M.
smegmatis. Western blot demonstrating the localization of an

overexpressed 3xFLAG-PepD-6xHis variant in M. smegmatis

mc2155. Lanes: CFP, culture filtrate protein; CW, cell wall; CM,

cell membrane; Cyt, cytosol.

(TIF)

Figure S2 Quantification of Rv2744c interaction by
bacterial two-hybrid assays. E. coli BTH101 was transformed

with various bacterial two-hybrid plasmids and subjected to b-

galactosidase assays to quantify protein-protein interactions.

pKT25 and pUT18 without inserts served as the negative control.

pTZ1185 (pKT25 containing Rv2744c) and pTZ1182 (pUT18

containing Rv2744c) were used to investigate interaction of

Rv2744c with itself. pKT25zip and pUT18Czip served as the

positive control.

(TIF)

Table S1 Bacterial strains and plasmids used in this study.

(RTF)

Table S2 Oligonucleotides used in this study.

(RTF)

Table S3 Proteins from M. smegmatis whole cell lysate co-

immunoprecipitating with 3xFLAG-PepDS317A-6xHis.

(XLSX)

Table S4 Proteins from M. smegmatis cell wall fraction co-

immunoprecipitating with 3xFLAG-PepDS317A-6xHis.

(XLSX)

Table S5 Proteins identified in both M. smegmatis cell wall and

whole cell lysate preparations that co-immunoprecipitate with 3x-

FLAG-PepDS317A-6xHis.

(RTF)

Table S6 Proteins from M. tuberculosis whole cell lysate co-

immunoprecipitating with 3xFLAG-PepDS317A-6xHis.

(XLSX)

Table S7 PepD proteolysis of M. tuberculosis proteins co-

immunoprecipitating with 3xFLAG-PepDS317A-6xHis.

(XLSX)

Table S8 Identification of putative autolytic PepD cleavage sites

using LC-MS/MS.

(RTF)
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