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Abstract
The conceptual foundation of the genome-wide association study (GWAS) has advanced
unchecked since its conception. A revision might seem premature as the potential of GWAS has
not been fully realized. Multiple technical and practical limitations need to be overcome before
GWAS can be fairly criticized. But with the completion of hundreds of studies and a deeper
understanding of the genetic architecture of disease, warnings are being raised. The results
compiled to date indicate that risk-associated variants lie predominantly in non-coding regions of
the genome. Additionally, alternative methodologies are uncovering large and heterogeneous sets
of rare variants underlying disease. The fear is that, even in its fulfilment, the current GWAS
paradigm might be incapable of dissecting all kinds of phenotypes. In the following text we
review several initiatives that aim to overcome these limitations. The overarching theme of these
studies is the inclusion of biological knowledge to both the analysis and interpretation of
genotyping data. GWAS is uninformed of biology by design and although there is some virtue in
its simplicity it is also its most conspicuous deficiency. We propose a framework in which to
integrate these novel approaches, both empirical and theoretical, in the form of a genome-wide
regulatory network (GWRN). By processing experimental data into networks, emerging data types
based on chromatin-immunoprecipitation are made computationally tractable. This will give
GWAS re-analysis efforts the most current and relevant substrates, and root them firmly on our
knowledge of human disease.

Genome-wide association studies (GWAS) are the cornerstone of risk-associated variant
discovery. To date, thousands of such variants have been associated with a broad variety of
phenotypes. Unfortunately, the effects of these variants account for a small proportion of
disease incidence and their distribution is at odds with our understanding of disease
mechanisms. Technological and methodological advancements in GWAS data collection
will help expand the risk-associated variome, that is, the comprehensive collection of risk-
associated variants. But it is unclear whether the current paradigm will ever be able to
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identify all genetic variation underlying human disease. As Clark et al. posit [6], our success
with GWAS depends critically on the assumptions we make about the genetic architecture of
phenotypes. Half a decade after Clark et al.’s warning we have a better understanding of the
genetic architecture of human disease and therefore the ability to shift to a new paradigm.
We address two conceptual foundations of GWAS that are suspect and review the novel
methods and technologies that have freed themselves of such biases and assumptions. We
propose an overarching framework that incorporates these advancements in the form of a
genome-wide regulatory network (GWRN). The technology to develop this network with
which to enhance the effectiveness of GWAS is now available and affordable. In the
following sections we present the reasons why GWAS needs the network, how we can start
to build it and how we can use it in the context of association studies.

Why does GWAS need a genome-wide regulatory network?
The importance of considering regulatory elements

Revising the bias toward genes—Johnson and O’Donnell have curated an open access
database of genome-wide association results collected from 118 GWAS articles [23]. The
database contains approximately sixty thousand significant associations between SNPs and
phenotypes. The authors conclude that there is a bias in the distribution of associations
toward genes. This is based on the observation that 40% of SNPs lie within the boundaries
of a gene and that roughly 70% are within a 60 kb perimeter. This bias is then used to justify
associating each variant to a protein-coding gene, which allows for subsequent analyses and
interpretations. But the same results can be drastically reinterpreted. Only one percent of the
variants lie within the boundaries of exons, making the vast majority non-coding, and more
than half lie outside the boundaries of genes. Furthermore, the high percentage of variants
falling within a 60 kb perimeter of a gene appears to originate from a bias in the genotyping
technology (see figures 3 and 4 in [23]). This interpretation does not support a gene-centric
view of risk-associated variation. Variation will ultimately impinge on genes, but the
mechanisms of disruption appear to be almost entirely non-coding. Given that exonic
variants are not prone to association, what are the next best candidates?

Genetic variation at regulatory elements is associated with disease—The
importance of genetic variation at regulatory elements has been shown for colorectal cancer
[54,43,22,59] and alpha thalassemia [18]. In the case of alpha thalassemia, De Gobbi et al.
identified a gain of function SNP that creates a novel promoter element between the alpha
globin genes [18]. Similarly, a SNP associated with colorectal cancer was found to disrupt a
regulatory element at the 8q24 cancer-linked locus [54] [43]. The variant allele of the SNP
had a significant effect on the expression of the MYC proto-oncogene through the
differential recruitment of a transcription factor. These preliminary studies have shown that
the disruption of sequence-specific binding by risk-associated variants is relevant to human
disease. This interplay between variation, regulation and disease has been reviewed by
Lupien and Brown [30]. In an orthogonal approach, Idaghdour et al. present us with the
eSNP paradigm that aims to systematically discover variants that affect transcriptional levels
of genes [21]. These two approaches have complementary strengths, and it is now feasible to
merge them by incorporating regulatory elements to GWAS. With the advent of chromatin
immunoprecipitation coupled with deep sequencing (ChIP-Seq), transcription factor binding
sites can be determined experimentally at the genome-wide level. Similarly, the chromatin
signatures of regulatory elements can also be mapped using variations of the technology.
But regardless of the non-coding nature of risk-associated variants and the evidence in favor
of prioritizing regulatory variation, the bias toward genes persists. Now that thousands of
such elements have been mapped in multiple cell lines, all GWAS strategies should be
reformulated to take them into consideration.
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The importance of considering regulatory networks
Revising the quest for high-risk variants—Another observation derived from the
database of GWAS results is that the individual effects of the discovered variants are low.
This phenomenon has been recently reviewed by Ripperger et al [45] This means that each
variant is only responsible for a small increment in the risk of developing a disease. The
scarcity of high-risk variants could still be due to the technical and practical limitations of
GWAS. Of the roughly 24 million SNPs annotated in NCBI dbSNP, at most one million are
assayed on any given platform. Furthermore, there is also a severe bias towards particular
types of variants, namely SNPs, in the majority of GWAS. To exhaust the GWAS paradigm,
the entire spectrum of human variation needs to be considered comprehensively. Ultimately,
whole genome and epigenome sequencing in adequately powered studies should allow us to
find these much sought-after variants. But even if the GWAS paradigm is realized to its
fullest extent, do all diseases have high-risk variants? Is human disease even composed of
discrete causal variants or should we start thinking about causal patterns of variation?

Genetic heterogeneity and decentralized patterns of variation in genetic
architectures—Genetic heterogeneity poses an ominous threat to the GWAS paradigm
(reviewed by McClellan and King [33]) The current assumption that causal variants are
common enough within cohorts to be detected individually might not be sound. The genetic
architectures of autism and schizophrenia represent two of the most extremely
heterogeneous genetics architectures. A substantial portion of autism appears to be caused
by rare simple and structural variants [4,47]. However, these rare mutations
disproportionally disrupt genes belonging to networks that are important for brain
development [17]. Rare structural mutation also impacts genes in individuals with
schizophrenia [57,33]. In this case, the heterogeneity is so large that in one study each
variant disrupted a different set of genes. A genetic architecture in which multiple variants
disrupt a single genomic element, such as a gene, is already problematic. But an architecture
in which each individual in the cohort has a different set of disrupted genes is simply
impervious to GWAS. Autism and schizophrenia might appear to be extreme examples, but
how heterogeneous is human disease as a whole? Let us consider cystic fibrosis (CF), a
disorder that is primarily attributed to a single gene, CFTR and a single variant ΔF508 [3] In
American populations this model accurately reflects reality, but in some populations ΔF508
accounts for as little as 27% of CF incidence. In non-American populations, a disease that is
usually considered Mendelian, reveals a shocking amount of heterogeneity: a total of 1600
mutations have been associated with the disease worldwide. It is straightforward to invoke
rare variation and mutation to find genetic architectures that are intractable to a conventional
GWAS. But can common variation produce similarly insidious architectures?

Non-linear effects and non-contiguous distributions in genetic architectures—
Epistasis can produce high-risk combinations of alleles through the non-linear interaction of
low-risk variants [36]. Even variants with undetectable effects can yield high-risk
combinations. The difficulty in finding such predictors of disease is that variants need to be
considered in sets, and to the biologically uninformed GWAS all sets are equally promising,
a priory. Unfortunately, the unbiased scan for risk-associated variant sets rapidly becomes
computationally intractable. The most naive approach to the search for variant sets is to look
at all variants falling within a gene. But, as previously mentioned, even though risk-
associated variation is likely to ultimately impinge on genes, the mechanisms by which it
does so are probably non-coding. Unfortunately, the regulatory circuitry of the cell is highly
distributed and the regulatory elements that affect a gene are unlikely to be contiguous. With
the presence of distal enhancers and chromatin loops, physical distance between variants
becomes a poor heuristic for interaction. Given the non-coding nature, heterogeneity, non-
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linear behavior and non-contiguous distribution of the patterns of variation underlying
human disease, is it time to update the GWAS paradigm?

Network approaches to GWAS—A robust framework with which to study the genetic
architectures of human disease needs to account for (1.) the non-coding classes of genomic
elements in addition to genes, (2.) the heterogeneity of variation within cohorts, (3.) the non-
linear effects between alleles in determining phenotype and (4.) the non-contiguous
distribution of variation across the genome. A variety of methods, referred to here
as ’network approaches to GWAS’, are under development to address these issues. These
approaches make use of expert knowledge, that is, statistic or experimental data used to
prune the daunting search space of variant combinations (reviewed by Moore et al. [35])
Because expert knowledge needs to encode both the elements to be searched and evidence
or predictions of their interactions, it is primarily presented in the form of networks. To date,
expert knowledge has been applied to GWAS in the form of metabolic pathways [53],
immune and inflammatory pathways [13] and protein-protein interaction networks
[41,40,14]. These methods have produced statistically significant associations between
variant sets and phenotypes. These novel approaches are therefore capable, but the networks
and annotations that have been used to date have a strong bias towards variants that overlap
genes. As we have already mentioned, the wealth of knowledge and data available for
regulatory elements and processes is rapidly growing and evolving. Though it has not yet
been formalized as an explicit network, we believe it is a propitious time to incorporate the
GWRN to the GWAS.

How do we start building the genome-wide regulatory network?
Chromatin immunoprecipitation followed by tiling microarray analysis (ChIP-Chip) or
sequencing (ChIP-Seq) has taken the study of transcriptional regulation to the -omics
domain. The terms epigenomics and cistromics [31] refer to the study of chromatin
modifications and transcription factor binding at the genome-wide scale respectively. These
layers of information that sit above the genome are dynamic and context dependent. The
interplay between them is intricate and not fully understood. At this time, only a limited
number of cell lines have epigenomic and cistromic data that are publicly available. The
ENCODE project (ENCyclopedia Of DNA Elements) has spearheaded the data generation
process [7]. This data is hosted at the UCSC ENCODE Data Coordination Center (DCC)
(http://genome.ucsc.edu/ENCODE/). However, the rate of growth suggests an imminent
coverage that will be sufficient for building a comprehensive network for all cell types In
this section we will review the projects and techniques that have contributed notably to the
study of regulation at the genome-wide level. We will borrow some basic vocabulary from
network theory as follows. The term ’node’ will refer to a genomic element (instances of
gene, enhancer, promoter…). The term ’edge’ will refer to a relationship between any two
genomic elements (instances of A binds to B, A is in linkage disequilibrium with B, A
insulates from B…) The term ’state’ will refer to a condition for a node or edge (instances of
active, bound, condensed, transcribed…). We would like to emphasize however, that the
methods used to define each of these nodes, edges and states are fundamentally empiric.
Computational methods are only used for connecting the experimental observations and
enhancing the way that the networks are processed and queried.

Nodes
Nodes represent static genomic elements. A gene, for example, is the canonical node. It may
be completely inactive in a given cell type, yet we still identify it as being present in the
genome. This principle is applied in the same manner to a wide array of heterogeneous
genomic elements. For example, we will talk about the set of enhancer nodes as the union of
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all active enhancers for all cell types. Cell types differ in the subsets of enhancer nodes that
are active or inactive. Other classes of nodes in addition to genes and enhancers are
silencers, insulators, SNPs, ORFs, ncRNA, miRNA, lincRNA… Many of these node classes
do not yet have high-throughput technologies developed for their identification. As these
technologies are developed, the network should be updated in order to allow for their
incorporation. At this stage however, the foundational node classes of the network are gene,
enhancer, promoter, insulator and variant. Comprehensive maps of human genes have long
been available. But regulatory elements have been notoriously difficult to identify until
recently. Currently we are not only able to locate them, but also to classify them according
to a variety of epigenomic signatures. Promoters, the most well known regulatory elements,
act on genes in a position and orientation dependent manner and determine the initiation of
transcription. Enhancers and silencers are the regulatory elements that act on promotors and
modulate their degree of induction or repression in a position and orientation independent
manner. Insulators, an additional class, act as barriers between promoters and enhancers
[32]. There are several other classes of regulatory elements such as lamina associated
domains (LADs), CpG islands… but their interactions have not been characterized to the
same extent. A high-resolution map of active promoters was first presented by Kim et al.
[25]. An equivalent map of insulator sites [24] followed shortly thereafter and finally a
whole genome map of active enhancers [20]. In the later study, the methods previously used
to identify each of the three regulatory element classes were used to generate maps in the
same group of cell lines, thus allowing the comparison of their distributions. The assessment
of the different roles for each of the classes concluded that enhancers have the highest
amount of variability between cell-types, whereas promoters and insulators have a narrower
variability. Furthermore, the study showed that the cell-type-specific positions of active
enhancers correlate spatially with cell-type-specific profiles of gene expression. The validity
of the predictions was further tested using reporter assays where active enhancers were
shown to drive differential expression in a statistically significant manner. From the number
of enhancers identified in the two cell lines assayed they estimated a total number of 10E5 to
10E6 enhancers in the human genome by extrapolating to the roughly 200 cell types of the
human body. Given the number of cell types remaining to be assayed and the dwindling cost
of sequencing technologies a full map of human regulatory elements should be available in
the immediate future.

Edges
Edges represent potential interactions between genomic elements or their expressed
products. An interaction between two genes, mediated by their protein products, is the
canonical edge. Edges within a genome wide regulatory network are also heterogenous.
Determining the edges between nodes requires an array of techniques tailored to each of the
many classes of interactions between genomic elements. The following sections present
three different classes of edge that are currently available for network approaches.

Edges based on linkage disequilibrium—Linkage disequilibrium (LD) is the non-
random association of alleles at two or more genetic loci due to genetic linkage,
recombination and mutation rates and several other population genetic factors. LD values for
variant pairs are provided by the HapMap Consortium (http://hapmap.ncbi.nlm.nih.gov/),
and are already encoded as a collection of explicit edges. In the context of GWAS, LD
allows the estimation of allele states at loci that have not been directly assayed. This process
is referred to as imputation. The reverse implication of this fact is that causal variants that
are in LD with assayed variants can be indirectly detected. Any signal of association in
GWAS is therefore not a property of the assayed variant, but of the set of LD variants where
it is contained. Due to the low percentage of variants assayed in GWAS, associated variants
are more likely to be in LD with causal variants than to be causal themselves. Therefore, the
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first step in result interpretation or follow up studies to GWAS is to find the set of variants
in strong LD with the risk-associated variant. That is, to follow LD edges out of the risk-
associated variant (Figure 1A).

Edges based on long-range physical interactions—Linkage disequilibrium is
tightly related to genomic sequence proximity. But most regulatory elements and genes
interact in a manner that is largely independent of the number of bases between them. The
next class of edge attempts to capture the long-range physical interactions between genomic
elements. These chromatin structures or loops have been shown to play a role in regulatory
interactions between enhancers, silencers and promoters. The family of chromatin
conformation capture techniques are designed to identify such edges for a locus of interest,
namely 3-C [11], 4-C [61,49] and 5-C [12]). Hi-C, the latest addition to this family of
methods, provides a low resolution map of long-range interactions for the entire genome
[29]. Future refinements of this technique will continue to provide valuable insights into the
spatial organization of the genome. Long-range edges can be used in addition to LD edges to
further expand the repertoire of related variants from a single risk-associated variant. In
order to do this or to determine the functional ramifications of a causal variant once it has
been identified, long-range edges are followed (Figure 1B).

Edges based on cistromic interactions and insulators—The prototypical
regulatory interaction is between a transcription factor and regulatory element affecting gene
expression. This class of edge or interaction is independent of genomic or physical distance
between genomic elements because it is mediated by diffusing molecules. In order to
consider all variation that might impinge on a gene’s expression, or all genes that a
transcription factor might impinge upon, cistromic edges are followed (Figure 1C). Cistrome
data has advanced the study of genome-wide regulation dramatically by providing
comprehensive lists of locations for binding events. But the interplay between bound
regulatory elements and genes is still poorly understood. Chan and Song have pioneered the
integrative approach to genome-wide regulatory networks by merging a variety of
epigenomic and cistromic data sources [5]. In their study, they developed a quantitative
model for predicting gene-to-enhancer associations in the context of estrogen induction
through its effector transcription factor; estrogen receptor (ER). Their predictive model can
account for approximately 70% of estrogen induced gene expression. The initial challenge
addressed in the study is that the positions of binding sites alone are not predictive of a
genes responsiveness to a transcription factor. What they initially observed was that only a
small percentage of genes with ER binding in proximal promoter regions, exons or introns
were regulated by ER. This trend contradicted a promoter-centric formulation of genome
wide regulation. The first step in their approach was the identification of estrogen-
responsive genes in the MCF7 breast cancer cell line. This was achieved through time
course expression profiling after estrogen induction. Performing the experiments in the
presence of the translation inhibitor cycloheximide allowed for the separation of primary
targets from secondary targets, this step proved to be critical in determining the subset of
directly responsive genes. Once the up-regulated and down-regulated genes were identified,
the genome was partitioned into regulatory units or blocks bounded by insulators. The
cistromic signature of insulators is the nuclear protein CTCF, which is ubiquitously
expressed across all cell types (reviewed by Phillips and Corces [42]). These insulated
blocks are therefore referred to as CTCF blocks. ER binding sites and estrogen-responsive
genes were subsequently assigned to CTCF blocks and tested for correlation. In this first
assignment they found that only a small percentage (14%) of CTCF blocks containing ER
binding sites contained estrogen-responsive genes. However, a large percentage (68%) of
up-regulated genes had ER within their CTCF blocks. It is important to note that this
remarkable prediction was achieved using CTCF data from a cell line other than MCF7. The
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predictive accuracy of their model using matched cell line data is yet to be assessed.
Additionally, they assessed the degree of insulation achieved by CTCF by testing the
correlation between gene expression profiles within and between CTCF blocks. Their
findings revealed a significantly higher correlation within blocks as compared to between
blocks. In other words, ER activation is mostly confined to blocks with bound ER and does
not cross boundaries into adjacent blocks. The study also reported interesting negative
results. First, the distance between ER binding events and gene promoters did not correlate
with transcriptional induction. Second, the number of ER binding events within a block only
slightly correlate with transcriptional induction. Chromatin loops between enhancers and
promoters might bypass insulators, but this layer of information was not considered in the
study. This approach is an excellent example of how the incorporation of genomic,
epigenomic and cistromic layers of information can begin to generate predictive models of
transcriptional induction.

States
Having defined nodes and edges as static, states are intended to encode the dynamics of the
cell. Genes have activation states that vary between cell types and experimental conditions.
Variants have allelic states that vary across individuals. LD edges have strong or weak states
that vary across populations. Regulatory elements can be evolutionarily conserved or display
acceleration in certain species. And chromatin loops may be present or absent depending on
the cell type. The state space of the GWRN is vast and uncharted. But epigenomics,
cistromics, personal genomics and spatial biology have already started fathoming its depths.

States of genes based on epigenomics—Post-translational modifications of histones
have been shown to correlate with the activation states of genes. The cascade of epigenomic
events at transcriptional start sites (TSSs) has been studied extensively (reviewed by
Orphanides and Reinberg [39]). Recently, Seila et al. presented a highly detailed picture of a
subclass of TSSs through ChIP-seq [48]. Among several interesting insights, they revealed
the mechanisms by which cells are able to break the initial symmetry in promoter binding
events and initiate transcription in the correct direction. Both promoter-associated RNAPII
and trimethylation at histone 3 lysine 4 (H3K4me3) were confirmed as hallmarks of
initiation and dimethylation at histone 3 lysine 79 (H3K79me2) for elongation. The
asymmetric distribution of these signatures is particularly interesting. The ratio between
sense and antisense TSSa-RNA (short, divergent RNA molecules, nascent at TSS), was
found to correlate positively with transcriptional induction. And a similarly asymmetric
distribution was found for the H3K4me3 signature.

States of regulatory elements based on epigenomics—Epigenomic signatures of
function have also been found for enhancers and promoters. Lupien et al. revealed how the
pioneering factor FoxA1 acts in combination with mono and dimethylation at histone 3
lysines 4 (H3K4me1 and H3K4me2) to remodel chromatin [31]. This remodeling
subsequently allows for the binding of sequence-specific transcription factors. In the model
presented, the chromatin modification precedes the recruitment of the pioneering factor, thus
revealing further insight into the temporal succession of genomic events in the regulatory
cascade. These results were confirmed and extended to the genome-wide level by the work
of Heintzman et al. [20]. Several other epigenomic marks have also been found to play
important roles in regulation. Histone 3 acetylation (AcH3) is typically associated with
chromatin accessibility and transcriptional activity.

Trimethylation at histone 3 lysines 27 and 36 (H3K27me3 & H3K36me3) have been
associated with transcriptional silencing and transcriptional elongation respectively [58].
The complete cascade of events that leads to the activation or repression of a genomic
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element is still unclear. But as these layers of genomic annotation are understood we will
increasingly be able to predict and estimate the states of the GWRN as a function of cell
type and stimuli.

How can we use the genome-wide regulatory network to enhance GWAS?
Promoting GWAS results: from association to putative-causality

Assigning causality to a variant requires extensive experimental validation in the target
cohort. A step prior to assigning causality to a variant is to show that it is capable of
disrupting the normal function of the cell. This is usually achieved by finding a correlation
between genomic variation and a significant change in gene expression. This degree of
functional disruption is also referred to a putative-causality. In this section we claim that the
promotion of risk-associated variants to putative-causal variants is a process that can be
automated through the use of the GWRN.

A systematic experimental approach for a risk-associated variant—The
elucidation of the biological mechanisms underlying the non-protein-coding risk variant
rs6983267 at 8q24 is one of the first instances of this process. Homozygosity for the G allele
has been found to increase colorectal cancer (CRC) risk by 1.5 fold [54] [43]. In the case of
rs6983267, the variant was finally attributed to differential binding at a region harboring a
transcriptional enhancer. Despite its specificity, the methodology they developed can be
generalized to any risk-associated variant produced in a GWAS. The starting point was a
strong association between the variant and CRC [52] [60] [19]. The region containing the
candidate variant was then re-sequenced and linkage disequilibrium was determined
between the neighboring SNPs in order to identify linked variants. Further experimental data
was generated in order to determine the function of the variants within the block of LD. Due
to the variants location in a gene desert approximately 335 kb from the MYC proto-
oncogene and the lack of any kind of transcriptional activity (mRNA, miRNA, ncRNA…),
the most likely function was that of a transcriptional enhancer. Epigenomic and cistromic
ChIP data were generated for enhancer signatures (H3K4me1 and H3K4me3, and p300
respectively) in the CRC cell line Colo205 in order to confirm the functional assignment and
select the most promising variant. Indeed, the region overlapping rs6983267 displayed all
the characteristics of an enhancer. In this instance, the risk-associated SNP was chosen as
the most likely variant to be causal. However, this will not necessarily be the case for all
follow up studies, as discussed previously. Knowing that the region has enhancer activity,
they then looked for sequence motifs that the polymorphisms alleles could be disrupting.
The motif found corresponded to the TCF7L2 sequence-specific DNA-binding protein.
Conveniently, Colo205 is heterozygous for rs6983267, allowing them to rapidly probe for
differential binding affinity between major and minor alleles. Binding was tested both in
vivo and in vitro, revealing significant differences in transcriptional induction. Having
shown differential binding and enhancer activity, the next step was to find the downstream
targets of this enhancer. MYC was the closest gene to the enhancer and a known mediator of
Wnt signaling. Given that TCF7L2 is the main transcriptional effector of Wnt signaling,
they set out to test the interaction between the enhancer region and the MYC gene. Through
the use of chromosome conformation capture they provided evidence of a long-range
physical interaction between rs6983267 and MYC regions. The small scale interactions
revealed in this study were further bolstered by the fact that Wnt and MYC play important
roles in CRC pathogenesis [38] [26]. The effect of rs6983267 on MYC induction was
confirmed by Wright et al. [59]. Additionally they showed that the formation of the physical
interaction did not vary between the SNPs alleles
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A proposed computational approach for estimating the ramifications of
variation—The systematic experimental approach just described can be reformulated in a
rudimentary, network theory vocabulary. Once abstracted, the computational approach that
results has a high potential for being scaled and automated. From the starting point of the
trait node for CRC, an association edge was followed to a SNP node (rs6983267). From
there, spatial edges were followed in order to locate adjacent nodes. In this instance, other
SNP nodes were found following LD edges and an enhancer node was found via and overlap
edge. Because the nodes are static as we have defined them, the enhancer state had to be
validated as being active in the Colo205 cell line. As no other functional nodes of any type
could be found in the region, the most likely mechanism of action of the SNP was that of a
distal regulatory element or enhancer. Once this was established, they tried to elucidate the
mechanistic ramifications of the different SNP states (alleles). To this end, the functional
edges and spatial edges were followed out of the enhancer node to look for target promoter
nodes within the regulatory block defined by insulator nodes. By doing this they found the
gene node for MYC as the solitary gene to be regulated within the block. The combination
of both functional edges (distance to TSS and absence of insulator) and a spatial edge (long-
range physical interaction) between rs6983267 and MYC provided strong evidence for the
putative-causality of the variant. In order to gain further understanding of the mechanism
underlying the associated risk, trans-acting edges (signaling) were followed downstream of
MYC and cistromic edges were followed upstream of the enhancer node. Both paths
ultimately re-encountered the trait node for CRC, and the process terminated successfully.
The next step would have been to test for correlations between the allelic states of the SNP
node and the states of all nodes in the sub-network or pathway identified. A simplified and
further abstracted version of this process is presented in Figure 1. The objective of this study
was to systematically evaluate the possible roles of regions within the genomic risk interval.
This was achieved not only by following edges within the GWRN, but by traversing the tree
of all known biological functions and successively pruning unlikely possibilities as the
evidence was collected. The first branching point was whether the causal variants were
protein-coding, followed by whether there were any transcripts associated with the region,
and so on and so forth. At the time the study was conducted the researchers had to generate
the majority of the data at each step in order to traverse the tree of possible functions. But as
the volume of publicly available data continues to grow it will become possible to replicate
this process entirely by querying the appropriate databases. With nothing but the location of
a risk-associated variant it will become possible to trace forward and backward and generate
the sub-network of nodes that are affected. To illustrate the complexity and scale of publicly
available data, Figure 2 shows the cistromes of three transcription factors available through
the ENCODE project. The question then is: assuming that we are able to formalize and
consolidate the growing body of regulatory data, what computational strategies can we adapt
or develop to re-analyze GWAS results?

Aggregating GWAS results: discovering sets of risk-associated variants
Approaches that evaluate additive sets of variants as risk factors—[Analytical
strategies that consider sets, pathways or networks of variants as opposed to individual
variants have already been applied to GWASs. Gene set enrichment analysis [37] [51]
(GSEA) is a method that tests for differential expression of sets of protein-coding genes. The
approach is completely independent of how these sets are constructed and can therefore
support a wide variety of clustering and grouping criteria. Exploratory Visual Analysis [44]
(EVA) performs similar tests of significance but is not restricted to genes and can
accommodate any type of variant. This approach uses a permutation testing strategy to
assess the significance of the statistical results within a set of variants. Askland et al. have
applied EVA to a GWAS of bipolar disorder [2]. In their study, they find only a modest
overlap in the particular genes driving the significance of gene sets. But their observations
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strongly suggest that variation in ion channel genes contributes to the susceptibility of the
disease. Furthermore, the lack of overlap may indicate that the genetic architecture of
bipolar disorder is highly heterogeneous. Torkamani et al. present one of the most thorough
pathway analysis to date [53]. Their study attempts to characterize the polygenic basis of
seven common diseases using the Wellcome Trust Case Control Consortium (WTCCC)
GWAS results [8]. The WTCCC data sets consist of genotype data for seven common
diseases. The collection includes bipolar disorder (BD), coronary artery disease (CAD),
Crohns disease (CD), hypertension (HT), rheumatoid arthritis (RA), type 1 diabetes (T1D)
and type 2 diabetes(T2D). The approach builds from the strategy defined by Kotti et al. for
identifying the additive effects of low-penetrance variants [27]. This is achieved by
determining if the variants that are associated with a disease have a tendency to cluster in
biological pathways. Namely, the pathway analysis tools provided in the MetaCore software
suite developed by GeneGo (http://www.genego.com/). A hypergeometric model was then
applied to determine the significance of enrichment for each pathway. Statistically
significant pathogenic pathways were discovered for each of the seven diseases, all of which
were considered biologically plausible. Interestingly, the pathways for each of the diseases
had a significant amount of overlap. Eleftherohorinou et al. also re-analyzed the WTCCC
data through a pathway-based approach [13]. By summing the Armitage trend test statistic
over all variants in a pathway, they derived a cumulative trend test statistic. Associations
were obtained after estimating the null distribution of the statistic through the random
permutation of case/control labels. SNPs within associated pathways were subsequently
used to build predictive models of disease risk by fitting a logistic regression model with
variable selection. This study provides two important insights into the genetic architectures
of WTCCC diseases in the context of inflammatory pathways. First, an estimate of the
number of variants and genes within each of the architectures. They report and average of
205 SNPs and 149 genes in T1D, 350 SNPs and 189 genes in RA and 493 SNPs and 277
genes in CD. Second, a comparison of the predictive power of variants within risk-
associated pathways that are not risk-associated individually and those that are. The models
in which significant associations are excluded have a comparable predictive power to those
in which they are included. In addition to novel associations with pathways and variants, this
study highlights the limitations of single variant approaches to GWAS. The same general
approaches used by Askland et al., Torkamani et al. and Eleftherohorinou el al. are
applicable to any type of network structure. An important limitation of these approaches is
that they have all made use of gene networks and have ignored regulatory elements.

Approaches that evaluate interacting sets of variants as risk factors—The
methods described thus far make the strong assumption that the effects of the variants are
additive (or linear) and that the interaction-based (or epistatic) effects between them are
negligible. To be more specific, statistical epistasis was defined by Fisher as a deviation
from additivity in a linear model [15]. The likelihood of epistatic behavior in the context of
regulatory networks has been evaluated by Gertz and colleagues [16]. In their study they
claim that the majority of genotype to phenotype mappings are expected to behave in a non-
linear or epistatic fashion. The pervasiveness of interactions in biological systems has been
reviewed in Tyler et al. [55]. And the modeling and analysis of interactions has been
reviewed in Cordell et al. [10]. Epistatic analysis makes fewer assumptions about the
underlying genetic architecture of traits and diseases. However, approaches that consider
interactions suffer greatly from what is known as the curse of dimensionality. First, the
combinatorial explosion of variant sets makes exhaustively testing all possible epistatic
models with more than three variants computationally intractable. Second, the explosion of
combinations entails the dilution of data points as the same number of samples need to be
divided among increasing numbers of the combinations. Third, multiple testing correction is
based on the effective number of variant pairs, further reducing the threshold for
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significance. Multifactor Dimensionality Reduction (MDR) overcomes part of this burden
through the use of dimensionality reduction [46]. In this method, combinations are merged
into low and high risk classes to prevent sample dilution. Additionally, a streamlined design
of the algorithm allows for the fast evaluation of millions of combinations. This process of
defining new attributes from sets of attributes is referred to as constructive induction or
attribute construction [34]. The MDR approach has been applied to a wide range genetic
association studies. For example, Andrew et al. used MDR on variants within DNA repair
genes to predict susceptibility to bladder cancer [1]. They found a highly significant non-
additive interaction in the xeroderma pigmentosum group D gene (XPD). The epistatic
model composed of two SNPs was a better predictor of bladder cancer than smoking.
Importantly, these results have been independently replicated [50]. But despite the success
of MDR, the unbiased exploration of epistatic models with four or more variants is still
computationally intractable. Exploring the space of epistatic models must be therefore
performed in a directed manner. Prior knowledge can be used to prioritize sets of variants
under a variety of criteria (reviewed by Moore et al. [35]). Emily et al. present one of the
first genome-wide scans for epistasis based on biological networks [14]. The study’s
network substrate is the STRING database of protein-protein interactions [56]. And the
analytical methodology is based on that proposed by Pattin et al. [41] [40]. In their
approach, only high-confidence STRING source scores were used to scan the WTCCC data
for two-locus epistatic models. SNPs were associated to interacting proteins by sequence
proximity, and the window size was intended to include the variants in LD with the gene and
in nearby regulatory elements. Interactions between pairs of SNPs were tested by using a
likelihood ratio test proposed by Cordell [9]. The difference between logistic regression
models, built with and without interaction coefficients, is taken as a measure of interaction.
Significant results were reported for gene pairs in four out of the seven diseases. Most of
these were found to be one or two interactions away from genes involved in the etiologies of
the corresponding diseases. The final tally of results did not surpass what would be expected
for a conventional GWAS.

Conclusion
The methods described thus far represent the infancy of network approaches to GWAS.
Even though we have focused on regulatory networks; metabolic and signaling pathways
also need to be included. Furthermore, transcription factors and DNA binding events only
represent a fraction of cellular regulation. Genome-wide technologies for microRNAs
(miRNA), large intergenic non-coding RNAs (lincRNA), nuclear export and other
mechanisms are under development. As they become available, they will hopefully be
incorporated into a generalized network approach to GWAS. These networks represent a
bridge between cutting-edge high-throughput genomic technology and state-of-the-art
bioinformatic algorithms and programs. But most importantly they represent a common
ground between biomedical researchers and computer scientists. In order to elucidate the
complex mechanisms of common disease the expertise of both fields is indispensable.

As these methods develop, they will be able to address most of the issues raised in the
introduction of this review. Non-coding variants will be incorporated, non-linear effects will
be considered and the non-contiguous relationships between elements will be encoded as
networks. However, the genetic heterogeneity of human disease will remain a challenge.
Network approaches to GWAS will be less susceptible than conventional GWAS. In this
new paradigm, low-risk variants will be able to additively make up a high-risk model. Even
variants that are only significant in particular cohorts and do not replicate will be able to
cluster in the same nodes or sub-networks. But one critical limitation remains: the substrate
for all these re-analyses is the collection of GWAS p-values calculated on individual
variants. The aggregate statistical significance for sets of variants is only computed after the
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fact and only for significant variants. In order to overcome this last hurdle a new statistical
foundation must be built. A method for the ab initio calculation of significance for large,
heterogeneous patterns of variation needs to be conceived. Until this open question is
solved, genetic association studies will continue to be undermined by genetic heterogeneity.
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Figure 1.
A proposed computational approach for estimating the ramifications of variation. 1A) A
variant on chromosome A has been found to associate with TraitX. The association is a
property of all variants in strong LD with the initial variant. The first list of candidate variant
nodes is obtained by following LD edges. 1B) An LD edge brings us to the E1 enhancer
node. Enhancers impinge on the transcription of genes. In order to compile a list of
candidate gene nodes, we follow Long-range edges. 1C) A Long-range edge takes us to the
P1 promoter node and the Gene1 gene node. This means that empiric evidence exists in
favor of a regulatory interaction between E1 and Gene1 via P1. Gene1 is a transcription
factor, but is not known to affect TraitX. Stronger evidence might exist and the search
continues. In order to find candidate targets of Gene1, cistromic edges are followed. 1D) A
cistromic edge reaches the E2 enhancer node on chromosome B. This means that empiric
evidence exists supporting binding events of the Gene1 product at E2. Long-range edges are
followed in the search for genes. 1E) A long-range edge reveals an interaction between E2
and Gene2 via P2. Gene2 is known to affect TraitX. A circular path closed by a trait node
through the the GWRN has now been found. Through this path, each node and edge is
supported by some form of empiric evidence. Additionally, the states of all or some of nodes
an edges in the path might be validated for the system under study. The variant associated
with TraitX, affects the transcriptional output of a gene potentially regulating another gene
underlying TraitX. The path is not intended as supporting evidence for the causality of the
variant, but directs the investigator to the most likely explanation given available data. The
investigator can then choose among the reported paths how to best invest his resources on
further experimental validation.
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Figure 2.
A meagre sliver of the GWRN for the K562 cell line. The two outermost circles show
chromosome numbers and ideograms. The following two circles show all genes in orange
followed by all active enhancers in red. Edges within the circle show the cistromes for three
arbitrary transcription factors. The genomic locations of the genes are marked with text in
the innermost circle. These locations act as tethers from which cistromic edges extend
towards all positions in the genome where the gene product is bound. Xrcc4, highlighted in
red, illustrates the one to many relationship that cistromic edges encode. The figure is
intended to glean some insight into the scale and complexity of the GWRN, but also into its
feasibility. The technology is currently available, but many cistromes and cell types remain
to be assayed. The relation between what remains to be done and what has already been
achieved does not exceed a couple of orders of magnitude. Larger technological hurdles
have been overcome within the last ten years. All data shown was produced using the K562
cell line. The binding sites were determined through ChIP-seq and were obtained from the
ENCODE DCC at UCSC. Data for active regulatory elements was obtained from the
supplementary data in Heintzman et al. 2009 [20]. Chromosome ideograms and gene
annotations were obtained from the UCSC Genome Browser. The graphic was generated
using an in-house Processing program adhering to the Circos information aesthetic [28].
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