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Abstract
A number of settings arise in which it is of interest to predict Principal Component (PC) scores for
new observations using data from an initial sample. In this paper, we demonstrate that naive
approaches to PC score prediction can be substantially biased towards 0 in the analysis of large
matrices. This phenomenon is largely related to known inconsistency results for sample
eigenvalues and eigenvectors as both dimensions of the matrix increase. For the spiked eigenvalue
model for random matrices, we expand the generality of these results, and propose bias-adjusted
PC score prediction. In addition, we compute the asymptotic correlation coefficient between PC
scores from sample and population eigenvectors. Simulation and real data examples from the
genetics literature show the improved bias and numerical properties of our estimators.
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1. Introduction
Principal component analysis (PCA) [19] is one of the leading statistical tools for analyzing
multivariate data. It is especially popular in genetics/genomics, medical imaging, and
chemometrics studies where high-dimensional data is common. PCA is typically used as a
dimension reduction tool. A small number of top ranked principal component (PC) scores
are computed by projecting data onto spaces spanned by the eigenvectors of sample
covariance matrix, and are used to summarize data characteristics that contribute most to
data variation. These PC scores can be subsequently used for data exploration and/or model
predictions. For example, in genome-wide association studies (GWAS), PC scores are used
to estimate ancestries of study subjects and as covariates to adjust for population
stratification [24,27]. In gene expression microarray studies, PC scores are used as synthetic
“eigen-genes” or “meta-genes” intended to represent and discover gene expression patterns
that might not be discernible from single-gene analysis [30].

Although PCA is widely applied in a number of settings, much of our theoretical
understanding rests on a relatively small body of literature. Girshick [12] introduced the idea
that the eigenvectors of sample covariance matrix are maximum likelihood estimators. Here
a key concept in a population view of PCA is that the data arise as p-variate values from a
distinct set of n independent samples. Later, the asymptotic distribution of eigenvalues and
eigenvectors of the sample covariance matrix (i.e., the sample eigenvalues and eigenvectors)
were derived for the situation where n goes to infinity and p is fixed [2,13]. With the
development of modern high-throughput technologies, it is not uncommon to have data
where p is comparable in size to n, or substantially larger. Under the assumption that p and n
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grow at the same rate, that is p/n → γ > 0, there has been considerable effort to establish
convergence results for sample eigenvalues and eigenvectors (see review [5]). The
convergence of the sample eigenvalues and eigenvectors under the “spiked population”
model proposed by Johnstone [18] has also been established[7,23,26]. For this model it is
well known that the sample eigenvectors are not consistent estimators of the eigenvectors of
population covariance (i.e., the population eigenvectors) [17,23,26]. Furthermore, Paul [26]
has derived the degree of discrepancy in terms of the angle between the sample and
population eigenvectors, under Gaussian assumptions for 0 < γ < 1. More recently, Nadler
[23] has extended the same result to the more general γ > 0 using a matrix perturbation
approach.

These results have considerable potential practical utility in understanding the behavior of
PC analysis and prediction in modern datasets, for which p may be large. The practical goals
of this paper focus primarily on the prediction of PC scores for samples which were not
included in the original PC analysis. For example, gene expression data of new breast cancer
patients may be collected, and we might want to estimate their PC scores in order to classify
their cancer sub-type. The recalculation of PCs using both new and old data might not be
practical, e.g. if the application of PCs from gene expression is used as a diagnostic tool in
clinical applications. For GWAS analysis, it is known that PC analysis which includes
related individuals tends to generate spurious PC scores which do not reflect the true
underlying population substructures. To overcome this problem, it is common practice to
include only one individual per family/sibship in the initial PC analysis. Another example
arises in cross-validation for PC regression, in which PC scores for the test set might be
derived using PCA performed on the training set [16]. For all of these applications, the
predicted PC scores for a new sample are usually estimated in the “naive” fashion, in which
the data vector of the new sample is multiplied by the sample eigenvectors from the original
PC analysis. Indeed, there appears to be relatively little recognition in the genetics or data
mining literature that this approach may lead to misleading conclusions.

For low dimensional data, where p is fixed as n increases or otherwise much smaller than n,
the predicted PC scores are nearly unbiased and well-behaved. However, for high-
dimensional data, particularly with p > n, they tend to be biased and shrunken towards 0.
The following simple example of a stratified population with three strata illustrates the
shrinkage phenomenon for predicted PC scores. We generated a training data set with n =
100 and p = 5000. Among the 100 samples, 50 are from stratum 1, 30 are from stratum 2
and the rest from stratum 3. For each stratum, we first created a p-dimensional mean vector
μk (k = 1, 2, 3). Each element of each mean vector was created by drawing randomly with
replacement from {−0.3, 0, 0.3}, and thereafter considered a fixed property of the stratum.
Then for each sample from the kth stratum, its p covariates were simulated from the
multivariate normal distribution MVN(μk, 4I), where I is the p×p identity matrix. A test
dataset with the same sample size and μk vectors was also simulated. Figure 1 shows that the
predicted PC scores for the test data are much closer to 0 compared to the scores from the
training data. This shrinkage phenomenon may create a serious problem if the predicted PC
scores are used to classify new test samples, perhaps by similarity to previous apparent
clusters in the original data. In addition, the predicted PC scores may produce incorrect
results if used for downstream analyses (e.g., as covariates in association analyses).

In this paper, we investigate the degree of shrinkage bias associated with the predicted PC
scores, and then propose new bias-adjusted PC score estimates. As the shrinkage
phenomenon is largely related to the limiting behavior of the sample eigenvectors, our first
step is to describe the discrepancy between the sample and population eigenvectors. To
achieve this purpose, we follow the assumption that p and n both are large and grow at the
same rate. By applying and extending results from random matrix theory, we establish the
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convergence of the sample eigenvalues and eigenvectors under the spiked population model.
We generalize Theorem 4 of Paul [26], which describes the asymptotic angle between
sample and population eigenvectors, to non-Gaussian random variables for any γ > 0. We
further derive the asymptotic angle between PC scores from sample eigenvectors and
population eigenvectors, and the asymptotic shrinkage factor of the PC score predictions.
Finally we construct estimators of the angles and the shrinkage factor. The theoretical results
are presented in Section 2.

In section 3, we report simulations to assess the finite sample accuracy of the proposed
asymptotic angle and shrinkage factor estimators. We also show the potential improvements
in prediction accuracy for PC regression by using the bias adjusted PC scores. In section 4,
we apply our PC analysis to a real genome-wide association study, which demonstrates that
the shrinkage phenomenon occurs in real studies and that adjustment is needed.

2. Method
2.1. General Setting

Throughout this paper, we use T to denote matrix transpose,  to denote convergence in
probability, and  to denote almost sure convergence. Let Λ = diag(λ1, λ2, …, λp), a p × p
matrix with λ1 ≥ λ2 ≥ ··· ≥ λp, and E = [e1, …, ep], a p × p orthogonal matrix.

Define the p × n data matrix, X as [x1, …, xn], where xj is the p-dimensional vector
corresponding to the jth sample. For the remainder of the paper, we assume the following:

Assumption 1—X = EΛ1/2Z, where Z = {zij} is a p × n matrix whose elements zijs are

i.i.d random variables with E(zij) = 0,  and .

Although the zijs are i.i.d, Assumption 1 allows for very flexible covariance structures for X,
and thus the results of this paper are quite general. The population covariance matrix of X is
Σ = EΛET. The sample covariance matrix S equals

The λks are the underlying population eigenvalues. The spiked population model defined in
[18] assumes that all the population eigenvalues are 1, except the first m eigenvalues. That
is, λ1 ≥ λ2 ··· ≥ λm > λm+1 = ··· = λp = 1. The spectral decomposition of the sample covariance
matrix is

where D = diag(d1, d2, …, dp) is a diagonal matrix of the ordered sample eigenvalues and U
= [u1, …, up] is the corresponding p × p sample eigen-vector matrix. Then the PC score
matrix is P = [p1, p2, …, pn], where  is the vth sample PC score. For a new
observation xnew, its predicted PC score is similarly defined as UT xnew with the vth (PC)
score equal to .
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2.2. Sample Eigenvalues and Eigenvectors
Under the classical setting of fixed p, it is well known that the sample eigenvalues and
eigenvectors are consistent estimators of the corresponding population eigenvalues and
eigenvectors [3]. Under the “large p, large n” framework, however, the consistency is not
guaranteed. The following two lemmas summarize and extend some known convergence
results.

Lemma 1—Let p/n → γ ≥ 0 as n → ∞.

i. When γ = 0,

(1)

ii. When γ > 0,

(2)

where k is the number of λv greater than , and ρ(x) = x(1+γ/(x − 1)).

The result in ii) is due to Baik and Silverstein [7], while the proof of i) can be found in
section (6.3). The result in i) shows that when γ = 0, the sample eigenvalues converge to the
corresponding population eigenvalues, which is consistent with the classical PC result where
p is fixed. The result in ii) shows that for any non-zero γ, dv is no longer a consistent
estimator of λv. However, a consistent estimator of λv can be constructed from Equation (2).
Define

Then ρ−1(dv) is a consistent estimator of λv when . Furthermore, Baik et al. [6]
have shown the -consistency of dv to ρ(λv), and Bai and Yao [4] have shown that dv is
asymptotically normal.

Lemma 2—Suppose p/n → γ ≥ 0 as n → ∞. Let < ., . > be an inner product between two
vectors. Under the assumption of multiplicity one,

i. if 0 < γ < 1, and the zijs follow the standard normal distribution, then

(3)

ii. removing the normal assumption on the zijs, the following weaker convergence
result holds for all γ ≥ 0

(4)

Lee et al. Page 4

Ann Stat. Author manuscript; available in PMC 2011 March 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Here .

The inner product between unit vectors is the cosine angle between these two. Thus, Lemma
2 shows the convergence of the angle between population and sample eigenvectors. For i),
Paul [26] proved it for γ < 1; while Nadler [23] obtained the same conclusion for γ > 0 using
the matrix perturbation approach under the Gaussian random noise model. We relax the
Gaussian assumption on z and prove ii) for γ ≥ 0 in section 6.4. The result of ii) is general
enough for the application of PCA to, for example, genome-wide association mapping,
where each entry of X is a standardized variable of SNP genotypes, which are typically
coded as {0, 1, 2}, corresponding to discrete genotypes.

2.3. Sample and Predicted PC Scores
In this section, we first discuss convergence of the sample PC scores, which forms the basis
for the investigation of the shrinkage phenomenon of the predicted PC scores. For the
sample PC scores, we have

Theorem 1—Let , the normalized vth PC score derived from a

corresponding population eigenvector, ev, and , the normalized vth sample PC
score. Suppose p/n → γ ≥ 0 as n → ∞. Under the multiplicity one assumption,

(5)

The proof can be found in section 6.7. In PC analysis, the sample PC scores are typically
used to estimate certain latent variables (largely the PC scores from population eigenvectors)
that represent the underlying data structures. The above result allows us to quantify the
accuracy of the sample PC scores. Note that here < gv, p̃v > is the correlation coefficient
between gv and p̃v. Compared to Equation (3) in Lemma 2, the angle between the PC scores
is smaller than the angle between their corresponding eigenvectors.

Before we formally derive the asymptotic shrinkage factor for the predicted PC scores, we
first describe in mathematical terms the shrinkage phenomenon that was demonstrated in the
Introduction. Note that the first population eigenvector e1 satisfies

for a random vector x that follows the same distribution of the xjs. For the data matrix X, its
first sample eigenvector u1 satisfies

Assuming that u1 and the new sample xnew are independent of each other, we have
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(6)

Since the  follow the same distribution,

(7)

By (6) and (7), we can show that

which demonstrates the shrinkage feature of the predicted PC scores. The amount of the
shrinkage, or the asymptotic shrinkage factor, is given by the following theorem:

Theorem 2—Suppose p/n → γ ≥ 0 as n → ∞, . Under the multiplicity one
assumption,

(8)

where pvj is the jth element of pv.

The proof is given in section 6.8. We call (λv − 1)/(λv + γ − 1), the (asymptotic) shrinkage
factor for a new subject. As shown, the shrinkage factor is smaller than 1 if γ > 0. Quite
sensibly, it is a decreasing function of γ and an increasing function of λv. The bias of the
predicted PC score can be potentially large for those high dimensional data where p is
substantially greater than n, and/or for the data with relatively minor underlying structures
where λv is small.

2.4. Rescaling of sample eigenvalues
The previous theorems are based on the assumption that all except the top m eigenvalues are
equal to 1. Even under the spiked eigenvalue model, some rescaling of the sample
eigenvalues may be necessary with real data.

For a given data, let its ordered population eigenvalues Λ* = {ζλ1, …, ζλm, ζ, …, ζ}, where ζ

≠ = 1, and its corresponding sample eigenvalues . We can show that
Equations (4), (8), and (5) still hold under such circumstances. However,  is no
longer a consistent estimator of λv, because
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To address this issue, Baik and Silverstein [7] have proposed a simple approach to estimate
ζ. In their method, the top significant large sample eigenvalues are first separated from the
other grouped sample eigenvalues. Then ζ is estimated as the ratio between the average of
the grouped sample eigenvalues and the mean determined by the Marchenko-Pastur law
[22]. To separate the eigenvalues, they have suggested to use a screeplot of the percent
variance versus component number. However, for real data, we may not be able to clearly
separate the sample eigenvalues in such a manner and readily apply the approach. Thus we
need an automated method which does not require a clear separation of the sample
eigenvalues.

The expectation of the sum of the sample eigenvalues when ζ = 1 is

Thus, the sum of the rescaled eigenvalues is expected to be close to ( ). Let

 and d̂v be a properly rescaled eigenvalue, then d̂v should be very close to

. Note that  for fixed m and λv. Thus prv is a properly
adjusted eigenvalue. However, for finite n and p, the difference between p and

( ) can be substantial, especially when the first several λvs are considerably
larger than 1. To reduce this difference, we propose a novel method which iteratively

estimates the ( ) and d̂v.

1. Initially set d̂v,0 = prv

2. For the lth iteration, set λ ̂v,l = ρ−1(d̂v,l−1) for , and λ ̂v,l = 1 for

. Define kl as the number of λ ̂v,ls that are greater than 1, and let

3.

If  converges, let
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and stop. Otherwise, go to step 2.

The consistency of d̂v to ρ(λv) is shown in the following theorem.

Theorem 3—Let d̂v be the rescaled sample eigenvalue from the proposed algorithm. Then,
for  with multiplicity one,

Since , φ(ρ−1(d̂v,))2 is a consistent estimator of φ(λv)2. Combining this fact with
Theorems 2 and 3, we can obtain the bias adjusted PC score 

and the asymptotic correlation coefficient between gv and p̃v

3. Simulation
First, we applied our bias adjustment process to the simulated data described in the
Introduction. Our estimated asymptotic shrinkage factors are 0.465 and 0.329 for the first
and second PC scores, respectively. The scatter plot of the top two bias adjusted PC scores is
given in Figure 2. After the bias adjustment, the predicted PC scores of the test data are
comparable to those of the training data. This indicates that our method is effective in
correcting for the shrinkage bias.

Next, we conducted a new simulation to check the accuracy of our estimators. For the jth
sample (j = 1, …, n), its ith variable was generated as

where λ1 > λ2 > 1 and zij ~ N (0, 22). Under this setting, λ1 and λ2 are the first and the second
population eigenvalues. The first and second population eigenvectors are e1 = {1, 0,…, 0}
and e2 = {0, 1, 0, …, 0} respectively. We set the standard deviation of zij to 2 instead of 1,
which allows us to test whether the rescaling procedure works properly. We tried different
values of γ and n, but set λ1 and λ2 to  and , respectively.

We split the simulated samples into test and training sets, each with n samples. We first
estimated the asymptotic shrinkage factor based on the training samples. We then calculated
the predicted PC scores on the test samples. To assess the accuracy of shrinkage factor
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estimator for each PC, we empirically estimated the shrinkage factor by the ratio of the
mean predicted PC scores of the test samples to the mean PC scores of the training samples.

That is, for the vth PC, the empirical shrinkage factor is estimated by . On
the training samples, we also estimated the empirical angle between the sample and (known)
population eigenvectors, as well as the empirical angle between PC scores from sample and
population eigenvectors. The asymptotic theoretical estimates were also calculated. Tables 1
and 2 summarize the simulation results. Our asymptotic estimators provide accurate
estimates for the angles and the shrinkage factor.

Finally, we conducted simulation to demonstrate an application of the bias adjusted PC
scores in PC regression. PC regression has been widely used in microarray gene-expression
studies [9]. In this simulation, we let p = 5, 000, and our set up is very similar to the first
simulation of Bair et al. [8]. Let xij denote the gene expression level of the ith gene for the
jth subject. We generated each xij according to

and the outcome variable yj as

where n is the number of samples, g is the number of genes that are differentially expressed
and associated with the phenotype, ε ~ N(0, 22) and εy ~ N(0, 1). A total of eight different
combinations of n and g were simulated. For the training data, we fit the PC regression with
the first PC as the covariate and computed the mean square error (MSE). For the test
samples with the same configuration of the training samples, we applied the PC model built
on the training data to predict the phenotypes using the un-adjusted and adjusted PC scores.
The results are presented in Table 3. We see that the MSE of the test set without bias
adjustment is appreciably higher than that of the test set with bias adjustment, and the MSE
of the test set with bias adjustment is comparable with the MSE of the training set.

4. Real data example
Here we demonstrate that the shrinkage phenomenon appears in real data, and can be
adjusted by our method. For this purpose, genetic data on samples from unrelated
individuals in the Phase 3 HapMap study [http://hapmap.ncbi.nlm.nih.gov/] were used.
HapMap is a dense genotyping study designed to elucidate population genetic differences.
The genetic data are discrete, assuming the values 0, 1, or 2 at each genomic marker (also
known as SNPs) for each individual. Data from CEU individuals (of northern and western
European ancestry) were compared with data from TSI individuals (Toscani individuals
from Italy, representing southern European ancestry).

Some initial data trimming steps are standard in genetic analysis. We first removed
apparently related samples, and removed genomic markers with more than a 10% missing
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rate, and those with frequency less than 0.01 for the minor genetic allele. To avoid spurious
PC results, we further pruned out SNPs that are in high linkage disequlibrium (LD) [11].
Lastly, we excluded 7 samples with PC scores greater than 6 standard deviations away from
the mean of at least one of the top significant PCs (i.e., with Tracy-Widom (TW) Test p-
value < 0.01) [24,27]. The final dataset contained 178 samples (101 CEU, 77 TSI) and 100,
183 markers. We mean-centered and variance-standardized the genotypes for each marker
[27]. The screeplot of the sample eigenvalues is presented in Figure 3. The first eigenvalue
is substantially larger than the rest of the eigenvalues, although the TW test actually
identifies two significant PCs. Figure 3 suggests that our data approximately satisfies the
spiked eigenvalue assumption.

We estimated the asymptotic shrinkage factor and compared it with the following jackknife-
based shrinkage factor estimate. For the first PC, we first computed the scores of all
samples. Next, we removed one sample at a time and computed the (unadjusted) predicted
PC score. We then calculated the jackknife estimate as the square root of the ratio of the
means of the sample PC score and the predicted PC score. The jackknife shrinkage factor
estimate is 0.319, which is close to our asymptotic estimate 0.325. Figure 4 shows the PC
scores from the whole sample, the predicted PC score of an illustrative excluded sample, and
its bias-adjusted predicted score. Clearly, the predicted PC score without adjustment is very
biased towards zero, while the bias adjusted PC score is not.

5. Discussion and conclusions
In this paper we have identified and explored the shrinkage phenomenon of the predicted PC
scores, and have developed a novel method to adjust these quantities. We also have
constructed the asymptotic estimator of correlation coefficient between PC scores from
population eigenvectors and sample eigenvectors. In simulation experiments and real data
analysis, we have demonstrated the accuracy of our estimates, and the capability to increase
prediction accuracy in PC regression by adopting shrinkage bias adjustment. For achieving
these, we consider asymptotics in the large p, large n framework, under the spiked
population model.

We believe that this asymptotic regime applies well to many high dimensional datasets. It is
not, however, the only model paradigm applied to such data. For example, the large p small
n paradigm [1,14], which assumes p/n → ∞, has also been explored. Under this assumption,
Jung and Marron [20] have shown that the consistency and the strong inconsistency of the
sample eigenvectors to population eigenvectors depend on whether p increases at a slower or
faster rate than λv. It may be argued that for real data where p/n is “large,” we should follow
the paradigm of Ahn et al. [1], Hall et al. [14]. However, for any real study, it is unclear how
to test whether p increases at a faster rate than λv, or vice versa, making the application of
Ahn et al. [1], Hall et al. [14] difficult in practice. Furthermore, the scenario where p and λv
grow at the same rate is scientifically more interesting, for which we are aware of no
theoretical results. In contrast, our asymptotic results can be straightforwardly applied.
Further, our simulation results indicate that for p/n as large as 500, our asymptotic results
still hold well. We believe that the approach we describe here applies to many datasets.

Although the results from the spiked model are useful, it is likely that observed data has
more structure than allowed by the model. Recently, several methods have been suggested to
estimate population eigenvalues under more general scenarios [10,29]. However, no
analogous results are available for the eigenvectors. In data analysis, jackknife estimators, as
demonstrated in the real data analysis section, can be used. However, resampling approaches
are very computationally intensive, and it remains of interest to establish the asymptotic
behavior of eigenvectors in a variety of situations.
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We note that inconsistency of the sample eigenvectors does not necessarily imply poor
performance of PCA. For example, PCA has been successfully applied in genome-wide
association studies for accurate estimation of ethnicity [27], and in PC regression for
microarrays [21]. However, for any individual study we cannot rule out the possibility of
poor performance of the PC analysis. Our asymptotic result on the correlation coefficient
between PC scores from sample and population eigenvectors provides us a measure to
quantify the performance of PC analysis.

For the CEU/TSI data, SNP pruning was applied to adjust for strong LD among adjacent
SNPs. Such SNP pruning is a common practice in the analysis of GWAS data, and has been
implemented in the popular GWAS analysis software Plink [28]. The primary goal of SNP
pruning is to avoid spurious PC results unrelated to population substructures. Technically,
our approach does not rely on any independence assumption of the SNPs. However, strong
local correlation may affect eigenvalues considerably. Thus the value in SNP pruning may
be viewed as helping the data better accord with the assumptions of the spiked population
model. From the CEU/TSI data and our experience in other GWAS data, we have found that
the most common pruning procedure implemented in Plink is sufficient for us to then apply
our methods.

6. Proofs
Note that EΛ1/2ZZT Λ1/2ET and Λ1/2ZZT Λ1/2 have the same eigenvalues, and ET U is the
eigenvector matrix of Λ1/2ZZT Λ1/2. Since eigenvalues and angles between sample and
population eigenvectors are what we concerned about, without loss of generality (WLOG),
in the sequel, we assume Λ to be the population covariance matrix.

6.1. Notations
We largely follow notations in Paul [26]. We denote λv(S) as the vth largest eigenvalue of S.
Let suffice A represent the first m coordinates and B represent the remaining coordinates.
Then we can partition S into

We similarly partition the vth eigenvector  into (uA,v, uB,v) and ZT into [ ]. Define

Rv as ||uB,v|| and let , then we get ||av|| = 1.

Applying singular value decomposition (SVD) to , we get

(9)

where M = diag(μ1, …, μp−m) is a (p − m) × (p − m) diagonal matrix of ordered eigenvalues
of SBB, V is a (p − m) × (p − m) orthogonal matrix, and H is an n × (p − m) matrix. For n ≥
p − m, H has full rank orthogonal columns. When n < p−m, H has more columns than rows,
hence it does not have full rank orthogonal columns. For the later case, we make H = [Hn, 0]
where Hn is an n × n orthogonal matrix.
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6.2. Propositions
We introduce two propositions for later use. The proofs of the 2 propositions can be found in
section 6.5 and 6.6.

Proposition 1—Suppose Y is an n×m matrix with fixed m and each entry of Y is i.i.d
random variable which satisfies the moment condition of zij in Assumption 1. Let C be an n
× n symmetric non-negative definite random matrix and independent of Y. Further assume ||
C|| = O(1). Then

as n → ∞

Proposition 2—Suppose y is an n dimensional random vector which follows the same
distribution of the row vectors of Y and independent of SBB. Let f(x) be a bounded

continuous function on [ ] and f(0) = 0. Suppose F = diag(f(μ1), …,
f(μp−m)), where  are ordered eigenvalues of M which is defined on (9), then

as n → ∞, where Fγ(x) is a distribution function of Marchenko-Pastur law with parameter γ
[22].

6.3. Proof of Part i) of Lemma 1)

6.3.1. When p is fixed—By the strong law of large numbers, . Since eigenvalues
are continuous with respect to the operator norm, the lemma follows after applying
continuous mapping theorem.

6.3.2. When p → ∞—For every small ε > 0, there exist p̃(n) and γε such that p̃(n)/n → γε >

0, λv(1 + γε/(λv − 1)) < λv + ε for all v ≤ m, , and . For
simplicity, we denote p̃(n) as p̃. Suppose Zp̃ is a p̃ × n matrix that satisfies the moment

condition of zij in Assumption 1. Define an augmented data matrix  and its
sample covariance matrix S ̃ = X ̃X ̃T. Let S be a p × p upper left submatrix of S ̃. We also let Ŝ
be an (m + 1) × (m + 1) upper left submatrix of S ̃. For v ≤ (m + 1), by the interlacing
inequality (Theorem 4.3.15 of Horn and Johnson [15]),

Since  for v ≤ m, and

 for v = m + 1, we have
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Thus,

(10)

Similarly by the interlacing inequality, we get

Since , and , we conclude that

(11)

The part i) of Lemma 1 follows by (10) and (11)

6.4. Proof of Part ii) of Lemma 2
Our proof of Lemma 2 (ii) closely follows the arguments in Paul [26]. From [26], it can be
shown that

(12)

and

(13)

where ΛA = diag {λ1, …, λm}.

6.4.1. When —We can show that

(14)

and
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(15)

where eA,v is a vector of the first m coordinates of the vth population eigen-vector ev, ρv is

, and zAv is a vector of vth row of ZA. The proofs can be found in 6.4.3. Note that
ev is a vector with 1 in its vth coordinate and 0 elsewhere. WLOG, we assume that 〈ev, uv〉 ≥

0. Since . By (13) and (15), we can show that

(16)

From Lemma B.2 of [26],

(17)

Thus

(18)

It concludes the proof of the first part of Lemma 2 ii).

6.4.2. When —Here we only need to consider γ > 0 because no eigenvalue

satisfies this condition when γ = 0. We first show that , which implies , hence

. For any ε > 0 and x ≥ 0, define

and

then by Propositions 1 and 2,

(19)

Lee et al. Page 14

Ann Stat. Author manuscript; available in PMC 2011 March 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



By monotone convergence theorem,

(20)

RHS of (20) is

(21)

where  and . Since (21) equals ∞ for any a ≤ ρv ≤ b, we conclude
that

(22)

Therefore , which proves the second part of Lemma 2 ii).

6.4.3. Proof of (14) and (15)—Define ,  = SAA+SAB(dvI−SBB)−1

SBA −(ρv/λv)ΛA, αv = || || + |dv − ρv||| ||, and βv = || eA,v||.

With the exactly same argument of [26], it can be shown that

where rv = − (1 − 〈eA,v, av〉)eA,v − (av − eA,v)+(dv − ρv) (av − eA,v). By Lemma 1 of
[25], rv = op(1), if αv = op(1) and βv = op(1).

When γ = 0,  and the remainder of  is

(23)

Since  and ,

By Proposition 1,
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(24)

hence  = op(1).

When γ > 0,  can be written as

(25)

The first term of RHS is op(1) by the weak law of large number. The second and third terms
are op(1) by Propositions 1 and 2. For the fourth term, ρv − dv = op(1) and its remainder part
is Op(1). Therefore,  = op(1). By combining the above results and  = Op(1) plus dv − ρv
= op(1), we prove the Equation (14).

For (15): When γ = 0, (15) can be proved by the exactly same way used to show (24). When

γ > 0, , and , hence . Therefore the result
follows according to Propositions 1 and 2.

6.5. Proof of Proposition 1
Let μ1 ≥ μ2 ≥ ··· ≥ μn be the ordered eigenvalues of C, and cij be the (i, j)th element of C.
Suppose ys is the sth column of Y, and yij is the (i, j)th element of Y. We further define

 and  for s ≠ t. The conditional mean of ψ(s, s)
given C is

(26)

Thus, E(ψ(s, s)) = E(E(ψ(s, s)|C)) = E(0) = 0.

Next, the conditional variance of ψ(s, s) given C is

Lee et al. Page 16

Ann Stat. Author manuscript; available in PMC 2011 March 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(27)

where . Since ||C|| = O(1), . Therefore, Var(ψ(s, s)|C)
≤ O(1/n) and Var(ψ(s, s)) = Var(E(ψ(s, s)|C)) + E(Var(ψ(s, s)|C)) ≤ 0 + O(1/n) → 0 as n →
∞. By Chebyshev inequality, we can conclude that

We can similarly show , which we omit here.

6.6. Proof of Proposition 2
Consider an expansion

We show that both (a) and (b) converge to 0 in probability.

a. Since , μk = 0 for k > min(p−m, n), and

f(x) is continuous and bounded on [ ], there exists K > 0 such
that supi |f (μi)| < K a.s. Let C = HFHT, then trace(C) = trace(F). By Proposition 1,
(a) = op(1).

b. Let Fp−m be an empirical spectral distribution of SBB, then

and  [5,22]. Thus

which shows that (b) = op(1).

Combining (a) and (b), we finish the proof.
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6.7. Proof of Theorem 1
WLOG we assume 〈gv, p̃v〉 ≥ 0. Let ev = {eA,v, eB,v}, then eA,v is the vector with 1 in vth

coordinate and 0 elsewhere, and eB,v is the zero vector. Since SAAuA,v + SABuB,v = dvuA,v, we
have

(28)

6.8. Proof of Theorem 2

First, we show the square of the denominator converges to ρ(λv). Since , and

 for i ≠ j,

(29)

Next we show the square of numerator converges to φ(λv)2(λv − 1)+1. Define

, then uv can be expressed as

Partition . From (14), , therefore  and  Since xnew
and uv are independent, we have

(30)

From (29) and (30),

(31)
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6.9. Proof of Theorem 3
Since ρ−1(prv) → λv for v ≤ k, WLOG we assume that k0 = k, where k is the number of λv
bigger than . Set

(32)

The first and second partial derivatives of h(x) are

(33)

(34)

so h(x) is a concave function of x given rv. From the fact that ρ−1(rvp) > 1 for v ≤ k, we
know h(p) > 0. Because of the concave nature of this function, h(x) = 0 has an unique

solution τ on [p, ∞), which  converges to. Thus d̂v = τrv. Define d̃v = rvω

where , and set dv as the sample eigenvalue when σ2 = 1. The sum of all dv is

(35)

thus

(36)

and
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(37)

By (36) and (37)

(38)

Since dv → ρ(λv) for v ≤ k,

(39)

Now, we show that τ = ω + op(1). Plugging ω into h(x) and combining the fact that ρ−1(d̃v) =
λv + op(1), we get

(40)

From the facts that h(x) is a continuous concave function, ω > p, and h(p) > 0, we conclude
that

(41)

Therefore

(42)

for v ≤ k, which concludes the proof.
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Fig 1.
Simulation results for p=5000 and n=(50,30,20). Different symbols represent different
groups. White background color represents the training set and grey background color
represents the test set. A) First 2 PC score plot of all simulated samples. B) Center of each
group.
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Fig 2.
Shrinkage Adjusted PC scores of the data in Figure 1. Different symbols represent different
groups. White background color represents the training set and grey background color
represents the test set. A) plots of all simulation samples. B) Center of each group.
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Fig 3.
Scree plot of the first 30 sample eigenvalues, CEU+TSI dataset
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Fig 4.
An instance with and without shrinkage adjustment, performed on Hapmap CEU(*) and
TSI(+). “*” and “+” represent PC scores using all data. The 161th sample was excluded from
PCA, and PC score for it was predicted. The grey rectangle represents the predicted PC
score without shrinkage adjustment and the grey circle represents the predicted PC score
after the shrinkage adjustment

Lee et al. Page 26

Ann Stat. Author manuscript; available in PMC 2011 March 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 27

Ta
bl

e 
1

C
os

in
e 

an
gl

e 
es

tim
at

es
 o

f e
ig

en
ve

ct
or

s a
nd

 P
C

 sc
or

es
 b

as
ed

 o
n 

10
00

 si
m

ul
at

io
ns

. “
A

ng
le

” 
in

di
ca

te
s t

he
 th

eo
re

tic
al

 a
sy

m
pt

ot
ic

 c
os

 (a
ng

le
), 

“E
st

im
at

e1
”

in
di

ca
te

s t
he

 e
m

pi
ric

al
 c

os
(a

ng
le

) e
st

im
at

or
, ‘

Es
tim

at
e2

” 
in

di
ca

te
s t

he
 a

sy
m

pt
ot

ic
 c

os
(a

ng
le

) e
st

im
at

or
. F

or
 e

ac
h 

es
tim

at
or

, e
ac

h 
en

try
 re

pr
es

en
ts

 m
ea

n 
of

1,
 0

00
 si

m
ul

at
io

n 
re

su
lts

 w
ith

 st
an

da
rd

 e
rr

or
 in

 p
ar

en
th

es
es

.

γ
n

PC
 1

PC
 2

A
ng

le
A

ng
le

 E
st

im
at

e1
A

ng
le

 E
st

im
at

e2
A

ng
le

A
ng

le
 E

st
im

at
e1

A
ng

le
 E

st
im

at
e2

Ei
ge

nv
ec

to
rs

1
10

0
0.

93
0.

93
(0

.0
13

)
0.

91
(0

.0
27

)
0.

82
0.

81
(0

.0
53

)
0.

80
(0

.0
52

)

20
0

0.
93

(0
.0

09
)

0.
92

(0
.0

14
)

0.
81

(0
.0

30
)

0.
81

(0
.0

32
)

20
10

0
0.

70
0.

69
(0

.0
37

)
0.

70
(0

.0
31

)
0.

51
0.

50
(0

.0
53

)
0.

50
(0

.0
58

)

20
0

0.
69

(0
.0

23
)

0.
70

(0
.0

22
)

0.
51

(0
.0

36
)

0.
51

(0
.0

41
)

10
0

10
0

0.
53

0.
53

(0
.0

34
)

0.
53

(0
.0

31
)

0.
37

0.
35

(0
.0

43
)

0.
35

(0
.0

47
)

20
0

0.
53

(0
.0

24
)

0.
53

(0
.0

24
)

0.
36

(0
.0

29
)

0.
36

(0
.0

33
)

50
0

10
0

0.
38

0.
38

(0
.0

29
)

0.
38

(0
.0

28
)

0.
25

0.
24

(0
.0

33
)

0.
24

(0
.0

37
)

20
0

0.
38

(0
.0

20
)

0.
38

(0
.0

20
)

0.
25

(0
.0

21
)

0.
25

(0
.0

24
)

PC
 S

co
re

s

1
10

0
0.

99
0.

99
(0

.0
04

)
0.

98
(0

.0
16

)
0.

94
0.

93
(0

.0
36

)
0.

91
(0

.0
48

)

20
0

0.
99

(0
.0

03
)

0.
99

(0
.0

06
)

0.
94

(0
.0

19
)

0.
93

(0
.0

24
)

20
10

0
0.

98
0.

97
(0

.0
83

)
0.

98
(0

.0
08

)
0.

89
0.

86
(0

.1
05

)
0.

87
(0

.0
55

)

20
0

0.
97

(0
.0

55
)

0.
98

(0
.0

05
)

0.
88

(0
.0

73
)

0.
88

(0
.0

36
)

10
0

10
0

0.
97

0.
97

(0
.0

79
)

0.
97

(0
.0

09
)

0.
88

0.
85

(0
.1

09
)

0.
86

(0
.0

60
)

20
0

0.
97

(0
.0

58
)

0.
97

(0
.0

06
)

0.
86

(0
.0

76
)

0.
87

(0
.0

39
)

50
0

10
0

0.
97

0.
96

(0
.0

84
)

0.
97

(0
.0

10
)

0.
87

0.
83

(0
.1

17
)

0.
84

(0
.0

69
)

20
0

0.
96

(0
.0

58
)

0.
97

(0
.0

07
)

0.
86

(0
.0

76
)

0.
86

(0
.0

38
)

Ann Stat. Author manuscript; available in PMC 2011 March 23.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 28

Ta
bl

e 
2

Sh
rin

ka
ge

 fa
ct

or
 e

si
m

at
es

 b
as

ed
 o

n 
10

00
 si

m
ul

at
io

n.
 “

Fa
ct

or
” 

in
di

ca
te

s t
he

 th
eo

re
tic

al
 a

sy
m

pt
ot

ic
 fa

ct
or

, “
Es

tim
at

e1
” 

in
di

ca
te

s t
he

 e
m

pi
ric

al
 sh

rin
ka

ge
fa

ct
or

 e
st

im
at

or
, ‘

Es
tim

at
e2

” 
in

di
ca

te
s t

he
 a

sy
m

pt
ot

ic
 sh

rin
ka

ge
 fa

ct
or

 e
st

im
at

or
. F

or
 e

ac
h 

es
tim

at
or

, e
ac

h 
en

try
 re

pr
es

en
ts

 m
ea

n 
of

 1
, 0

00
 si

m
ul

at
io

n
re

su
lts

 w
ith

 st
an

da
rd

 e
rr

or
 in

 p
ar

en
th

es
es

.

γ
n

PC
 1

PC
 2

Fa
ct

or
Fa

ct
or

 E
st

im
at

e1
Fa

ct
or

 E
st

im
at

e2
Fa

ct
or

Fa
ct

or
 E

st
im

at
e1

Fa
ct

or
 E

st
im

at
e2

1
10

0
0.

88
0.

88
(0

.0
17

)
0.

87
(0

.0
76

)
0.

75
0.

75
(0

.0
44

)
0.

76
(0

.0
63

)

20
0

0.
88

(0
.0

13
)

0.
87

(0
.0

54
)

0.
75

(0
.0

27
)

0.
75

(0
.0

44
)

20
10

0
0.

51
0.

51
(0

.0
37

)
0.

51
(0

.0
38

)
0.

33
0.

34
(0

.0
33

)
0.

32
(0

.0
38

)

20
0

0.
51

(0
.0

25
)

0.
51

(0
.0

26
)

0.
34

(0
.0

22
)

0.
33

(0
.0

28
)

10
0

10
0

0.
30

0.
30

(0
.0

24
)

0.
30

(0
.0

30
)

0.
17

0.
17

(0
.0

19
)

0.
17

(0
.0

23
)

20
0

0.
30

(0
.0

17
)

0.
30

(0
.0

23
)

0.
18

(0
.0

13
)

0.
17

(0
.0

17
)

50
0

10
0

0.
16

0.
15

(0
.0

14
)

0.
16

(0
.0

20
)

0.
08

0.
08

(0
.0

10
)

0.
08

(0
.0

13
)

20
0

0.
15

(0
.0

10
)

0.
16

(0
.0

14
)

0.
08

(0
.0

07
)

0.
08

(0
.0

09
)

Ann Stat. Author manuscript; available in PMC 2011 March 23.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 29

Table 3

Mean Square Error(MSE) of the PC regression based on gene-expression microarray data simulation with and
without shrinkage adjustment. 1,000 simulation were conducted. Each entry in the table represents mean of the
MSE with standard error in parentheses

n g Test Data without Adjustment Test Data with Adjustment Training Data

100 150 1.97(0.256) 1.70(0.284) 1.61(0.284)

100 300 1.63(0.230) 1.17(0.167) 1.12(0.158)

100 500 1.43(0.204) 1.07(0.157) 1.03(0.147)

100 1000 1.22(0.182) 1.03(0.148) 0.99(0.142)

200 150 1.73(0.159) 1.33(0.133) 1.30(0.131)

200 300 1.39(0.139) 1.08(0.105) 1.07(0.110)

200 500 1.24(0.131) 1.04(0.105) 1.01(0.101)

200 1000 1.10(0.114) 1.02(0.101) 1.00(0.101)
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