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Abstract
The highly efficient synthesis of a novel heat shock protein 90 (Hsp90)-based anticancer agent,
triazole-cycloproparadicicol (5), is described. The key step involves a fragment coupling using
“click chemistry.” The preliminary biological evaluation of triazole-cycloproparadicicol is also
reported.
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Heat shock protein 90 (Hsp90), a molecular chaperone that mediates the folding of a number
of oncogenic proteins (cf. Raf-1 and Her-2),[i] is considered to be an attractive target for
inhibition by anticancer agents.[ii] Recent investigations have argued that, compared to
normal cell Hsp90s, the tumor cell variations exist in activated, high-affinity, multi-
chaperone form, with particularly heightened affinities for their inhibitors. These increased
inhibitor affinities – up to one hundred fold higher than those of normal cell Hsp90s –
provide a basis for the selective targeting of tumor cells.[iii] Importantly, it has been
suggested that drug-resistant proteins are particularly dependent on association with Hsp90
in order to properly fold and function. Thus, the selective inhibition of tumor Hsp90 could
ultimately provide a means by which to counter the growing problem of drug resistance in
cancer treatment.[iv]

The interest in the development of selective Hsp90 inhibitors is evidenced by a grouping
menu of candidates which have been targeted for development directed to this proposition.
In particular, the natural product Hsp90 inhibitors, radicicol (1)[v] and geldanamycin (2)[vi]
have attracted a great deal of attention (Figure 1).[vii] Currently, the geldanamycin
derivative, 17-AAG (3), is in Phase II clinical trials for breast cancer.[vii]
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In 1999, our laboratory initiated a program directed toward the diverted total synthesis-based
discovery of novel Hsp90-based anticancer agents. We were particularly attracted to
radicicol (1) as an initial target. The absence of a quinine moiety in 1 seems to be
advantageous relative to compounds in the geldanamycin series, such as 17-AAG (3).
Radicicol (1), a metabolite of Monocillium nordinii,[v] exhibits potent in vitro inhibitory
acitivity against Hsp90 (IC50 = 20 nM)[viii] and has been shown to be significantly less
hepatotoxic than 17-AAG (3).[ix] Even more interestingly, radicicol (1) and its analogs
demonstrate potent cytotoxicity against Rb (retinoblastoma)-negative cells which are
resistant to 17-AAG.[x]

Upon completion of the first total synthesis of radicicol, we were able to confirm its reported
in vitro activity, but we found the compound to be inactive in in vivo settings. We postulated
that the disappointing lack of in vivo activity may be attributable to the presence of the
chemically vulnerable epoxide functionality of radicicol.[xi] Through application of a
diverted total synthesis (DTS)[xii] approach, we successfully prepared the congener,
cycloproparadicicol (4,Figure 2), in which the epoxide was replaced with a more robust
cyclopropyl functionality.[xiii]

Preliminary investigations revealed that the epoxide functionality of radicicol was not
crucial for inhibitory activity, as cycloproparadicicol (4) inhibited Hsp90 at levels as low as
160 nM. Furthermore, cycloproparadicicol exhibited significant inhibitory activity against
MCF-7 breast cancer cells (IC50 = 49 nM).[xiii] In a preliminary in vivo study against mice
implanted with human colon carcinoma (HCT-116), cycloproparadicicol (75 mg/kg, QDx7)
achieved 68% tumor cell growth suppression. Its stereoisomer SAR profile tracked very
closely with that of the corresponding epoxide, suggesting a common recognition pattern
with Hsp90.

Our synthesis of cycloproparadicicol suffered from several low-yielding and difficultly
scalable steps that significantly limit comfortable access for further preclinical studies.[xiii]
Furthermore, we suspected that the dienone moiety of cycloproparadicicol may be
responsible for toxicity and loss of in vivo activity.[xiv] We thus sought to design novel
analogs based on the cycloproparadicicol framework, which might exhibit a more
exploitable therapeutic index than the parent compound and which might be accessible
through an efficient and scalable synthetic route.

Given these considerations, we chose as our target compound a novel triazole-containing
analog of cycloproparadicicol (5). As outlined in Figure 3, we hoped to execute a highly
convergent and scalable route to 5, which would rely on a Cu(I)-mediated triazole formation
– “click chemistry”[xv] – to achieve the rapid buildup of the backbone (cf. 7 + 8 → 6). We
also anticipated that replacement of the original dienone moiety with a triazole functionality
might offer a means by which to overcome toxicity and erosion of in vivo activity.[xvi] The
14-membered macrolactone would be constructed through intramolecular transesterification
of alcohol 6. We proposed accessing Fragment A (7) from the commercially available
orcinol 9. Fragment B (8) would be prepared from the commercially available “chiral non-
racemic” β-hydroxylester 10. As a consequence of its convergence and scalability, we
anticipated that this proposed route would be highly amenable to the preparation of analogs
through diverted total synthesis.

The synthesis of fragment A (7) began with commercially available orcinol 9. (Scheme 1).
Phenol 11 was efficiently prepared in accordance with literature reported methods[xvii] in
70% overall yield. TBS-protection of 11 afforded compound 12. Selective chlorination of
the aromatic ring, followed by selective bromination of the methyl group under radical
conditions smoothly generated benzylbromide 13 in one pot (72% yield). Treatment of the
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latter with sodium azide at room temperature, followed by phenol protection with MOMCl
afforded desired fragment A (7) in 90% yield for 2 steps.

Our synthesis of fragment B (8) commenced with the readily available alcohol 14 which was
itself prepared from the commercially available, chiral non-racemic compound 10 in 90%
overall yield (Scheme 2).[xiii] Oxidation of 14 cleanly afforded aldehyde 15.[xviii] Next,
sulfone 16 was provided from 17 according to the literature reported method.[xix] Julia
olefination of aldehyde 15 with sulfone 16, using KHMDS as base, smoothly afforded the
desired enyne compound 18 in 60% yield with excellent Z-selectivity (>20:1).[xix] Global
desilylation of 18 cleanly provided the desired fragment B (8) in 94% yield.

With fragments A (7) and B (8) in hand, we were able to assemble the triazole 6 through
application of the highly efficient Cu(I)-mediated “click chemistry” protocol[xx] (Scheme
3). As hoped, the intramolecular macrolactonization of 6 proceeded readily under basic
conditions to provide the macrolactone 19 in 70% yield. Finally, HCl-mediated MOM
deprotection served to complete the total synthesis of triazole-cycloproparadicicol 5. The
structure of 5 was unambiguously confirmed by X-ray crystal structure analysis.[xxi]

Preliminary biological evaluations reveal triazole-cycloproparadicicol 5 to be a reasonably
potent Hsp90 inhibitor, with IC50 = 400 nM. (Table 1). Triazole-cycloproparadicicol 5 also
displayed significant in vitro inhibitory activity, comparable to 17-AAG, against the
leukemia cell line Kasumi-1 (IC50 = 650 nM).[xxii] These preliminary results show that
triazole-cycloproparadicicol is indeed a promising candidate worthy of further in vitro and
in vivo preclinical studies.

In conclusion, we have developed a highly convergent and robust synthetic route (only 11
steps in total based on the longest linear sequence, with 20 % overall yield) for the facile
synthesis of a novel analog of cycloproparadicicol. The key step involved an efficient cross
coupling reaction using a “click” type construction. The current synthesis should produce
substantial amounts of triazole-cycloproparadicicol for further in vivo studies and could also
provide an excellent platform for further analog synthesis and evaluation.[xxiii]

Experimental Section
General Methods

All non-aqueous reactions were carried out in oven-dried glassware under a slight positive
pressure of argon unless otherwise noted. All reagents were commercially available and
used without further purification from Sigma-Aldrich and TCI America, unless indicated
otherwise. Solvents were reagent grade and purified by standard techniques: THF was
distilled from Na-benzophenone or filtered through a dry-solvent system; CH2Cl2 was
distilled from CaH2 or filtered through a dry-solvent system; all other solvents were Aldrich
“anhydrous” grade solvents, unless indicated otherwise. Reactions were magnetically stirred
and monitored by thin layer chromatography on Merck silica gel 60-F254 coated 0.25 mm
plates. Preparative thin layer chromatography was performed with Merck silica gel 60-F254
coated 0.50 mm plates. Flash chromatography was performed with Sorbent Technology
silica gel 60 (particle size 32-63 μm), unless indicated otherwise. Yields reported are for
isolated, spectroscopically pure compounds. Melting points are uncorrected. NMR spectra
were recorded on Bruker DRX 300 or 400 MHz and DMX 500MHz spectrometers. Proton
and carbon chemical shifts were referenced to residual solvent peaks. Abbreviations for 1H
NMR: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, or br = broad. High
resolution mass spectra were acquired in the Columbia University Mass Spectral Core
facility on a JEOL HX110 spectrometer. Optical rotations were measured on a JASCO
DIP-1000 spectrometer.

Lei and Danishefsky Page 3

Adv Synth Catal. Author manuscript; available in PMC 2011 March 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Procedure for the Synthesis of Representative Compounds
Compound 13—To a solution of compound 12 (2.0 g, 6.2 mmol, 1.0 eq.) in anhydrous
chlorobenzene (10.0 mL) was added N-chlorosuccinimide (915 mg, 6.8 mmol, 1.1 eq.). The
reaction mixture was stirred at 100 °C for 12 h. After the reaction mixture was cooled to rt,
freshly purified N-bromosuccinimide (1.65g, 9.3 mmol, 1.5 eq.) and benzoyl peroxide (750
mg, 3.1 mmol, 0.5 eq.) were added. The reaction mixture was stirred at 100 °C for 16 h.
Then the reaction mixture was cooled to rt, and quenched with sat. NaHSO3 (10 mL),
extracted with ether (3 × 20 mL). The combined organic phase was washed with brine, dried
over MgSO4, concentrated and purified by flash chromatography (Hexane/EtOAc: 10/1) to
afford product 13 (1.94 g, 4.4 mmol, 72%) as a white solid. m.p. 102-103 °C

Compound 18—To a solution of aldehyde 15 (2.3 g, 6.3 mmol, 1.0 eq) and sulfone 16
(2.5 g, 8.2 mmol, 1.3 eq.) in anhydrous THF (30 mL) was slowly added KHMDS (0.5 M in
toluene, 16.4 mL, 8.2 mmol, 1.3 eq.) at −78 °C under argon during 1 hour. The reaction
mixture was stirred at −50 °C for 6 hours, before it was quenched by sat. NH4Cl. The
mixture was diluted with Et2O, washed with water and brine, dried over MgSO4,
concentrated and purified via flash chromatography (Hexane/EtOAc: 20/1) to afford enyne
18 (1.7 g, 3.8 mmol, 60%) as a yellow oil.

Compound 6—To a solution of benzylazide 7 (730 mg, 2.2 mmol, 1.0 eq.) and alkyne 8
(370 mg, 2.4 mmol, 1.1 eq.) in t-BuOH (2.0 mL) and H2O (2.0 mL) was added CuSO4 (8.0
mg, 0.05 mmol, 0.02 eq.) followed by sodium asorbate (90 mg, 0.5 mmol, 0.5 eq.) at rt. The
reaction mixture was vigorously stirred at rt for 12 h. The resulting mixture was diluted with
EtOAc (50 mL), washed with water and brine, dried over MgSO4, concentrated and purified
via flash chromatography (Hexane/EtOAc: 1/1) to afford triazole 6 (1.01 g, 2.1 mmol, 95 %)
as a colorless oil.

Compound 5—To the solution of phenol 19 (460 mg, 1.1 mmol) in MeOH (3 mL) was
added 2M HCl (1 mL) at room temperature. The reaction mixture was stirred at 50 °C for 8
hours. The solution was concentrated in vacuo and the residue was dissolved with EtOAc
(50 mL). The solution was washed with water and brine, dried over anhydrous MgSO4, and
filtrated. After evaporation of the solvent, the product was collected and further recrystalized
by CHCl3/EtOH (10:1) to afford the pure triazole-cycloproparadicicol 5 (410 mg, 1.1 mmol,
quant.) as a white solid. m.p. 240-242 °C
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Figure 1.
Hsp90 inhibitors.
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Figure 2.
Diverted total synthesis of cycloproparadicicol.
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Figure 3.
Proposed route to triazole-cycloproparadicicol (5).

Lei and Danishefsky Page 8

Adv Synth Catal. Author manuscript; available in PMC 2011 March 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 1.
Synthesis of Fragment A (7)
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Scheme 2.
Synthesis of Fragment B (8).
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Scheme 3.
Synthesis of triazole-cycloproparadicicol (5).
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Table 1

In vitro activity of triazole-cycloproparadicicol. (Preliminary biological evaluations were performed by Dr.
Gabriela Chiosis and coworkers at MSKCC.)

compound Hsp90 inhibition (IC50) Inhibition of Kasumi-1 leukemia cell line (IC50)

cycloproparadicicol (4) 160 nM --

triazole-cycloproparadicicol (5) 400 nM 650 nM

17-AAG (3) 600 nM 620 nM
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