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Abstract
An ideal observer is a hypothetical device that performs optimally in a perceptual task given the
available information. The theory of ideal observers has proven to be a powerful and useful tool in
vision research, which has been applied to a wide range of problems. Here I first summarize the
basic concepts and logic of ideal observer analysis and then briefly describe applications in a
number of different areas, including pattern detection, discrimination and estimation, perceptual
grouping, shape, depth and motion perception and visual attention, with an emphasis on recent
applications. Given recent advances in mathematical statistics, in computational power, and in
techniques for measuring behavioral performance, neural activity and natural scene statistics, it
seems certain that ideal observer theory will play an ever increasing role in basic and applied areas
of vision science.
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Introduction
The major goal of basic vision research is to understand and predict visual performance.
Empirical progress toward this goal has come from measurements of natural stimuli,
physiological optics, anatomy and neurophysiology of visual pathways, and behavioral
performance in adult and developing organisms. Empirical findings in vision research have
been interpreted and driven by a wide array of qualitative and quantitative theories and
models. Of the quantitative theories, the theory of ideal observers has played a unique and
fundamental role, especially during the last 25 years.

There are many different visual tasks human and non-human primates perform under natural
conditions and can perform under laboratory conditions. What is ultimately desired is a
general theory that parsimoniously explains and quantitatively predicts visual performance
in arbitrary natural and laboratory visual tasks. The field is a very long way from such a
theory. Instead, vision researchers have been forced to identify specific well-defined tasks,
or families of tasks, and then attempt to develop informal or formal models that can explain
and predict performance in those specific tasks. For each task or family of tasks the field
typically attempts to address a number of fundamental questions, which include: What are
the properties of the stimuli in a given task that contribute to the measured performance?
How and where are those properties encoded into neural activity along the visual pathway?
How are the different sources of task-relevant sensory information combined by the visual
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system? What are the relative contributions of peripheral and central mechanisms in the
task? What are the contributions of ‘bottom-up’ and ‘top-down’ mechanisms in the task?
How is the task-relevant information in the neural activity along the visual pathways
decoded into behavior?

Twenty-five years ago ideal-observer theory had only been worked out and applied to a very
narrow range of simple tasks. In the intervening years it has been applied to much wider
range of tasks. This article attempts to summarize some of the different kinds of tasks where
ideal observer theory has played a major role in developing models of visual performance
and in answering one or more of the questions listed above. Due to space limitations, the
primary focus is on behavioral performance, even though ideal observer theory has also
played an important role in studies of the underlying neurophysiology. Before getting down
to specific tasks, there are some general points to make about the theory of ideal observers.

Ideal observers
An ideal observer is a hypothetical device that performs a given task at the optimal level
possible, given the available information and any specified constraints. If the ideal observer
can be derived for a given task, then it can serve vision research in several important ways:

1. Identifying task-relevant stimulus properties. The ideal observer performs its task
optimally; thus, in deriving the ideal observer one is forced to identify, at least
implicitly, all the task-relevant properties of the stimuli. This makes it possible to
rigorously evaluate and test which relevant stimulus properties real observers
exploit when they perform the task.

2. Describing how to use those properties to perform the task. The ideal observer
explicitly specifies one set of computations that is sufficient to achieve optimal
performance in the task. Although there may be other sets of computations that are
sufficient to achieve optimal or near-optimal performance, an ideal observer often
provides deep insight into the computational requirements of the task.

3. Providing a benchmark against which to compare the performance of real or
model vision systems. The performance of the ideal observer is a precise
‘information measure’ that describes how the task-relevant information varies
across stimulus conditions. In general, real and model (heuristic) observers do not
efficiently use all the task-relevant information and hence do not reach the
performance levels of the ideal observer. However, if a real or model observer is
exploiting the same stimulus properties as the ideal observer, then its performance
should parallel that of the ideal observer (e.g., stimulus conditions that are harder
for the ideal observer should be harder for the real or model observer). When
human performance approaches ideal performance, then the implications for neural
processing can become particularly powerful; specifically, all hypotheses (model
observers) that cannot approach ideal performance can be rejected. When human
performance is far below ideal, there are generally a greater number of models than
could explain human performance.

4. Suggesting principled hypotheses and models for real performance. Natural
selection and learning during the lifespan necessarily drive perceptual systems in
the direction of optimal performance in the tasks the organism normally performs
in its natural environment. Although perceptual systems may not reach optimum, it
is a good bet that they are closer to ideal than to the simple models one might
generate from intuition or to explain some experimental result. Thus, a powerful
research strategy is to use the ideal observer to guide the generation of hypotheses
and models of real performance. This is often done by degrading the ideal observer
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with hypothesized neural noise or with hypothesized heuristic computations that
approximate ideal computations. Models generated this way are principled and
often have very few free parameters.

In all visual tasks, performance is limited at least in part by various sources of random
variability. These include variability in the stimuli (e.g., photon noise, heterogeneity of the
objects defining a category, variability in scene illumination, variability due to the projection
from a 3D environment to the 2D retinal images), variability in the sensory neural
representation (e.g., sensory neural noise), and variability in the decoding circuits (e.g.,
decision and motor neural noise). Thus, ideal observers are properly defined in probabilistic
terms, using statistical decision theory and information theory. Most of the ideal observers
described here fall within the framework of Bayesian statistical decision theory.

The logic and structure of a Bayesian ideal observer is relatively straight forward. In most
visual tasks, there is some actual unknown state of the world ω (e.g., a particular class of
physical object) that gives rise to a particular (random) received stimulus S reaching the
eyes. The observer's goal is to make the response ropt that maximizes the utility (or
equivalently minimizes loss) averaged over all possible states of the world (in that task),
given the stimulus S. If some biological constraints are included, then the goal becomes
maximizing utility given a neural representation of the stimulus Z = g (S;θ), where g (S;θ) is
the constraint function that specifies the mapping of the stimulus into a neural
representation. For example, Z might represent the number of photons absorbed in each
photoreceptor, and g (S;θ) the mapping from the stimulus at the eyes to photons absorbed in
each photoreceptor. (The symbol θ is included because in some applications of ideal
observer theory it is useful to allow unknown parameters in the mapping from stimulus to
neural representation; see later.) Formally, the ideal observer's response is given by

(1)

where p(ω∣Z) is the posterior probability of each state of the world given the received signal
Z, and γ(r, ω) is the utility (gain or loss) of making response r when the true state of the
world is ω. If there is no constraint function, then Z in equation (1) is replaced by S. The
performance of the ideal observer (e.g., accuracy and/or reaction time) can sometimes be
determined by direct calculation, but often can be determined only by Monte Carlo
simulation (i.e., applying equation (1) to random samples of the signal Z).

Equation (1) is fairly general; in fact, all of the examples of ideal observers described here
are special cases. However, as a concrete example, consider a task where there are just two
categories of object and the observer's task is to be as accurate as possible in identifying
which object was presented. In this case, the state of the world can take on only two values
(ω = 1 and ω = 2) and observer's responses can take on only two values (r = 1 and r = 2).
Because the goal is to be as accurate as possible, the proper utility function rewards correct
responses (γ(r, ω) = 1 if r = ω) and does not reward (or punishes) incorrect responses (γ(r,
ω) = 0 if r ≠ ω). Substituting into equation (1) shows that the ideal decision rule is simply to
make response r = 1 if p(ω =1∣Z) > p(ω = 2∣Z) and otherwise make response r = 2. In other
words, the rule is simply to pick the object with the highest posterior probability.

Although the ideal observer framework as described above is sufficient for present purposes,
there are a number of useful elaborations of the framework that should be mentioned here.
One conceptual elaboration is the influence graph (or Bayesian network), which describes
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the qualitative mapping between states or properties of the world ω and properties of the
stimulus S (e.g., see Kersten, Mamassian & Yuille 2004; Jacobs & Kruschke 2010).
Influence graphs specify the task relevant properties of the world (local environment) and
stimulus, and their causal relationships, and they imply how those properties should be
treated in computing posterior probabilities for the task. A second elaboration of the
framework is to incorporate mechanisms (including ideal Bayesian mechanisms) for
learning posterior probability distributions, utility functions, or simple decision rules
equivalent to equation (1), either on short (Jacobs & Kruschke 2010) or evolutionary
(Geisler & Diehl 2003) time scales. A third elaboration is to take into account biophysical
costs (e.g., energy) of neural computations (Laughlin & Sejnowski 2003; Koch et al. 2004;
Manning & Brainard 2009) and motor responses (Körding & Wolpert 2006), or more
generally fitness (Geisler & Diehl 2003).

Pattern detection, discrimination and identification
The earliest applications of ideal observer theory in vision were concerned with
understanding how detection is limited by photon noise and how the performance of real
observers compares that of an ideal observer that is limited only by photon noise (e.g., Rose
1948; DeVries 1943; Barlow 1957; Cohn & Lashley 1974). For this ideal observer, the
threshold for detecting an increment (or decrement) in intensity increases in proportion to
the square root of the background (baseline) intensity. Early studies showed that there are
some conditions in which human increment detection performance parallels that of the
photon noise limited ideal observer, but, on an absolute scale, humans are substantially less
efficient than the ideal observer.

Shortly after the 25th anniversary of Vision Research, photon-noise-limited ideal observers
were derived and applied to a wider range of tasks, including various acuity tasks (Geisler
1984; 1989), contrast sensitivity and contrast discrimination tasks in adults (Banks, et al.
1987; Geisler 1989; Banks et al. 1991; Sekiguchi et al. 1993; Arnow & Geisler 1996) and in
infants (Banks & Bennett 1988), color discrimination (Geisler, 1989), and letter
identification (Beckman & Legge, 2002). These studies also evaluated the additional effects
on ideal observer performance of biological constraints such as the optics of the eye, the
spatial and chromatic sampling by the photoreceptors, photoreceptor noise, and ganglion cell
spatial summation. This work provides insight into how optics, photoreceptors, photon
noise, and retinal spatial summation contribute to human performance. The general finding
is that human performance is suboptimal, but often parallels ideal observer performance
qualitatively (and sometimes quantitatively) for a surprising number of detection and
discrimination tasks. In other words, for these tasks the variation in human performance
across conditions is often predicted by the information available in the retinal responses (see
Geisler 2003 for a review). Nonetheless, the suboptimal performance of human observers
implies substantial contributions of central factors.

Barlow (1978) reasoned that it may be possible in psychophysical experiments to largely
bypass the effects of photon noise and retinal factors, and hence isolate the effects of some
of the central factors, by adding high levels of external noise. This proved to be a powerful
insight that spawned a number of studies measuring target detection and identification in
Gaussian or Poisson pixel noise. Importantly, using statistically independent Gaussian or
Poisson pixel noise makes it is relatively easy to derive and determine ideal observer
performance. For example in simple detection (where the goal is to maximize accuracy) the
ideal observer applies a template matching the shape of the target and then compares the
template response to a criterion. Adding external noise raises detection and identification
thresholds; however, as expected from bypassing low-level factors, performance generally
moves closer to that of the ideal observer (i.e., efficiency increases).
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For an ideal observer limited by external noise, the square of contrast detection (or
identification) threshold increases linearly with the square of the root-mean-squared (rms)
contrast of the external noise. Human thresholds match this prediction approximately both in
the fovea (Burgess et al.1981; Legge et al. 1987; Pelli 1990) and in the near periphery
(Najemnik & Geisler 2005), once the external noise contrast exceeds a certain level (see
Figures 1a and 1b). Measuring contrast thresholds as a function of external noise contrast
allows one to estimate an equivalent internal noise, which can be interpreted as the
combined effect of those low-level factors that are swamped (dominated) by the external
noise as external noise contrast increases (for review see Pelli & Farell 1999).

Although efficiency is higher with moderate to high levels of external Gaussian or Poisson
noise, performance is still generally well below ideal. Several factors probably contribute to
this suboptimal performance. One factor is internal uncertainty (Tanner 1961; Nachmias &
Kocher 1970; Cohn & Lashley 1974; Pelli 1985), which may include uncertainty about the
spatial location of the target (spatial uncertainty) or uncertainty about certain target feature
properties such as orientation or shape (channel uncertainty). These are forms of internal
noise that necessarily limit performance. Another factor is contrast nonlinearities (e.g.,
contrast gain control), which may produce masking effects above and beyond those due to
the similarity of the target and external noise (Foley & Legge 1981; Foley 1994; Geisler &
Albrecht 1997). A third factor is inefficient pooling of target feature information. If the
features that the real observer uses to detect the target do not correspond to the template that
matches the shape of the target, then performance will be suboptimal. The image features
that an observer uses in performing a detection or identification task can be estimated using
the classification image technique, which is based on ideal observer theory and measures the
trial-by-trial correlation between the image noise pixels and the observer's behavioral
responses (Ahumada 1996). Measurements of classification images for various kinds of
target reveal non-optimal pooling of feature information (Ahumada 1996; 2002; Eckstein et
al. 2002; Gold et al. 2000; Murray et al. 2005). Some of this non-optimal pooling is due to
uncertainty and contrast nonlinearities. However, these factors can only blur (or sharpen) the
classification image; whereas measured classification images frequently reveal missing
target features and sometimes added illusory features (Figure 1c; Murray et al. 2005).

Although ideal observer theory has played a fundamental role in much that has been learned
about the mechanisms of detection, discrimination and identification over the last 25 years,
much remains to be done. One critical direction for future research is to get a better
understanding of the differences between foveal and peripheral vision. Detection,
discrimination and identification performance vary dramatically across the visual field and
understanding the nature of this variation is essential for understanding and predicting
performance in most natural tasks. At this point, relatively little is known about how
uncertainty, contrast nonlinearities and feature pooling vary with retinal eccentricity. A
second critical direction is to move beyond laboratory stimuli to more naturalistic stimuli.
Most of what is known about detection, discrimination and identification performance is for
simple targets in Gaussian or Poisson noise. Ideal observer theory is likely to play a central
role in the push forward on both these fronts.

Pattern estimation
Conceptually, an estimation task can be viewed as a special case of an identification task
where the number of categories becomes arbitrarily large. In practice, the two kinds of tasks
are typically analyzed differently because often the appropriate utility function in an
identification task will penalize all errors equally, whereas often the appropriate utility
function in an estimation task will penalize large errors more than small errors.
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A fundamental issue in visual neuroscience is how the brain estimates spatial and chromatic
image properties from the discrete spatial and chromatic samples provided by the output of
the retina. Recent studies suggest that Bayesian ideal observers can be helpful in addressing
this issue. For example, Brainard et al. (2008) consider the problem of how the visual
system estimates chromatic image properties from the array of different cone types in the
human retina. Figure 2a shows the cone mosaics of three of five subjects measured with
adaptive optics by Hofer et al. (2005). Not only are the mosaics irregular, but there are large
individual differences. Using these mosaics and the measured point spread functions of each
subject's eye, Brainard et al. (2008) determined what would be the Bayesian optimal
estimate of the ‘color’ (one of nine color labels) for 0.6 min wide spots of 500, 550, and 600
nm light, presented randomly within the mosaic. They found that the optimal estimates are
strongly dependent not only on which cone is stimulated most, but also by the specific cone
types within the neighboring region. Further, they found that there was a strong correlation
between the distributions of optimal estimates and estimates by the subjects. For example,
the percentage of “white” responses is expected to depend strongly on the asymmetry in the
proportion of L and M cones within the mosaics (open circles in Figure 2b) and indeed this
is what was observed in the subjects’ responses (solid circles in Figure 2b). Similarly, the
ideal-observer predictions for all color names correlated strongly with the subjects’
responses (r = 0.83), for all three test spot wavelengths (Figure 2c).

In a related recent example, Geisler & Perry (under review) consider the task of estimating
retinal image luminance patterns from the coarse spatial sampling provided by the peripheral
ganglion cell mosaic. It is well known that the spatial resolution (inverse kernel size) and
sampling rate of the midget ganglion cells falls rapidly with retinal eccentricity. For
example, at just 2.5 deg eccentricity the sampling rate in both directions has fallen to about
half that in the fovea—a factor of four fewer samples per unit area (see Figure 3a). Geisler
and Perry find that if the visual system were decoding the responses at 2.5 deg eccentricity
using something simple like linear (or cubic) interpolation, then the representation of a
ground truth image (Figure 3b) would be equivalent to the image in Figure 3c. On the other
hand, if the visual system were decoding the responses using a ideal Bayesian estimator that
takes into account the average local statistics of natural images, then the representation
would be equivalent to the image in Figure 3d, which is considerably more accurate (40%
smaller mean squared error).

This increase in accuracy over linear interpolation is typical of the 1000 natural images
tested (42% decrease in mean squared error on average). Given these potential gains in
accuracy, it is likely that the visual system would exploit the average natural image statistics
and apply more sophisticated estimation heuristics than simple linear interpolation. The
Bayesian ideal observer provides principled hypotheses for how the visual system might do
this.

Another nice example of pattern estimation is the study of color constancy by Brainard &
Freeman (1997). Specifically, they considered the task of estimating the (natural) illuminant
from the responses of three sensors to an image produced by illuminating a random sample
of natural reflectance patches. They find that the maximum a posteriori (MAP) estimate,
which weights all errors equally, performs poorly compared to a maximum local mass
(MLM) estimate, where the utility decreases as a Gaussian function of the error size.
Further, their results show that a Bayesian ideal observer can, under at least some realistic
circumstances, achieve a good estimate of the illuminant and hence good color constancy.
More recently, Brainard et al. (2006) find that a similar ideal observer with a single prior
over natural illuminants and surface reflectance functions tracks the successes and failures
of human color constancy.
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These examples illustrate the potential value of ideal observer theory for gaining insight into
the computational issues associated with decoding the responses of retinal neurons and for
developing principled hypotheses for behavioral and neural performance.

Contour and region grouping
To interpret natural images the visual system makes use of various perceptual grouping
mechanisms, which work to organize local image features into clusters (groups) that are
likely to derive from the same physical source (e.g., the same physical object). Some of the
presumably more primitive perceptual grouping mechanisms are those that combine local
contour elements into extended contours and those that combine local texture elements into
extended regions. Ideal observer theory has been useful for gaining insight into how these
mechanisms should work and has provided a useful benchmark for comparison with human
performance in perceptual grouping tasks.

Applications of ideal observer approaches to contour grouping began about the time that
measurements of the statistical properties of contours in natural images began to appear
(Kruger 1998; Geisler, et al. 2001; Sigman et al. 2001; Elder & Goldberg 2002). These
studies clearly demonstrated the Gestalt principle of good continuation has a solid physical
basis in the structure of natural images, and hence that some form of this principle would be
useful for linking contour elements into groups that correspond to the same physical source
(contour). Feldman (2001) proposed a Bayesian model for subjective contour integration
and Geisler et al. (2001) proposed a Bayesian model for performance in contour detection
(integration) tasks like those developed by Field, Hayes and Hess (1993). However, neither
of these models is a true ideal observer. To date, deriving the ideal observer for standard
contour integration tasks has proven to be intractable. Yuille, Fang, Schrater & Kersten
(2003) devised a more restrictive generative model for contour shape and background noise
where it is possible to derive the ideal observer for a naturalistic contour detection
(integration) task. They find that human observers approximately parallel ideal performance,
but are most efficient in detecting approximately straight contours and contours that obey
“ecological” statistics.

More recently, Geisler & Perry (2009) derived an ideal observer for a contour occlusion
task, where the observer is presented with two contour elements (taken directly from natural
images) and separated by a circular occluder. The observer's task is to decide whether the
two elements belong to the same or different physical contours (sources). The ideal decision
rule was derived directly from the pair-wise statistics of contours in natural images, and is
essentially a big table (see Figure 4a). For any pair of contour elements across the occluder,
either one of them can be regarded as the reference element. This element is represented by
the horizontal black line segment at the center of Figure 4a. Every other line segment drawn
in the figure represents a particular geometrical and contrast polarity relationship to the
reference element where the ideal decision rule is to respond that the elements belong to the
same physical contour. Every possible line segment not drawn in the diagram represents a
relationship where the ideal decision rule is to respond that the elements belong to different
physical contours. Comparison of ideal observer performance with human performance in
the contour occlusion task (without feedback) shows that there is essentially no part of the
stimulus space where humans systematically deviate from the ideal decision rule in Figure
4a. The overall percentage of variance in the human responses (7 subjects) predicted by the
ideal observer was approximately 99%; the percentage of variance predicted for hits, correct
rejections, false alarms and misses is shown in Figure 4b (note that the scatter at low
frequencies is expected given the logarithmic plots). These results demonstrate that the
human visual system has incorporated, to close approximation, the decision rule in Figure
4a, which represents the average statistics of contours in natural scenes. Geisler and Perry
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argue that the results also reject other proposed models of (and algorithms for) contour
completion and contour integration.

Shape, depth and cue integration
Understanding how the visual system recovers the three dimensional structure of the
environment from a pair of two dimensional retinal images is one of the most central and
complex issues in vision science. To gain deep understanding will require a rigorous
description of the relationship between 3D structure and the properties of retinal images, and
a rigorous description of how those image properties are encoded and decoded by the eye
and brain. The Bayesian ideal observer framework is well suited for addressing both parts,
although most studies have focused on the second. Specifically, it has long been known that
there are various retinal image properties that alone can provide some information about
depth and shape. In recent years, the Bayesian framework has been elegantly applied to the
question of how these various image properties (cues) are encoded and combined by the
visual system. The development of Bayesian approaches to this and other complex
perceptual problems began approximately 20 years ago (e.g., Clarke & Yuille 1990; Blake,
Bültoff & Sheinberg 1993; Kersten, Mamassian & Yuille 2004, and the collection of papers
in Knill & Richards 1996).

Although relatively little is known about the detailed statistical relationship between natural
images and the 3D structure of natural environments, it is well known that there are a vast
number of scene properties that are extracted and combined by the visual system when
estimating depth and 3D shape. The Bayesian ideal observer framework is well suited to
addressing the issue of how the visual system combines different scene properties to
determine 3D structure (Blake, Bültoff & Sheinberg 1993; Landy et al. 1995; Yuille &
Bültoff 1996).

In simple tasks where the scene properties are statistically independent and Gaussian, the
optimal estimate for the combined cues is the weighted sum of the estimates computed for
each cue separately, where the weights depend on how reliable are the individual estimates.
For example in the case of two cues

(2)

where ω ̂1, ω ̂2 are the two estimates and  the variances of the estimates.

Experimental evidence demonstrates that under a number of circumstances human observers
combine cues in approximately this fashion (Knill & Saunders 2003; Mamassian & Landy
2001; Ernst & Banks 2002; Jacobs 2002). Two examples are illustrated in Figure 5. Knill &
Saunders (2003) examined how texture and stereo cues (Figure 5a) are combined in a
surface-slant discrimination task. The dashed and dotted curves in Figure 5b show measured
slant difference thresholds for texture and stereo cues alone, as a function of the baseline
slant. The solid black curve shows the measured thresholds for both cues, and the other solid
curve shows the parameter-free prediction of equation (2) obtained by estimating the relative
variances from the thresholds for the single cue conditions. Ernst & Banks (2002) examined
how visual stereo and haptic cues (Figure 5c) are combined in a height discrimination task,
where the variability of the stereo information was directly manipulated. According to
equation (2) the relative weight placed on the visual information should decline as the level
of noise added to the stereo signal increases, as shown by the solid curve and gray area in
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Figure 5d. The solid symbols in the figure show that in this task human observers adjust
their weights in an approximately optimal fashion. Similar findings have been reported for
visual and auditory spatial localization (Alais & Burr 2004).

These elegant studies were designed so that the multiple cues provide approximately
statistically independent sources of information, making the simple linear rule of equation
(2) the ideal rule. However, in many situations such statistical independence does not hold
(Clark & Yuille 1990; Landy et al. 1995; Yuille & Bültoff 1996), and hence the ideal rules
are nonlinear and can be more difficult to derive. The simple cue integration studies were
also designed to consider tasks where there is only one a priori “model” of the world (e.g.,
the world contains a single object whose properties are sampled from fixed probability
distributions). However, real-world tasks are often best described as estimation given a
mixture of a priori models (Yuille & Bültoff 1996; Knill 2003). For example, in a more
natural localization task there might be two a priori models of stimulus generation: one
model might be of a single animal that makes a sound and a visible movement, and the other
model might be of two animals, one that makes a sound and one that makes a visible
movement (Körding et al. 2007). In the former case, the two cues should be combined to get
a single estimate of location, whereas in the latter case there should be two separate
estimates of location. In other words, the task involves two concurrent sub-tasks: discrete
model selection and continuous location estimation. Finally, the simple cue integration
studies were designed so that ideal observer predictions for the combined cues could be
generated from the thresholds in the single cue conditions, without explicitly processing the
input stimuli.

A number of ideal observer analyzes of shape and depth estimation move beyond the simple
cue integration paradigm. Hogervorst & Eagle (1998; 2000) measured velocity and
acceleration discrimination of local patches of dots undergoing uniform motion and then
used those measurements to generate ideal observer predictions for structure-from-motion
tasks. They found that the ideal observer predicts many aspects of human discrimination
thresholds and bias in the structure-from-motion tasks. Knill (2003) and Körding et al.
(2007) derive ideal observers for tasks that involve model selection and find that the ideal
observers predict important aspects of human performance in slant estimation of textured
surfaces and in spatial auditory-visual localization, respectively. Liu & Kersten (1995; 1998)
derived various ideal observers for recognizing, from static monocular images, 3D jointed
stick-shaped objects under conditions where the 3D objects can be randomly transformed
(e.g., rotated) relative to observer's viewpoint. Using these ideal observers they were able to
reject certain classes of existing 2D template-based models for 3D object recognition.

In addition to formal ideal observer analyses, the principles of Bayesian ideal observers can
be used to make qualitative predictions. This approach has produced a number of novel
insights into shape and depth perception, particularly concerning the interactions between
shape, lighting, and surface properties (for reviews see Mamassian et al. 1998; Kersten et al.
2004).

The visual system has evolved and learned to perform certain tasks in natural environments
and hence Bayesian ideal observer models are most likely to provide principled quantitative
hypotheses for brain mechanisms in the cases where the stimuli match those occurring in
natural tasks. Thus, derivation of the most relevant ideal observers for shape and depth
perception must await measurement of the relevant natural scene statistics (Geisler 2008).
Nonetheless, even without such measurements the studies described above show that
principled hypotheses can be obtained by deriving Bayesian observers based on plausible
generative models of the mapping between the environment and the retinal images. These
ideal observers and the experiments motivated by them have produced major advances in
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our understanding of both the computational principles of shape and depth estimation and
how humans do it.

Motion
Motion is a ubiquitous and fundamental property of retinal stimulation under natural
viewing conditions. However, there have been relatively few attempts to study motion
perception from the perspective of ideal observer theory, in part because of the complexity
of the stimuli and the related difficultly in measuring the relevant natural scene statistics
(Geisler 2008). Early studies compared human and ideal observer performance for 2D
motion direction discrimination (Watamaniuk 1993) and 3D heading discrimination
(Crowell & Banks 1996) in random dot displays. The ideal observers (or modest
modifications of them) predicted many aspects of the human performance in these tasks.
More recently, Weiss et al. (2002) considered the influence of the prior distribution of
motion velocity in natural scenes on the estimation of 2D motion direction. They note that
when retinal image information is poor (e.g., contrast is low) an ideal Bayesian observer will
put greater reliance on the prior probability distributions and bias its estimates accordingly.
Under the assumption that the prior probability for local speed decreases monotonically as
local speed increases, Weiss et al. are able to qualitatively explain a number of motion
illusions. The ideal Bayesian observer framework has also been used to motivate and
explain powerful demonstrations of the role of shadow motion on the perception of motion
in depth (Kersten et al. 1997).

Optimal features
As described above, ideal observer theory is typically used to determine optimal
performance given precisely specified tasks, stimuli, and biological constraints. However,
ideal observer theory can be used in a rather different way; namely, to determine the
statistical properties (features) of natural images that are optimal for performance in specific
natural visual tasks. This application has its origin in information theory where a classic goal
is to the find the encoding of input signals and decoding of output signals that maximizes the
transmission rate through a noisy communication channel; i.e., find the encoding and
decoding that maximizes the mutual information between the input and output of the
channel (Cover & Thomas 1991). Applications of information theory in neuroscience have
been primarily concerned with characterizing the information transmitted by a given neural
circuit (see Reinagle 2001 for a review). In computer vision applications, Ullman et al.
(2002; 2007) determined which image patches (object parts), when used as feature
templates, maximize the mutual information between the distribution of input stimuli and
distribution of output responses in a natural object identification task. They obtained
excellent performance relative to other methods that had been applied to similar tasks.

Similarly, Geisler et al. (2009) propose and demonstrate a general method for determining
optimal features for performing natural tasks, which is based on direct application of
Bayesian ideal observer theory. Their method is illustrated in Figure 6 for the task of
identifying which side of a surface boundary in foliage images corresponds to the
foreground. A large set of ground-truth training patches, rotated to a canonical vertical
orientation, was used as input. The goal of the method is to learn the set of linear weighting
functions (RFs) that provide the best identification accuracy when the responses of units
having those weighting functions are processed with the Bayesian optimal decoder. In terms
of equation (1), these RFs correspond to the parameters θ and the vector of their responses
corresponds to g(S;θ). The method produces sensible RFs (see Figure 6) that perform better
on test samples than RFs determined by other more generic procedures (e.g., principle
components analysis). Thus, ideal observers (and similar concepts in information theory)
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have great potential for providing deep insight into the statistical properties of natural scenes
that are relevant for performance in natural tasks.

Overt and covert attention
Efficient performance in most natural tasks requires attention mechanisms that are able to
dynamically select image locations or image properties for certain kinds of specialized
processing. For example, in multiple fixation visual search tasks, overt attention
mechanisms must select locations to direct the specialized high-resolution processing
available in the fovea. Poor fixation selection can greatly increase search time. Furthermore,
within each fixation, or in a single fixation search task, covert attention mechanisms must
select retinal image locations where image features are allowed to contribute to the decision
about target location. If features from irrelevant locations are not suppressed at some
processing stage prior to behavior, then performance will necessarily be degraded (e.g., see
Dosher et al. 2004; Palmer et al. 2000). In recent years, ideal observer theory has been used
to determine what would be optimal overt and covert attention mechanisms for different
tasks. These ideal attention mechanisms have served both as a baseline for comparison with
human performance and as a starting point for proposing principled models of attention.

Two examples from the visual search literature serve to illustrate these applications of ideal
observer theory. Eckstein (1998) measured target detection accuracy in a single fixation
search task where the number of potential target locations (set size) was varied from 2 to 12
(see Figure 7a). On each trial, the subjects remained fixated on the central cross, the
potential locations of the target were cued with rectangular boxes, and the subjects judged
(in a 2AFC task) whether the display contained the target (open ellipse or tilted ellipse in the
three example displays). The symbols in Figure 7b show the performance accuracy of one
subject for the three different types of search display. The solid curves labeled “parallel”
show the predictions of an ideal attention mechanism that can select just the cued locations
under the assumption that the (effective) internal noise limiting detection performance is
statistically independent at each potential target location. Ideal performance necessarily
declines with set size because of the greater chance that some noise features will be
mistaken for target features. The dashed curve labeled “serial” shows the prediction of a
suboptimal attention mechanism that can only select one location independent of set size.
Interestingly, under these conditions exactly the same optimal attention mechanism and
parallel subsequent processing predicts performance with both the “feature” and
“conjunction” type displays, which have traditionally been viewed as involving quite
different processing (Triesman & Gelade 1980; Wolfe 2000). This example demonstrates
that the ideal observer approach can be useful for identifying those conditions under which
human attention mechanisms are near optimal and, of course, when they are not.

Najemnik & Geisler (2005; 2008) measured the speed, eye movements and accuracy for
localizing a small target in a multiple fixation search task, where the contrasts of the target
and background noise texture were varied (see Figure 7c). Search always began at the center
of the display; the white dots and lines show a hypothetical fixation sequence. Najemnik and
Geisler derived an ideal searcher for this task that is limited only by the variable sensitivity
of the human visual system with retinal location. To characterize this sensitivity map, they
directly measured target detectability (d′) at many different retinal locations in 2AFC
detection task, with the target location cued on each trial (see Figure 1b). The ideal searcher
is limited by this d′ map, but otherwise, in the search task, it processes the entire display in
parallel, optimally updates after each fixation the posterior probability of the target being at
each possible location, and then uses an optimal overt attention mechanism to select the next
fixation. This optimal attention mechanism considers each possible fixation location and
chooses the one that on average will produce the highest probability of correctly locating the
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target after the eye movement is made. Najemnik and Geisler also considered suboptimal
attention mechanisms including random and maximum a posteriori (MAP) selection. MAP
selection is an important alternative because it is equivalent to the common sense strategy of
directing fixations to the peripheral display locations with features most similar to the target.
They found that human search time (median number fixations) and accuracy were similar to
that of the ideal searcher and MAP searcher, and much better than that of the random
searcher (ruling out all possible random search models). As shown in Figure 7d, they also
found that the distribution of human fixation locations in the search display was more
similar to the ideal than to the MAP searcher or random searcher (not shown). The curious
asymmetric fixation distributions predicted by the ideal and MAP searchers are due to the
fact that the human retinal d′ map is elongated in the horizontal direction (i.e., humans can
detect the target further into the horizontal periphery than the vertical periphery). Because of
this asymmetry the ideal searcher fixates more in the top and bottom of the display and the
MAP searcher fixates more in the sides of the display. Thus, humans are qualitatively more
like the ideal searcher, which chooses fixations to gain the most information about where the
target is located, and less like the MAP searcher, which chooses locations that “look” most
like the target. This example demonstrates how ideal observer theory can provide deep
insight into complex tasks and how it can generate novel and sometimes quite unanticipated
predictions.

Future
Normative models, especially Bayesian ideal observers, have been fruitfully applied to a
rapidly expanding range of problems in vision science over the last 25 years. There is every
reason to think that this trend will continue, especially given the pace of advances in
statistical modeling/mathematics and computational power.

An ultimate goal for basic vision science is to understand and predict visual performance in
natural tasks, and thus it seems likely that there will be a growing trend to develop ideal
observers for increasingly naturalistic tasks (Geisler & Ringach 2009). Ideal observer
analysis is particularly important in the study of natural tasks, because as tasks and stimuli
become more complex, it becomes harder to intuit what kinds of neural computations would
be sensible or adequate (let alone optimal) and hence harder to generate plausible
hypotheses, design experiments, or interpret results. As the examples presented here
illustrate, even in relatively simple tasks the predictions of an ideal observer can be quite
unexpected (except in retrospect), and hence can provide novel and deep insight into the
problem under investigation.

Developing ideal observers for naturalistic tasks presents a number of challenges. The most
fundamental challenge is to characterize natural tasks and natural stimuli. Some of the tools
for quantitatively measuring and characterizing the statistical properties of natural signals
relevant for specific (usually simple) tasks are in place and others are being developed. On
the other hand, the science of identifying and characterizing natural tasks is not as well
developed. It is obvious that most natural tasks involve some mixture of perceptual and
motor subtasks, and there have been some attempts to empirically identify sequences of
subtasks at a coarse level (e.g., see Land & Hayhoe 2000). However, it is likely that even
brief perceptual subtasks are most properly characterized as being composed of subtasks.
For example, as mentioned earlier, many natural perceptual tasks might best be
characterized as a concurrent combination of two subtasks: discrete model selection and
continuous estimation (Knill 2003; Kording et al. 2007).

If a natural task and the relevant natural scene statistics can be characterized, then the next
challenge is to derive the appropriate ideal observer. There has been progress in finding
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methods for deriving ideal observers for perceptual tasks with naturalistic stimuli (see
references in this paper) and methods for deriving ideal controllers for sensorimotor systems
with realistic mechanical properties (e.g., see Kording & Wolpert 2006). The next step of
deriving ideal agents that optimally process naturalistic stimuli and optimally control
naturalistic motor systems in natural tasks may soon be taken.

Conclusion
The aim of this article was to summarize some of the contributions made by ideal observer
theory to vision research in the last 25 years. There are many other interesting examples that
could have been selected both in psychophysics and in neurophysiology. Nonetheless, these
examples amply illustrate the power of the ideal observer approach both in providing
theoretical insight and in guiding experimental design. It seems certain that ideal observer
theory (and information theory) will play an even larger role in the future of basic and
applied vision science.
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Figure 1.
Detection and discrimination in Gaussian noise. a. Detection threshold as a function of white
noise power for one observer for five pedestal contrasts. (adapted from Legge et al. 1987). b.
Detection threshold for a 6 cpd target as a function of 1/f noise contrast for two observers at
two retinal eccentricities (adapted from Najemnik & Geisler 2005). c. Classification images
for shape discrimination in white noise (adapted from Gold et al. 2000).
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Figure 2.
Optimal chromatic decoding given the human cone mosaic. (Adapted from Brainard,
Williams & Hofer 2008). a. Cone mosaics of three (out of five) human observers measured
with adaptive optics. b. Solid symbols show the percentage of trials where the subject
reported seeing “white” when a small (receptor size) spot was flashed at a random location
in the receptor lattice; open symbols show parameter free ideal-observer predictions. c.
Observed vs. predicted color names for three different spot wavelengths (r = 0.83).
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Figure 3.
Optimal decoding given peripheral ganglion cell sampling. a. Approximate relative spatial
resolution of the human visual system as a function of retinal eccentricity. Resolution is half
the foveal resolution at 2.5 deg eccentricity. b. Calibrated gray scale image at full (foveal)
resolution. c. Half-resolution image (2.5 deg eccentric) upsampled using linear interpolation.
d. Half-resolution image upsampled using ideal decoder based on natural image statistics.
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Figure 4.
Optimal grouping across an occlusion. a. Parameter free ideal decision rule based on natural
image statistics. The central black line segment represents one of a pair of contour elements.
Each other line segment drawn in the figure represents a particular geometrical and contrast
polarity relationship for the case when the optimal decision is that the contour elements
belong to the same physical contour (source). b. Comparison of ideal (solid line) and human
(symbols) performance in a contour occlusion task (Adapted from Geisler & Perry 2009.)
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Figure 5.
Cue combination in 3D perception. a. Stimuli for measuring how texture and stereo cues
combine in surface slant discrimination. b. Slant threshold as a function baseline slant angle
for single and combined cues. Red curve is parameter free prediction of equation (2). c.
Stimuli for measure how stereo and haptic cues combine in size discrimination. d. Relative
weights assigned to the two cues as a function of the amount of noise added to the stereo
display. Symbols are estimated from psychophysical thresholds; solid curve and gray area
are parameter-free predictions based on equation (2).
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Figure 6.
Accuracy Maximization Analysis (AMA): a method of using ideal observer theory to find
optimal features for natural tasks. The Bayesian optimal decoder knows the mean and
variance of the responses of each RF to each stimulus in the training set. In this case, the
accuracy of the decoder in the task can be approximated with a closed form expression. The
receptive fields are found one at a time by modifying their shape until maximum accuracy
on the training set is obtained. Final RFs for a foreground identification task are shown.
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Figure 7.
Ideal observers for overt and covert attention. a. Schematic of three types of stimuli in a
single fixation search task. The subjects’ task was to indicate (following a brief presentation
followed by a mask) whether or not the display contained the target object at one the cued
locations (rectangular boxes). b. Accuracy in the single fixation search task as a function of
the number of cued locations where the target might appear, for a subject and two model
searchers. Solid curves show ideal observer predictions. c. Stimuli for multiple fixation
search task. A small Gabor target was randomly located in background texture of noise
having the average power spectrum of natural images. Search began at the center of the
display; the white dots and lines show a hypothetical fixation sequence. d. These
temperature plots show the distribution of fixation locations in the display combined over all
trials (excluding the first fixation which was always at the center of the display), for the
human and two model searchers.
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