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Abstract

The human SHOX gene is composed of seven exons and encodes a paired-related homeodomain transcription factor. SHOX
mutations or deletions have been associated with different short stature syndromes implying a role in growth and bone
formation. During development, SHOX is expressed in a highly specific spatiotemporal expression pattern, the underlying
regulatory mechanisms of which remain largely unknown. We have analysed SHOX expression in diverse embryonic, fetal
and adult human tissues and detected expression in many tissues that were not known to express SHOX before, e.g. distinct
brain regions. By using RT-PCR and comparing the results with RNA-Seq data, we have identified four novel exons (exon 2a,
7-1, 7-2 and 7-3) contributing to different SHOX isoforms, and also established an expression profile for the emerging new
SHOX isoforms. Interestingly, we found the exon 7 variants to be exclusively expressed in fetal neural tissues, which could
argue for a specific role of these variants during brain development. A bioinformatical analysis of the three novel 39UTR
exons yielded insights into the putative role of the different 39UTRs as targets for miRNA binding. Functional analysis
revealed that inclusion of exon 2a leads to nonsense-mediated RNA decay altering SHOX expression in a tissue and time
specific manner. In conclusion, SHOX expression is regulated by different mechanisms and alternative splicing coupled with
nonsense-mediated RNA decay constitutes a further component that can be used to fine tune the SHOX expression level.
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Introduction

The human SHOX gene resides in the pseudoautosomal region

1 on the short arm of the X and Y chromosome. Like all genes in

the pseudoautosomal region, it escapes X inactivation and

therefore shows a ‘‘pseudo-autosomal’’ inheritance pattern [1].

SHOX encodes for a paired-related homeodomain transcription

factor. Homeodomain transcription factors are involved in the

regulation of pattern formation, differentiation and organogenesis

[2], and deficiencies in these genes can lead to a misregulation of

developmental processes resulting in malformations [3,4]. The

heterozygous loss of SHOX function due to deletions or mutations

has been shown to cause Leri-Weill Dyschondrosteosis (LWD)

while homozygous loss leads to Langer mesomelic dysplasia [5,6].

In addition, SHOX defects are a major cause of Idiopathic Short

Stature (ISS) and are involved in the etiopathology of Turner

Syndrome [7,8]. In these syndromes, SHOX defects are implicated

in inaccurate bone development and longitudinal body growth.

Studies in human and chicken revealed specific SHOX expression

in the pharyngeal arches and the early developing limbs during

embryonic and fetal development, consistent with the symptoms

seen in Turner and Langer syndrome as well as LWD [7,9].

To date, there are seven known SHOX exons encoding for two

different isoforms - SHOXa and SHOXb that employ different 39

exons (exon 6a or 6b). SHOXa and SHOXb encode proteins of 292

and 225 amino acids, respectively [1]. Alternative usage of two

different promoters (one residing in front of exon 1 and one

residing at the beginning of exon 2) leads to two mRNAs differing

in the 59UTR but generating identical proteins [10]. The

homeodomain, which is responsible for the DNA binding of this

transcription factor, is encoded by exons 3 and 4. SHOXa

encompasses an OAR domain (otp, aristaless, and rax) with a

transactivating function, while this domain is lacking in SHOXb

[1].

SHOX expression is found to be tightly regulated by different

mechanisms to obtain the SHOX specific spatio-temporal expres-

sion pattern, for example by usage of the two different promoters

[10], by enhancer regions residing up- and downstream of the

gene [11,12,13,14] and by alternative usage of the two different 39

exons [1]. In our study, we investigated if SHOX possibly features

additional coding or regulatory capacities that have not been

identified so far.

Methods

Origin of RNA and Reverse Transcription of RNA
Total RNA from various human adult tissues was purchased

from Ambion, embryonic and fetal RNA was kindly provided by

the MRC-Wellcome Trust Human Developmental Biology

Resource (HDBR, Newcastle, UK). Fetal RNA originated from
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tissues from two different fetuses of fetal week 2, embryonic RNA

originated from a Carnegie Stage 16 embryo.

RNA from cell lines was prepared using the illustra RNA spin

Mini Kit (GE Healthcare) according to the manufacturer’s

protocol. The following cell lines and cultured primary cells were

used: L87/4 (bone marrow fibroblasts [15]), NHDF and HDF

(primary human fibroblasts, Promocell) and Hs27 (human

fibroblasts, ATCC CRL-1634).

Reverse transcription was performed with Superscript III

Reverse Transcriptase using random hexamer and oligodT

primers (Invitrogen) with 1 mg of adult or cell line RNA. Reverse

transcription of fetal/embryonic RNA was carried out with 200 ng

RNA as a template.

Tissue screening PCRs
Screening of cDNAs for different splice variants was performed

with intron spanning exonic primers listed in Table 1. PCR

amplicons were designed to specifically detect a single SHOX

isoform at a time. PCR experiments were carried out in a 25 ml

volume with 2 ml cDNA as a template in a PTC-200 Thermo-

cycler (MJ Research). All primers were designed for an annealing

temperature of 60uC.

PCR experiments for the screening and detection of different

exons of SHOX were carried out using HotStarTaq DNA

polymerase (Qiagen) under the following conditions: initial

denaturation at 95uC for 15 min followed by 40 cycles each

consisting of 30 sec at 94uC, 30 sec at 60uC and 30–60 sec at

72uC followed by one cycle of 5 min at 72uC. For the

housekeeping gene ADP-ribosylation factor 1 (ARF1), only 35

cycles were carried out.

Resulting PCR products were checked for specificity by directly

sequencing them on a MegaBACE sequencer using the DYE-

namic ET Terminator Cycle Sequencing Kit (GE Healthcare)

according to the manufacturer’s instructions.

Rapid amplification of cDNA ends (RACE)
To determine the 39 end of novel SHOX transcripts containing

exon 7 variants, 39RACE experiments were carried out using the

GeneRacerTM Kit (Invitrogen) according to the manufacturer’s

instructions. For the RACE-PCR, we used the following primers:

SHOXRaceEx7For 59-TTGAAAGGGGATGTGGCTTCAC-

GA-39 and SHOXRaceEx7nestedFor 59-TCTGTTATTGTC-

GGCAGGCGGTGAG-39.

Cell culture and inhibition of nonsense-mediated RNA
decay

Primary normal human dermal fibroblasts (NHDF) were

cultured in DMEM high glucose medium (Gibco/Invitrogen)

supplemented with 10% fetal bovine serum (PAA) and 1%

Penicillin/Streptomycin (Gibco/Invitrogen) at 37uC and 5% CO2.

Cells were grown to 80–90% confluence and then treated with

100 mg/ml cycloheximide (Sigma) for 6 h or 20 mM Wortmannin

(Sigma) for 2 h, respectively.

Quantitative PCR
Quantitative real-time PCR (qRT-PCR) was carried out using

the Applied Biosystems 7500 Real-Time PCR System and Absolute

SYBR Green ROX Mix (Abgene). Amplification of the exon 6a/7-

1 boundary was carried out with QuantiFast SYBR Green PCR Kit

(Qiagen). Each sample was run in duplicates. Relative levels of

mRNA expression were calculated according to the delta-delta Ct

method [16] by normalization to the expression of two different

housekeeping genes (succinate dehydrogenase complex subunit A

(SDHA) and peptidylprolyl isomerase A (PPIA)). PCR amplifications

were carried out with the following primers: SHOXafor 59-

CCTACGTCAACATGGGAGCCTTAC-39, SHOXarev 59-CC-

CGAAGGGCGGCGGG-39, PPIAfor 59-CGGGAGGCCAG-

GCTCGT-39, PPIArev 59-TGAAAGCAGGAACCCTTATAA-

CCAA-39, SDHAfor 59-TGGGAACAAGAGGGCATCTG-39,

SDHArev 59-CCACCACTGCATCAAATTCATG-39. For the

amplification of exon 2a or exon 7-1 specific products, primers

listed in Table 1 were used.

Results

Identification of novel SHOX exons
A systematic RT-PCR screen of 48 different human tissues (3

embryonic, 18 fetal and 27 adult) and four cell lines was first

carried out to analyse the expression of the known SHOX isoforms

SHOXa and SHOXb using a primer pair spanning from exon 2 to

exon 4/5 (Figure 1A). In embryonic and fetal tissue, strongest

expression was seen in muscle, skin and several neural tissues like

brain, spinal cord, eye and meninges. We also showed expression

in distinct subregions of the brain such as hindbrain (cerebellum),

thalamus and basal ganglia (Figure 2 IA). In adult tissue, strongest

expression was found in bone marrow, adipose tissue, placenta and

skeletal muscle. Similar to the findings in fetal tissue, SHOX was

also expressed in the brain (thalamus, cerebellum, frontal cortex)

(Figure 2 IIIA). SHOX expression in specific human brain regions

had not been reported before.

These RT-PCRs also revealed additional bands (e.g. in bone

marrow) that differed from the expected band size of 361 bp

(Figure 2 IIIA). Sequencing of this band indicated that 88

additional nucleotides were included into the SHOX cDNA

between exon 2 and exon 3, which we termed exon 2a, according

to the position in the cDNA (Figure 1B). Sequence and genomic

position of exon 2a is given in Figure S1. Inclusion of exon 2a into

the mRNA causes a frameshift and a premature stop codon in

exon 3. Thus, a predicted resulting protein would be truncated,

lack a homeodomain and consist of 124 amino acids (Figure 1B).

Comparison of the SHOX genomic region in different species

(UCSC browser http://genome.ucsc.edu/and ECR browser

http://ecrbrowser.dcode.org/) revealed that, unlike the formerly

known SHOX exons, the novel 88 bp exon is not conserved

between vertebrate species (data not shown).

This comparative analysis furthermore indicated an additional

conserved genomic region downstream of exon 6a. We carried out

PCR from cDNA of several tissues using a forward primer located

Table 1. Primers used for the cDNA screening for SHOX splice
variants.

Primer Name Sequence (59R39) Exon Location

SHOX Ex2 For CCGGTGCATTTGTTCAAGGA 2

SHOX Ex4/5 Rev TGCCCAAGATGACGCCTTTA 4/5

SHOX Ex2a For CGGAGATCACGGGAAGACT 2a

SHOX cDNA For ACGTCAACATGGGAGCCTTA 5

SHOX 39UTR For ACCGCTGTAAAATGACGGAG 6a

SHOX 39UTR Rev TACCCACGTGTGTCGAAGAA 7 variant 1

SHOX Ex7/2 Rev TAGGAGAATGAGGGCGTCAC 7 variant 2

SHOX Ex7new Rev1 AAGTGGAAAAACGGGTGTTG 7 variant 3

ARF For GCCAGTGTCCTTCCACCTGTC 1

ARF Rev GCCTCGTTCACACGCTCTCTG 3

doi:10.1371/journal.pone.0018115.t001

Novel SHOX Splice Variants
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in exon 6a and a reverse primer within the conserved region

spanning a genomic distance of 4193 bp. The resulting PCR

product consisted of only 256 bp and sequencing revealed that the

conserved region, that we then termed exon 7 splice variant 1 (7-1),

can be spliced directly to the 39 end of exon 6a, resulting in an

elongated 39 UTR (Figure 1C). To confirm the 39 end of this novel

SHOX splice variant, we carried out 39RACE experiments and

located the end of exon 7 at position chrX/Y: 532,318 according to

NCBI36/hg18 (data not shown).

Using primers spanning exon 5 to 7, we found another two

novel alternative 59 splice sites of exon 7 leading to two additional

SHOX isoforms (Figure 1D, 1E). These two exon 7 variants (exon

7-2 and exon 7-3) are directly attached to exon 5 and thus become

part of the open reading frame of SHOX, while exon 6 is lacking.

To verify that exon 7-2 and 7-3 are indeed part of a complete

SHOX mRNA, we carried out PCR using primers residing in exon

2 and exon 7 and were able to detect full SHOX transcripts

comprising exon 2 to 5 and the exon 7 variants (data not shown).

We therefore conclude that the four identified novel exons result

in at least four different SHOX isoforms, an overview of which is

given in Figure 1. DNA sequences, genomic positions of the novel

exons and a comparison of the amino acid sequences of the

(hypothetically) encoded protein isoforms are annotated in Figure

S1.

Screening and functional analysis of the novel splice
variants

To analyse where and when the novel SHOX splice variants are

expressed, we carried out RT-PCR from cDNAs of the 48 human

tissues described above. The exon 2a containing transcript was

detected in several fetal and adult tissues with strongest expression

in fetal eye and brain, adult bone marrow and skeletal muscle and

in most of the cell lines tested (Figure 2 IB to 2 IIIB).

The three exon 7 splice variants were expressed in several

embryonic and fetal tissues (Figure 2 I) as well as in cultured

dermal fibroblasts (NHDF, HDF and Hs27) (Figure 2 II), but not

in any of the adult tissues (Figure 2 III). Thus, these isoforms may

serve a special function during early development.

Exon 7 – the impact of alternative splicing on miRNA

binding. The 39UTR of a gene represents the main target site

for miRNAs that mediate posttranscriptional gene silencing by

annealing to specific sequences within the 39UTR of target

mRNAs [17]. Therefore, the novel exon 7 variants might comprise

additional or novel binding sequences for miRNAs that may

regulate SHOX expression. To address this issue, we carried out a

comprehensive bioinformatical analysis of the different 39UTR

sequences of the different SHOX isoforms using the miRWalk

algorithm with miRBase release 14.0 [18].

The highest absolute number of binding candidates was found

in exon 6a, which displays the longest of all known SHOX 39UTRs

(Table 2). Also the average density (average number of binding

sites per 100 bp) of predicted binding sites is comparatively high

for this exon and is only surpassed by exon 6b (Table 2). The

binding site density of exon 7-1 and 7-2 is lower than the ones of

exon 6a and 6b while exon 7-3 is comparable to exon 6a. Usage of

exon 7-2 instead of exon 6a or 6b therefore leads to transcripts

with a lower predicted miRNA binding site density. Binding sites

with a seed length longer than 10 bp (arguing for a high specificity

Figure 1. Schematic representation of known and novel SHOX splice variants. Grey depicts untranslated regions, black depicts open
reading frame. (A) SHOXa and SHOXb as described in the literature [1]. (B) Insertion of exon 2a leads to a premature stop codon in exon 3. (C) Addition
of novel exon 7 elongates the 39UTR of the SHOX transcript. (D, E) Exon 7 (with alternative 59 splice sites) can be attached directly to exon 5 and
become part of the open reading frame. Arrows represent position of primers used for the detection of the respective splice variants in the tissue
screening.
doi:10.1371/journal.pone.0018115.g001

Novel SHOX Splice Variants
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Figure 2. Screening for the different SHOX transcripts. (I) Screening of fetal and embryonic tissues. (A) Detection of different SHOX
isoforms by using a forward primer situated within exon 2 and a reverse primer located at the exon junction of exons 4 and 5. Strongest expression is
seen in muscle and skin and in different parts of the brain. (B) Detection of exon 2a containing transcripts using primers situated in exon 2a and exons
4/5. Expression of this splice form is restricted to eye and brain. (C) Detection of SHOX isoforms containing exon 7-1 using primers spanning exon 6a
to exon 7-1. Expression is restricted to brain and eye. Expression in the eye varies between fetus # 1 and fetus # 2. (D) Expression of SHOX isoforms
containing exon 7-2 is restricted to embryonic hindbrain. (E) Detection of SHOX transcripts containing exon 7-3. Expression is restricted to brain and
eye and varies between fetus # 1 and fetus # 2. Exon 7-2 and exon 7-3 were detected by primer pairs spanning exon 5 to the 59ends of the

Novel SHOX Splice Variants
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of prediction) also only have been predicted for exon 6a, 6b and 7-

3, with exon 6a exhibiting the highest number of these high seed

length predictions. This may indicate that exon 7-2 can be used to

escape the downregulation by miRNAs. An overview of predicted

binding sites for each 39UTR exon is given in Table S1. Statistical

analysis (one-way ANOVA) also indicates that the means of

binding sites are significantly different among the five SHOX

39UTR exons (p,0.001) (Table S2a). Thereafter, Student’s t-test

was performed to compare the means of all pairs with a statistical

significance level (a = 0.05). The mean of binding sites of exon 6a

was found to be significantly different in a pairwise comparison

with exon 6b, exon 7-1, exon 7-2 and exon 7-3, i.e. p = 0.0134,

p,0.0001, p = 0.0006 and p,0.0001, respectively, suggesting a

distinct role of exon 6a in miRNA regulation (Table S2b).

Exon 2a and exon 7-1 – alternative splicing and nonsense-

mediated RNA decay. Inclusion of exon 2a into the SHOX

mRNA results in a frameshift leading to a premature termination

codon (PTC) within exon 3, which renders exon 4, 5 and 6 as part

of the 39UTR of the transcript. Messenger RNAs containing a

PTC are generally targeted for degradation by nonsense-mediated

RNA decay (NMD) [19]. This mechanism prevents the translation

of transcripts containing PTCs leading to truncated proteins or

polypeptides that are potentially noxious for the cell or the

organism. Termination codons are usually recognized as PTCs if

they are located more than 50 nt upstream of the final exon-exon

junction [20].

Besides the insertion of exon 2a, which leads to a premature

stop codon in exon 3, also the addition of exon 7-1 to the SHOXa

mRNA gives rise to an exon/exon junction more than 50 nt

downstream of the original stop codon in exon 6a, suggesting that

both isoforms could be a target of NMD.

To investigate if these two alternatively spliced isoforms are

targeted by NMD, we pharmacologically blocked the NMD

pathway and analysed whether the novel splice variants accumu-

lated in the cells. We used two different NMD-blocking drugs:

Wortmannin (WM), an inhibitor of the phosphatidylinositol 3-

kinase-related protein kinase hSMG1, which is part of the NMD

machinery [21], and Cycloheximide (CHX), an inhibitor of the

translation process [22].

To analyse the effect of blocking the NMD pathway, NHDF

primary cells and Hs27 cells were treated with CHX or WM or

left untreated. We then analyzed the expression levels of the exon

2a and exon 7-1 containing SHOX isoforms by qRT-PCR

(Figure 3). The isoform containing exon 2a could be detected in

both cell lines. Treatment with either WM or CHX led to an

increase of exon 2a containing mRNA in NHDF and Hs27 cells,

indicating that this isoform is normally degraded by NMD

(Figure 3A and B, left graph). To confirm the specific effect of

CHX and WM treatment, we also evaluated the expression level

of the most prominent isoform, SHOXa, which does not contain a

PTC (Figure 3 A, middle graph, and 3 B, right graph). In Hs27

cells, the SHOXa level remained unaltered upon WM or CHX

treatment (Figure 3A, middle graph), indicating a very specific

effect of CHX and WM on RNA containing SHOX exon 2a in

this cell line. In NHDF cells, addition of CHX, but not of WM

led to an increase of the SHOXa expression level (Figure 3 B, right

graph) indicating a slightly unspecific reaction upon CHX

treatment. However, the increase seen for SHOX Exon 2a was

to a considerable degree higher (32.2x vs. 4.1x). Thus, we assume

that, even when taking into consideration some unspecific CHX

effect, CHX leads to a specific inhibition of NMD of the exon 2a

containing SHOX isoform. Our data derived from Hs27 and

NHDF cells therefore argue for a depletion of the exon 2a

containing isoform by NMD.

As the expression level of the exon 7-1 containing isoform was

not sufficient for reliable detection by qRT-PCR in NHDF, we

analyzed this isoform only in Hs27 cells. NMD inhibition by WM

or CHX failed to increase the level of exon 7-1 containing mRNA

(Figure 3 A, right graph), suggesting that despite the presence of a

PTC this isoform is not subjected to NMD.

Discussion

SHOX expression pattern and identification of novel
SHOX exons

We have analysed the expression pattern of the SHOX gene by

RT-PCR in a variety of embryonic, fetal and adult tissues and

cell lines. Besides the known SHOX expression in tissues involved

in body growth such as chondrocytes and cartilage, SHOX is

expressed in various other additional tissues, e.g. in different fetal

and adult brain regions such as hindbrain (cerebellum), thalamus

and basal ganglia, pointing to an additional function of SHOX

during fetal brain development and maintenance of brain

functions. However, obvious brain malformations or cognitive

developmental delay have not been described in patients with

LWD, Turner or Langer syndrome or ISS patients with SHOX

haploinsufficiency. We therefore speculate that SHOX2, a highly

related SHOX paralogue [23] that is also expressed in the brain,

may partly take over the functions of SHOX in the developing

brain in these patients. Support for this hypothesis comes from

the expression patterns of these two genes in chicken brain where,

Table 2. Overview of SHOX exon lengths and number of
predicted miRNA binding sites.

Exon
Length of
Exon (bp)

Total number of
predicted binding sites

Binding
site density

6a 2433 329 13.5

6b 627 108 17.2

7-1 823 62 7.5

7-2 337 29 8.6

7-3 1642 219 13.3

Binding site density is calculated as the average number of predicted miRNA
binding sites per 100 bp.
doi:10.1371/journal.pone.0018115.t002

respective variants of exon 7. (F) Expression of the housekeeping gene ARF1 was used to indicate similar mRNA levels. (II) Screening of cell lines
and cultured cells that show SHOX expression. L87/4 bone marrow stromal cell line; NHDF normal human dermal fibroblast primary cells; HDF
human dermal fibroblast primary cells; Hs27 diploid human fibroblasts. (A) All fibroblasts tested express SHOX at different levels. (B, C, D) Primary
cultured fibroblasts express different SHOX isoforms containing exon 2a, exon 7-1 and exon 7-2, respectively. (E) The exon 7-3 containing isoform is
absent in all cells tested. (F) Expression of the housekeeping gene ARF1 was used to indicate similar mRNA levels. (III) Screening of adult tissues.
(A) SHOX is expressed in a variety of tissues with strongest expression in placenta, skeletal muscle, bone marrow and adipose tissue. SHOX is also
expressed in various brain tissues tested. (B) Detection of transcripts that include exon 2a. Expression is found in skeletal muscle and bone marrow
and also weakly in the cerebellum and frontal cortex. (C–E) Detection of isoforms containing the different exon 7 variants; expression was not found
for any of the tissues tested. (F) Expression of the housekeeping gene ARF1 was used to indicate similar mRNA levels.
doi:10.1371/journal.pone.0018115.g002

Novel SHOX Splice Variants
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like in human, both genes are expressed (there is no SHOX

orthologue in rodents). Whereas SHOX/Shox and SHOX2/Shox2

expression patterns only partially overlap in the developing limb

[7] [9], the area of Shox expression is completely covered by the

broader Shox2 expression pattern in the developing chicken brain

(Figure S2).

We have identified four novel SHOX exons, which create new

coding and untranslated regions. Similar to the known isoforms

SHOXa and SHOXb with important functions during limb

development, most of the novel splice variants are only expressed

very weakly in most tissues. This low expression abundance is a

feature of many transcription factors that need to recognize the

correct target sites within the genome and to react to regulatory

events [24].

Exons 2a and 7 were identified by RT-PCR and validated by

subsequent sequencing. To also confirm these data by RNA-

Sequencing (RNA-Seq), we searched published RNA-Seq data

[25,26,27], and data integrated into the UCSC browser

NCBI36/hg18 (Burge RNA-Seq [28], CSHL Long RNA-Seq,

GIS RNA-Seq, Caltech RNA-Seq and Helicos RNA-Seq) that

had been performed on 11 tissues and 15 cell lines including

those known by RT-PCR to express novel SHOX exons. These

data showed very low densities of mapped reads in the whole

SHOX genomic region probably due to the low expression level

of SHOX in tested cells and tissues and did not provide

conclusive information about known or novel SHOX isoforms.

As SHOX expression is comparatively higher in human

fibroblasts (Figure 2), we further analysed an RNA-Seq dataset

of Hs27 human fibroblast cells (Irena Vlatkovic and Denise

Barlow, unpublished data; manuscript in preparation). This

Hs27 RNA-Seq showed expression of known SHOX exons and

exons 2a and 7 (data not shown) further validating the existence

of the novel exons.

The exon 2a containing isoform is expressed in both fetal and

adult tissues whereas all exon 7 containing isoforms are present in

fibroblasts but otherwise restricted to embryonic and fetal stages,

pointing to a likely role of exon 7 during early development.

Alternative splicing as a possibility to regulate gene
expression

Alternative splicing does not only increase the proteome of an

organism [28], but also contributes to the complex regulation of

the levels and tissue specificity of gene expression (for a review on

the different splicing mechanisms see [29]). Based on our results,

we suggest that the alternative splicing of the SHOX gene

principally exerts regulatory functions. First, SHOX possesses two

different promoters that generate transcripts with identical coding

capacity but differing in the 59UTR leading to different

translational efficiencies of the transcript [10]. Second, SHOX is

known to be expressed as two alternative isoforms, SHOXa and

SHOXb (Figure 1A), with the latter lacking the OAR domain with

a supposed transactivating function. The SHOXb protein might

therefore act as a regulatory modulator of SHOXa activity [30].

Third, we have now identified additional SHOX isoforms, which

are all likely to be involved in the fine tuning of the regulation of

SHOX expression. The novel SHOX isoforms containing exon 7-2

or 7-3 do not encode for an OAR domain and thus might also

exert a regulatory role by modulating SHOXa activity.

The three exon 7 isoforms could also exhibit novel binding sites

for miRNAs. As the majority of validated mRNA-miRNA

interactions usually takes place in the 39UTR of a gene [31], we

have analysed the 39UTRs of the different SHOX splice variants

for miRNA binding sites by the miRWalk prediction tool. The

absolute number of predicted binding sites is highest in exon 6a,

which gives rise to the longest SHOX 39UTR known to date, while

the binding site density is highest in exon 6b. Long 39UTRs and

high binding site densities are characteristic for genes whose

expression is regulated by miRNAs [32]. Exon 6a also contains the

highest number of sequence motifs where binding was predicted to

occur with a seed length longer than 10 bp, and statistical analyses

showed that the means of binding sites in this exon is significantly

different from the other SHOX 39UTR exons. miRNA regulation

of SHOX might therefore open up additional possibilities for the

fine tuning of SHOX expression, and we assume that this

Figure 3. Effect of NMD inhibition on the expression levels of different SHOX isoforms. (A) Expression levels in Hs27 cells. Left: The relative
amount of exon 2a containing mRNA in HS27 cells increases after NMD inhibition by CHX or WM. Middle: After addition of CHX or WM, SHOXa levels
remain unchanged. Right: Addition of WM does not change the expression level of exon 7-1 containing mRNA; addition of CHX leads to a decrease of
expression. (B) Expression levels in NHDF cells. Left: The relative amount of exon 2a containing mRNA in NHDF increases after NMD inhibition by CHX
or WM. Right: After addition of WM, SHOXa levels remain unchanged; addition of CHX leads to a slight increase of SHOX (4.1x). However, in
comparison to the increase seen for exon 2a (32.2x), this increase is negligible. Relative expression levels of untreated cells were always set to one.
doi:10.1371/journal.pone.0018115.g003

Novel SHOX Splice Variants
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regulation could mainly be accomplished via exon 6a and less

likely by the exon 7 variants. Interestingly, we found exon 7

variants to be exclusively expressed in fetal neural tissues (Figure 2),

suggesting that these variants might be of special importance

during early brain development.

Inclusion of exon 2a into the SHOX mRNA leads to a transcript

with a premature stop codon that most likely does not encode for a

functional protein but undergoes degradation by nonsense-mediat-

ed RNA decay (Figure 3). Premature stop codons lead to NMD and

can be generated by point or frameshift mutations, but also by

alternative splicing, e.g. by inclusion/skipping of exons (as it is seen

for SHOX exon 2a), by usage of alternative splice sites or by addition

of a 39UTR exon that leads to an exon/exon junction more than

50 nt downstream of the original stop codon (as seen for SHOX exon

7-1), which will then be recognized as premature [33].

Whereas we provide evidence for a degradation of the exon 2a

containing SHOX isoform, the isoform containing exon 7-1 most

likely escapes the degradation by NMD despite the presence of a

PTC according to the 50 nt rule. NMD-resistant PTC-containing

mRNAs have been previously reported for several genes, including

b-globin and the familial Mediterranean fever gene [34,35]. The

definite mechanism that confers NMD-resistance still remains

unanswered although it has been suggested that spatial rearrange-

ments of the 39UTR that affect the distance between PTC and

poly(A) tail can modulate the NMD pathway [36]. The coupling of

alternative splicing and NMD is a previously described phenomenon

[e.g. 35,37], which is now also demonstrated for the SHOX gene for

the exon 2a containing isoform. However, it is controversial whether

the occurrence of the alternatively spliced products reflects

constitutive unproductive splicing, hence cellular noise, or if this

process provides an additional level of regulation to help the cell to

achieve the proper level of expression for a given protein [33,38]. If

the first hypothesis is true, it would mean that the ratio of mRNAs

encoding the functional or the non-functional protein is not

significantly variable but that a certain amount of pre-mRNA is

always spliced unproductively. A comparison of the expression of

total SHOX mRNA with the expression of exon 2a containing

mRNA (Figure 2 I-III A, B) clearly shows that this is not the case for

SHOX. In fetal eye and brain, relatively high amounts of SHOX are

detectable and there is also a detectable amount of the alternative

exon 2a containing transcript, while this is not the case for e.g. fetal

muscle or spinal cord, thus arguing for tissue-specific alternative

splicing events. This time and tissue dependent specific splicing might

be caused by the presence of different regulatory splicing factors that

act in a manner autologous to transcription factors to down-regulate

the expression of a gene by alternatively splicing the pre-mRNA to a

product that undergoes NMD (also described in [39]).

Taken together, our results add important novel aspects to the

complex regulation of the SHOX gene. In addition to two

alternative promoters [10] and enhancers up- and downstream

of the gene [11,12,13,14], we have revealed that alternative

splicing coupled with NMD can also contribute to the time and

tissue specific regulation of SHOX expression and that usage of

different 39UTRs might also be involved in SHOX regulation.

Only the orchestrated interaction of the different regulatory

components ensures the accurate expression of SHOX during limb

and brain development and in mature organisms.

Supporting Information

Figure S1 Novel SHOX exons and isoforms – important
features. (A) DNA sequence and genomic location of the
novel SHOX exons. Capital letters indicate exonic sequence,

small letters indicate flanking intronic sequence. For exon 7-2 and

7-3, letters in bold print indicate coding sequences, normal letters

indicate 39UTR. Genomic position according to NCBI36/hg18.

(B) Exon-wise comparison of the protein sequences of the
different SHOX isoforms. The protein sequence of the exon

7-1 containing SHOX isoform is identical to SHOXa and

therefore not included into the comparison.

(TIF)

Figure S2 Adjacent transverse sections of a d6 chicken
head as exemplary illustration of Shox and Shox2
expression in the developing chicken brain. Shox2 is

strongly expressed in the dorsal root ganglia and in the

diencephalon, whereas Shox expression is only seen in the

diencephalon and completely covered by Shox2 expression. drg,

dorsal root ganglia; de, diencephalon; le, left eye; re, right eye.

Arrows indicate specific Shox/Shox2 expression. chShox riboprobes

were generated and digoxigenin labelled by in vitro transcription

of a PCR product amplified using the following primers out of

chicken cDNA: chiSHOX_1_For gagcttgggaactccgatt and

chiSHOX_2_Rev ttcagacagtcccagcctct. In situ hybridizations on

tissue sections were carried out as described in Decker et al. 2011.

Reference Figure S2 Decker E, Durand C, Bender S, Roedel-

sperger C, Glaser A, Hecht J, Schneider KU, Rappold G (2011).

FGFR3 is a target of the homeobox transcription factor SHOX in

limb development. Hum Mol Genet. doi:10.1093/hmg/ddr030.

(TIF)

Table S1 Overview of predicted miRNA binding sites
within the different 39 exons of SHOX. For each exon, name,

position and seed length of each miRNA predicted to bind are given.

(XLS)

Table S2 Statistical analyses of miRNA binding site
predictions. (A) Overview of statistical analysis of one-way

ANOVA on SHOX exons. (B) Overview of comparisons of means

for each pair using Student’s t-test (t = 1.96423 and a = 0.05).

(XLS)
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