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Abstract
Modern healthcare organizations (HCOs) are composed of complex dynamic teams to ensure
clinical operations are executed in a quick and competent manner. At the same time, the fluid
nature of such environments hinders administrators' efforts to define access control policies that
appropriately balance patient privacy and healthcare functions. Manual efforts to define these
policies are labor-intensive and error-prone, often resulting in systems that endow certain care
providers with overly broad access to patients' medical records while restricting other providers
from legitimate and timely use. In this work, we propose an alternative method to generate these
policies by automatically mining usage patterns from electronic health record (EHR) systems.
EHR systems are increasingly being integrated into clinical environments and our approach is
designed to be generalizable across HCOs, thus assisting in the design and evaluation of local
access control policies. Our technique, which is grounded in data mining and social network
analysis theory, extracts a statistical model of the organization from the access logs of its EHRs. In
doing so, our approach enables the review of predefined policies, as well as the discovery of
unknown behaviors. We evaluate our approach with five months of access logs from the
Vanderbilt University Medical Center and confirm the existence of stable social structures and
intuitive business operations. Additionally, we demonstrate that there is significant turnover in the
interactions between users in the HCO and that policies learned at the department level afford
greater stability over time.
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1. Introduction
The healthcare community has made considerable strides in the development and adoption
of information technologies [1]. Evidence indicates that the collection, storage, and
processing of patient data in electronic form can decrease costs, strengthen staff
productivity, and promote safety [2,3]. To realize these benefits on a broad scale, healthcare
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organizations (HCOs) must deploy information technology in a manner that facilitates
business processes without jeopardizing patients' privacy rights [4]. HCOs are beginning to
utilize software tools to design clinical information systems with logically sound privacy
and security controls (e.g., [5,6,7,8]), however, such tools are limited in practice. In part, this
is because they depend on HCO administrators to supply clear policy definitions, which has
technical as well as social complications.

From a technical perspective, the specification of policies is a nontrivial challenge because a
healthcare system is an inherently dynamic environment where teams of clinicians and
support staff interact [9,10]. The notion of dynamic teams, while effective in supporting
healthcare operations, is more complex than the pairwise relationship typically expected by
access control frameworks (e.g., provider-patient) [11]. The complexity of the problem is
compounded by the reality that HCOs evolve to address technological and organizational
pressures, such as the adoption of new patient management protocols, reaction to legislated
changes, and assimilation of rotating medical students [12].

From a social perspective, traditional methods for defining security policies are problematic
because they rely on the knowledge of domain experts (e.g., employees) or the observations
of external specialists. These methods may be feasible within the context of small systems,
but are unmanageable for modern HCOs where the number of policies can be large, defined
in an ad hoc manner, and revised at a moment's notice. The traditional approaches are
further limited because they are subjective and can suffer from informant accuracy [13],
which will be magnified by the scale of modern HCOs.

As an alternative, the growing adoption of electronic health record (EHR) systems provides
an opportunity to apply automated learning methods that are data-driven, so that policies can
be docked to actual behavior. Modern EHR systems already generate access logs to enable
the construction of audit trails regarding what information care providers observe and what
actions they take. Furthermore, many countries have enacted regulations that mandate their
inclusion, such as the Security Rule of the U.S. Health Insurance Portability and
Accountability Act (HIPAA), which requires HCOs to retain access logs for a minimum of
six years [14]. The automated extraction and representation of policies from such systems
could complement traditional policy specification frameworks because they could assist in
auditing existing policies, as well as discovering novel patterns of EHR system use. If such
approaches can be designed in a scalable manner, they can endow administrators with a
unique view of the stability, or volatility, of policies over time within their HCO.

We further anticipate that EHR user behavior can serve as the basis for automated
surveillance tools that uncover policy violations. The problem could be framed as an
anomaly discovery problem, such that accesses (or behaviors) that are sufficiently different
than expected EHR system usage are flagged for administrative review. In this respect, we
envision surveillance systems that mine policies from EHR access logs in a similar way to
how intrusion detection systems mine rules from the audit logs of file systems [15,16].
However, a core assumption of such surveillance approaches is that behaviors manifest in
regular patterns. As such, one of the primary goals of this paper is to assess if EHR system
usage can be distilled into a representative set of patterns. While there are many different
types of patterns that could be extracted, we limit our focus to patterns that summarize how
EHR users and HCO departments collaborate. This is a fundamentally different problem
than that studied in intrusion detection because EHR users are expected to function in a
coordinated manner.

Specifically, we introduce a process to transform a database of EHR users' access of patient
records into patterns of users' interactions, in the form of probabilistic rules. The process
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consists of two primary components; first we infer a social network of EHR users based on
co-accesses to patient records. We focus on networks, so that we can capture the
collaborative model of HCOs and their employees and, as we show, this network can be
decomposed into clusters that represent expected organization structure at a high-level (e.g.,
children's vs. main hospital). Second, we convert the pairwise interactions of users into
probabilistic rules of association. These rules capture the frequency of interaction between
two users, as well as the likelihood of a user accessing a patient record given that another
user accessed the same record. We focus on association rules because (as we review in
Section 2) they have been shown to be effective at decomposing a complex environment
into simple statistical components that can be applied in intrusion detection frameworks, but
can also be presented to humans for review if need be. To make our approach reusable, we
have developed open-source software to support the replication and application of our
investigations.1

While there has been a number of investigations into the extraction of business process rules
from access logs, as well as computational approaches for organizational modeling, to the
best of our knowledge; this is the first research to link the concepts. Beyond a theoretical
treatment of the problem, we perform an empirical analysis with five months of access logs
from a large HCO's EHR system that is well-integrated into core healthcare operations.
Through this investigation, we confirm that the HCO is a highly dynamic environment,
which is not necessarily appropriate for traditional access policies. At the same time, we
demonstrate that automatically learned policies can be grouped into levels of stability with
intuitive implications.

2. Related Work
Historically, automated learning approaches have proven to be capable of extracting relevant
knowledge from access logs. Much of the work in log mining parallels the growth of the
Internet, where it was shown that a domain's webpage access logs could be modeled as a
database of transactions [17], from which association rules could be discovered to
characterize users' tendencies [18,19]. Beyond log analysis methodology, it was
demonstrated that knowledge, mined from access logs, can inform business decisions and
can provide feedback to make systems more efficient. As a result, e-commerce sites
routinely employ access log analytics to influence, attract, and retain customers
[20,21,22,23,24,25]. Beyond marketing, there is some evidence in the healthcare domain
which indicates that EHR access logs can reveal the clinical information use behavior for
patients [26] and providers (e.g., in one study it was shown that care providers often viewed
a patient's laboratory and radiology results in the same session) [27,28,29]. Further work has
shown that logs are effective for understanding how medical information systems are used
for educational purposes [30,31,32].

Nonetheless, research on access log analytics has, in general, focused on “what” users view,
but HCO policies need to model “who” and is viewing the health records of whom and
“why”. To address the latter, it helps to know the reason for a particular access; however,
such information is not always adequately documented in an EHR. As such, in this research
we focus on the extent that basic information in EHR access logs can provide intuition into
the patterns of use that care providers generate when accessing patient records. In doing so,
our goal is to uncover the relationships between individuals in the healthcare enterprise and
the types of health record access workflows that exist. In this respect, methods from the
social network analysis [33] and computational organizational science [34] domains are
ideal candidates for policy extraction. In the biomedical realm, such techniques have been

1A freely available open source software tool, which can be downloaded from http: //code.google.com/p/hornet/source.
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successfully applied to characterize the interactive and dynamic nature of multi-disciplinary
research communities [35,36], to discover the dynamics of public health settings to facilitate
change management [37], to explain physician adoption rates of EHR systems [38], and,
most recently, investigate the relationships of healthcare providers in various clinical
contexts [39,40,41].

In the context of health information security, we recognize that auditing through EHR access
logs has become a practice both for HCOs and, more recently, for patients. One of the
primary features that healthcare consumers desire in an EHR is transparency and, in
particular, consumers want to be provided with the ability to access their medical records, as
well as determine who has viewed them [42,43,44]. In support of this function, a system
developed at New York Presbyterian Hospital was built [45] to enable the latter and found
that such a tool can lessen the burden for EHR administrators by increasing the number of
individuals that can monitor for violations. At the same time; however, it was observed that
the task of analyzing the logs is complex due to the number of access that occurs for a
typical patient's record, as well as the fact that patients are neither well-versed in an HCO's
operations nor comprehend if a user has a legitimate reason to access their record.

To assist in EHR access logs monitoring, Asaro and Ries [46] prototyped a tool to
automatically analyze EHR access logs by inspecting the distribution of records accessed by
users. In their investigation, it was observed that some users accessed an excessive number
of medical records; however, no methods were designed to determine if such behavior was
in line with the behavior of the HCO. Thus, while the scientific literature exists for setup,
collection, and summarization of EHR access logs, the study of the information within the
access logs for health information security and policy evaluation has been neglected.

3. Relational Healthcare Policy Discovery
This section describes the framework and methods applied for extracting healthcare policies
from EHR access logs and begins with a high-level overview. The framework consists of
two core components: 1) HCO network construction and 2) association rule discovery. First,
access transactions are transformed into a graph that summarizes how EHR users interact
through patient records in the system. This graph constitutes an inferred social network of
the EHR users. Second, the pairwise relationships of the users in the graph are converted
into association rules that communicate the relative frequency of user interaction via a
patient record, as well as the conditional likelihood of a user accessing a patient's record
given that another user accessed the record. In addition, the graph and resulting rules are
abstracted to represent relations between HCO departments to analyze the extent to which
existing organizational models can dampen noise in the resulting rule sets.

Before detailing the methods, we take a moment to formalize the system. We consider an
environment composed of a set of users and a set of patients, which we refer to as U and P ,
respectively. Each user and patient is characterized by a unique persistent identifier (i.e.,
system login or medical record number). Each access by a user to a patent's record is
represented as a logged transaction in a database; we refer to the set of transactions as T =
{t1, t2, …, tm}. The transaction is represented as a 3-tuple of the form 〈u, p, stamp〉, where u
∈2U, p ∈ P and stamp is the timestamp associated with the access.2 The upper section of
Figure 1 provides an example of access transactions, where three EHR users access a total of
four patients' records over a three day period.

2The transaction is likely to contain additional information relevant to the EHR system, such as the client's IP address and the action
taken by the user. For the purposes of this study, we are interested in modeling organizational structure and not what actions are
performed to medical record. This is a fruitful direction for study, but is beyond the scope of this study.
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3.1. Network Construction
Though EHR systems rarely document which users explicitly collaborate, the patient record
can serve as a proxy. In fact, at times the patient record may be a better indicator of
collaboration because, in an HCO, care providers in a common workflow may not have
face-to-face interaction. Thus, we derive a relational network of EHR users based on
common patient record accesses within a certain time period. Without loss of generality, we
assume that the set of transactions has been restricted to the time period of interest and
henceforth consider 2-tuples of the form 〈u, p〉. The resulting network is modeled as a graph.
Each vertex in the graph corresponds to a user ui ∈ U and is assigned a weight, which
corresponds to the number of patients accessed by the user:

Each edge is weighted as the number of patients that users ui and uj accessed in common:

Figure 1 depicts a user network for the example access logs. Notice, Nurse S accessed the
records of Bob, Charles, and Daniel, thus wS = 3. Also, Nurse S and Dr. X accessed two
patients in common, so the weight of their corresponding edge is wS,W = 2.

3.2. Network Abstraction
Models learned at the level of specific EHR users can obscure how modern HCOs function
from a team-based perspective. For example, certain groups of nurses and physicians can
perform the same actions, but with different sets of patients, such as when the patients reside
in different wards of a medical center. User-level models based on such events might
obscure the fact that similar policies, or workflows, are being followed. We hypothesize that
an appropriate abstraction could mitigate such factors to detect more robust signals for
policy discovery. An abstraction could be the mapping of EHR users to the department (e.g.,
Critical Care, Internal Medicine, or Oncology) or the role (e.g., physician, nurse, or biller) to
which they are assigned in the HCO. In the abstracted network we construct in this work,
each vertex corresponds to an abstracted value and each edge represents the combined edges
of the constituent user-level vertices associated with the corresponding value. If a user is
associated with more than one abstracted value (e.g., an attending physician with
appointments two distinct departments of the HCO), we discount the user's contribution to
the abstracted edges and vertices proportionally to the number of values to which they are
mapped.

More formally, let A = {a1, a2, …, ax} be the set of abstract values. Each value is composed
of a set of users, such that ai ⊆ U. Let xi be the set of abstracted values to which ui is
assigned. Then, the weight for the abstracted vertex is:

And, the weight for each edge in the abstracted network is computed as
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Figure 1 depicts a scenario in which Dr. J maps to (E)mergency Medicine and
(H)ematology, Nurse S maps to (G)astroenterology and (H)ematology, and Dr. X maps to
(E)mergency Medicine. Using the previous equations, we find the node weights:

And, we compute the edge weights accordingly:

3.3. Interactive Policies
From the relational network, we can determine the likelihood that users access the same
patient record by mining associative patterns. There are numerous ways in which patterns
can be extracted and represented, but for the purposes of this work, the patterns we focus on
are association rules [47]. This choice was made for several reasons based on computability
and interpretability. First, association rules can be calculated efficiently, requiring no more
than a single scan of a database table (for rules with two users in the rule), which is desirable
given the large number of users, patients and access log transactions. Second, association
rules allow for probabilistic representations of a system, with intuitive statistical
interpretation (i.e., joint and conditional probabilities, as explained below). Third,
association rules are relatively simple for humans to comprehend. This criterion is a
necessity when policies are presented to human administrative experts for review (though
this is beyond the scope of the study). We note that the association rule mining model
invoked in this work is not designed to address temporal relations or more complex,
potentially informal interactions (e.g., users that are not directly connected). However, this is
an artifact of the manner in which we model the social network and believe that alternative
data structures and techniques based on sequential pattern mining and clustering can
facilitate the learning of such information.

Specifically, we model the joint probability that users ui and uj access the same patient's
record and the conditional probability that uj accesses a patient record given it was accessed
by ui. To compute these probabilities, we treat each patient as a transaction of EHR users
{ui, …, uj} ⊆ U.

Support—In the context of association rules, the joint probability is referred to as the
support of the rule and is calculated as:

(1)

where |P| is the total number of transactions (i.e., the number of patients). Intuitively, the
support for the association rule ui ⇒ uj corresponds to the number of patients that ui and uj
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accessed in common, normalized by the total number of patients. As a result, the support
score of any rule is bounded by [0,1]. Additionally, the support score for a rule is symmetric,
such that sup(ui ⇒ uj) = sup(uj ⇒ ui). A high support score indicates that it the relationship
between ui ad uj is more common in the HCO, such that a larger number of patients are
accessed by both users. The greater the support, the more likely it is that the users work in
high volume clinical care areas. However, given the typical delivery of care by all but the
smallest HCOs, it is unlikely that any set of users will have relatively large support scores.
For example, for an edge to achieve a support of 0.10, both users must access at least 1 in
every 10 patients at the HCO.

Continuing the example from Figure 1, we can calculate the support of the (E)mergency
Medicine and (H)ematology departments as:

(2)

Confidence—While the support provides the relative frequency of a relationship it lacks
an implication and can obscure notable policies. For example, an EHR user can have
multiple subordinate users (e.g., medical residents reporting to the same attending
physician), each of which accesses a subset of the patients of their superior. If the subset of
patients is small, the support for each superior and subordinate pairing will be small as well.
Yet, there is a clear policy, which is that the subordinate accesses the same records as the
superior. In this sense, a conditional probability can enable the discovery of strong
relationships that have low support. The probability that a patient's record is accessed by a
user uj, given that the record was accessed by user ui is:

(3)

This is referred to as the confidence of a rule, where user ui is the antecedent and user uj is
the consequent. Unlike the support, the confidence score is asymmetric, such that conf(ui ⇒
uj) may differ from conf(uj ⇒ ui).

We can calculate the confidences between (E)mergency Medicine and (H)ematology
departments from Figure 1:

(4)

(5)

Though the support and confidence scores are relatively simple to compute, they are
powerful tools for reducing the huge amount of data that access logs provide into
meaningful observations regarding events within the HCO.
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3.4. Policy Decay
To characterize how the relational network evolves over time, we compute the number of
weeks a rule manifests during the study period. A rule that appears for a large portion of the
study period suggests that the users or departments often accessed records in common.
Additionally, the greater the number of rules that exist across weeks, the greater the
evidence we have in favor of a stable organizational structure. If, on the other hand, rules are
detected for only a few of the weeks in the study period, we have more evidence that there
are organizational changes or more sporadic events.

At one extreme, we can imagine an HCO that has a static relational network due to highly
consistent behavior of all entities over time. For example, a practice with two doctors and
three nurses will likely be stable over time because, on average, the nurses will likely
interact with the doctors consistently, and the doctors will have relatively independent sets
of patients they care for. At the other extreme, we can envision an HCO that has a dynamic
relational network, which could be caused by a large number of care providers who perform
roughly the same duties. Since multiple care providers function in an interchangeable
manner, the possible combinations of care paths would increase significantly. We are not
suggesting that care providers are commodities, but rather that as the number of qualified
care providers in the HCO increases, the probability of a patient being assigned to a specific
care provider decreases.

4. Results
We evaluated our approach with the access logs of StarPanel, a longitudinal electronic
patient chart developed and managed by the Vanderbilt University Medical Center (VUMC)
[48]. StarPanel is ideal for this study because it aggregates all patient data as fed into the
system from any clinical domain at the medical center and is the primary point of clinical
information management. StarPanel's user interfaces are Internet-accessible on the
Vanderbilt intranet and remotely accessible via the World Wide Web. The system has been
in operation for over a decade and receives data from over 50 diverse clinical sources. For
this study, we obtained 21 weeks of StarPanel access logs, during the year 2006. In
summary, there were 9,940 distinct EHR users, who accessed the records of 350,889 distinct
VUMC patients. There were a total of 7,575,434 accesses of patient information.3

In addition to the StarPanel access logs, we obtained the VUMC department assignments for
the EHR users, as well as their start and end dates within the departments, from human
resource records at the VUMC enterprise data warehouse. These records contained a total of
321 departments for 3687 of the EHR users in the study, or 36.9%. Despite the lack of meta-
information for all patients, as we demonstrate below, studying this subset of the user
population has minimal impact on the generalizability of our results.

4.1. Verification of Social and Organizational Phenomena
To determine that the StarPanel access logs could be useful for policy mining, we performed
a series of experiments to verify the system yields rudimentary business processes and
known social phenomena. It is important to verify that this particular EHR system has the
ability to capture the business operations of the healthcare domain.

First, in an HCO such as a large academic medical center it is expected that most accesses
are generated during the work week, when outpatient and non-critical treatment dominates

3For the purposes of this study, all logs were de-identified, such that each user and medical record number was consistently replaced
with a random pseudonym.
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operations. In anticipation of this phenomenon, we investigated the aggregate number of
accesses to medical records generated per day by the EHR user population. The result,
which is summarized in Figure 2, confirms this expectation. Notice that the number of
accesses on weekdays is significantly greater than on weekends. The difference is
approximately a factor of 5 across the entire study period.

Second, in an HCO, we expect users and patients interact according to known social
phenomena. In general, we observed that the number of users accessing patients' records is
consistent throughout the study period with an average of 6,406 users per week (standard
deviation of 126 or 2.4%). The average number of departments observed each week is 292
(standard deviation of 4.5 or 1.5%). Next, to determine how users interact with patient
records, we modeled the number of patients records each user accessed. In summary, the
number of records accessed by a user in one week was 28.8 on average, with a median of 11.
We observed that the distribution of the number of patient records accessed per user follows
a power-law distribution (log-log linear), a property often seen in social networks [49].
Figure 3 depicts this phenomenon for an arbitrary week in the study, where 861 of the 6,389
users accessed a single patient's medical record only, while one user accessed 1097 records.
This finding suggests that a large portion of the EHR user population interact with only a
few patients' medical records each week, but there exists a relatively small number of
“power users” who access hundreds of patients' records. We confirmed the notion of power
users by examining the job titles of those users who were on the upper end of this
distribution. Both users have jobs that entail accessing the medical records of numerous
patients. Specifically, the role of the user who accessed over 1000 patients' records during
the week in consideration is that of a medical records analyst in the Emergency Medicine
department. Additionally, the user who accessed the second most records, over 600, is
assigned the role of a medical coding specialist. Both of these occupations are often
expected to work with higher volumes of patient records to facilitate insurance processing
and quality assurance within a medical center.

Third, we expect the interactions of users in an HCO to reflect high-level organizational
boundaries. For instance, it may be difficult to discern if two particular users or departments
should interact, but it should be the case that general groups exist. Consider, the VUMC
consists of several major hospitals, including a primary facility (i.e., the main hospital) and
specialized facilities such as a children's hospital. It is anticipated that the majority of
interactions between care providers will infer such structures. To verify if this was the case,
we considered if the relational network between the users implies such groupings.

Figure 4A depicts the user network from an arbitrary weekday in the study period. On this
day, approximately 900 users accessed 1,900 patients' records. In this network, we modeled
users as nodes and added an edge if two users accessed at least one patient in common on
the day in question. This is a simplification of the weighted network studied for association
rule mining (as described in Section 3), but note that the goal of this portion of the
investigation was to determine if there is a general organizational clustering of users.

We applied a principal components analysis (PCA) [50] to the network and projected the
network on the first two components.4 The result, depicted in Figure 4B revealed two major
groups, with several users spanning the groups. Upon further inspection, we found the

4This was achieved by representing the network as an adjacency matrix of Boolean values. Each “dimension” of the matrix
corresponds to the adjacency vector of a single user; i.e., a column in the matrix. PCA is a dimensionality reduction technique that
reduces the dimensions of the matrix along orthogonal vectors which explain the variance in the system. As a consequence, each
component is a vector of weights that characterize how each user contributes to the component. The principal components are sorted
by the amount of variance they explain. In the social networking community, such methods are applied to derive the eigencentrality of
entities in the system. [51]
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majority of users in these groups correspond to the main university hospital and children's
hospital, respectively, which suggests access logs can be analyzed to reveal high-level HCO
structure. We note that it may be possible to uncover additional organizational relationships
that are smaller in nature, such as particular wards or sections of a hospital, by modeling
beyond the first two principal components. However, this aspect of an organizational
analysis is beyond the scope of this study.

Similar results were observed for other randomly selected time points in the study period.
Thus, our model appears to capture expected properties of HCOs and known phenomena in
social networks.

4.2. Stability of HCO Interactions
We applied the relational model to extract association rules for EHR users and HCO
departments. Figure 5 illustrates that the number of rules detected each week is consistent
and significantly smaller than the maximum number of possible relationships. At the user-
level, we detect on average 886,784 user-user interactions per week (standard deviation of
48,972, or 5.5%). This suggests that the user-level network is relatively sparse because the

upper limit of user-user interactions is characterized by ; since the average number
of users per week was 6,406, the average upper limit of interactions is 20,515,215. Thus,
only 4.32% of all possible user relationships are realized, which suggests non-random
structure and affiliations within the organization.

For departmental rules, we ignored the users lacking departmental assignments, and detected
27,261 rules on average per week (standard deviation of 862, or 3.2%). In this case, the

upper limit to the number of department-department relationships is , where n is the
number of departments. In comparison to user interactions the additional n accounts for the
fact that departments can have relationships to themselves (i.e., two users from the
Emergency Department accessing the same record. Using the average number of
departments per week, 292, the upper limit is 42,778. Thus, our observation corresponds to
63.7% of the possible department relationships, indicating a greater amount of cross-
community relationships at the department-level than at the user-level. Though we neglected
a portion of the users for departmental analysis, we believe this has minimal influence on the
finding because the two populations (i.e., those with vs. those without departments) have
statistically indistinguishable sets of rules learned from the access logs. This claim is based
on a Mann-Whitney U test we performed in which we rejected the null hypothesis, with a p
< 0.001, that the two groups are different in terms of how many records each user in the two
groups accessed. Additionally, when we compare a complete version of the user-level
network to a version with all users who lack department information filtered out, we find
that the ranks of the remaining rules do not change in relational to each other. Thus
removing the users retains a meaningful sub-network.

When we examine the distribution of relationships per user for an arbitrary week in the
study, as shown in Figure 6, we discover that it roughly follows a power-law distribution.
This highly skewed distribution has an average of 139 rules per user and a median of 77.
The distribution shows there are certain StarPanel users who are the lone person accessing a
patient's record, whereas other users are connected to a very large number of other users.
During the week, 118 users (1.8%) were the only users to access a specific patient's record
and 95 users (1.5%) accessed records that only one other user accessed. At the other end of
the spectrum, one highly connected person generated rules with 2584 other users. At the
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department level, the number of rules per department in a week averages 98 with a median
of 88.

4.3. Policy Decay
We visualized the stability of policies as a decay curve with respect to the user and
department level rules. The results are summarized in Figure 7. For rules at the user level,
we found that 56% exist for only a single week. Less than 1% of the rules exist for at least
14 weeks and only 0.07% of the rules exist for the entire study period. The steep decay
regarding the longevity of rules stems from several possible causes, including the possibility
that the organization is changing or that departments do not interact every week. Moreover,
the VUMC is a large academic medical center, in which residents rotate through different
clinical areas and in which care is delivered by teams. Therefore, we looked at department
level abstractions of the users to determine if the delivery is by similar clinicians.

For departmental level rules, we see a much slower rate of decay in Figure 7. After one
week 83% of the departmental rules remain, after 7 weeks 50% of the rules are retained, and
over 16% of rules exist over the entire 21-week study period, which is much greater than the
user rules. Notably, this represents a consistent and highly stable set of rules that could form
the core of an access control system. A subset of such rules are depicted in Table 1.

The dynamic nature of the results indicates that even at the abstracted level, any statistical
model of the HCO should be regenerated on a regular basis with recent access transactions.

4.4. Departmental Interaction Rules
Since rules at the user level lack HCO semantics, we examine rules at the departmental
level. The departmental rules are more stable and therefore more likely to be incorporated
into an HCO policy model. For the study period, a total of 58,415 department rules were
discovered on a weekly basis. For space, we report on a small subset of the rules.

The rules with the highest confidence occurred for only a small part of the 21-week period.
It is not until the 184th rank, according to confidence, that we discover a rule (Office Of
Research ⇒ Child & Adolescent Psychiatry) that exists in all weeks of the study. To
dampen noise in the system, we applied a filter to discard rules with a reoccurrence of less
than three weeks.5 The first portion of Table 1 reports the five highest post-filter confidence
rules. In the filtered set, we obtain rules that are clinically intuitive. For instance, there is a
0.378 probability of an EHR user in the Nephrology Clinic accessing a patient who was also
accessed by an EHR user in the Hypertension Clinic. This result is intuitive because
nephrology, the branch of internal medicine that focuses on the kidneys, often deals with
kidney diseases that include hypertension. As such, we expect coordination between these
two departments.

In contrast, the rules with the highest support occur in every week of the study period. The
top-5 rules are reported in the second portion of Table 1. Since the support represents the
relative frequency of the pair of departments in a week, we expect to find departments that
traditionally treat many patients to appear at the top of the list. This expectation is validated
by the departments in Table 1, where we find Emergency Medicine. Additionally, the
support of the top-20 rules capture 38% of the total support across all rules. For example, the
rules with Emergency Medicine in the antecedent and consequent (i.e., Emergency Medicine
⇒ Emergency Medicine) account for nearly 6.5% of all rules detected in the study period.
Moreover, 9 of the top-20 rules in this class have the same antecedent and consequent. This

5We chose three, as opposed to two, weeks to discard rules that spanned the end of the first and the beginning of the second week.
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finding suggests there is a large amount intra-departmental interaction; i.e., people in the
same department tend to work frequently with each other. This, however, is not always the
case and some have different departments. For instance, the support of (Allergy, Pulmonary,
& Critical Care, Emergency Medicine) is 0.013, that is it accounts for 1.3% of all the pairs
of departmental co-accesses in the system. Yet, these relationships are also clinically
intuitive.

We also observe HCO structure in the rules with the lowest support and confidence. Using
the aforementioned filter, the rules with the lowest confidences are depicted in the third
section of Table 1. Notice, again we find the Emergency Medicine department is a common
antecedent for 17 of the 20 rules with the lowest confidences, which is not surprising
because it collaborates with many other departments. From a clinical perspective, this
implies that the emergency department functions as a triage point of the HCO. Furthermore,
we find that the rules with the lowest support, depicted at the bottom of Table 1 are
potentially important for HCO policies as well. This is because low frequency events may
still lead to highly confident predictions of associations.

5. Discussion
In summary, our findings suggest that 1) HCOs are dynamic environments in which
associations fluctuate over time, 2) departmental interactions are more stable than those of
EHR users, and 3) intra-departmental relations tend to be more likely than inter-
departmental. We have also shown that there are exceptions to these rules and that each
policy should be monitored on a case-by-case basis. It is important to recognize that our
results are not necessarily indicative of the policies at HCOs beyond the VUMC. Rather,
each HCO should generate a customized statistical model of itself that is monitored over
time.

Moreover, there are several limitations of our study that we wish to point out, some of which
are due to the reality of data reuse and others based on the methodology itself. First, there
are various possible extensions and refinements of our modeling technique that can be
developed. For instance, the time windows upon which our networks are built can be
designed to incorporate a patient's length of stay in the hospital (e.g., time of admission and
discharge). Of course, it should be noted that a patient's record is often accessed after
discharge for follow-up, billing, and processing. Moreover, we could impose more structure
on user and departmental relationships by accounting for the ordering of events within the
system. If an Emergency Department, for example, truly acts as a triage service, then it is
anticipated that accesses from this department will precede other groups in the HCO.

Second, we suspect that our model can be improved upon through the incorporation of
certain semantics associated with HCO information and by restructuring the access
transactions. For instance, we only considered if a user accessed a patient or not, but it might
be useful to consider a weighting schema that accounted for the number of times the user
accessed a patient's record as well as how many user's accessed a particular record. From a
semantic perspective, we could document which accesses led to care provider referrals,
which could confirm existing work patterns and enable finer tuning of our statistical model.
Similarly, additional improvements could result from incorporating a temporal view of the
data. Consider, we might expect the emergency medicine department to access records first,
then some other department such as internal medicine or surgery. From a restructuring
perspective, we note that our models consider pairwise relationships between users, such
that group detection via clustering techniques could provide rules that are more team-
oriented.
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Third, the study revealed that meta-information, such as departmental affiliations, is not a
necessary condition to manage a serviceable EHR. Rather, it is often more appropriate for
various services and programs that are outside the realm of EHR adminstration to extract
this information from other data sources. For instance, in addition to the human resources
database applied in this study, we discovered at least four distinct sources of partial meta-
information at the medical center. The first source was a database designed to keep track of
the medical residents. Residents often rotate through different care areas in the HCO, but
this database was not designed to capture what department or care area each resident was
assigned to and the dates over which that assignment was relevant. The second source was
designed to allow customization of experience within the EHR based on a self-selected role;
e.g. attending physician, staff nurse, etc. We believe that the combination of role and
department would make for a compelling statistical model. For example, we could inquire if
attending physicians in one department always work with charge nurses in a different
department. Unfortunately, a majority of users never customized their experience and thus
this system lacked role-related information on a significant majority of the user population.
A third source contained departmental affiliations, but it lacked a primary key through
which we could link the users in this source to the unique logins of the users in the access
logs.

Finally, this work focused on automated policy extraction, but not on a rigorous human
review of the resulting association rules. The number of rules generated by our approach
will certainly be greater than capability of humans to process and assess. Nonetheless,
though the resulting rules reflect how the EHR system was utilized by HCO employees, the
rules themselves may be indicative of endemic problems within the HCO. Thus, we believe
that the proposed approach could be evaluated by HCO administrators to assess the extent to
which known policies are being followed. This will require an in-depth survey with experts
within the HCO.

6. Conclusions
In this paper, we introduced a data-driven methodology to automatically extract HCO
policies from on EHR access logs. The policies are probabilistic in nature and represent a
wide range of relationships that transpire within the HCO. The methodology is generalizable
and can be applied across HCOs, such that it can incorporate specific HCO knowledge about
the EHR user population (e.g., user-department assignments). Beyond a theory, we
empirically evaluated our approach with the access log of a large healthcare provider. Our
investigations confirmed that policies at the HCO department-level afford greater stability
than policies at the user-level. Moreover, our analysis verified the existence of certain
expected business processes, such as the fact that intra-departmental interactions tend to
occur more often that inter-departmental interactions and that intuitive collaborations (e.g.,
nephrology and hypertension clinics) manifest with relatively high likelihood. In future
research, we intend on extending our methods to account for temporal components of access
patterns and verify the methodology in additional clinical domains.
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Figure 1.
Example of network construction from EHR access logs.
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Figure 2.
Number of distinct patient records accessed per day during the study period.
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Figure 3.
Distribution of patients accessed by each user (log scale) during an arbitrary week in the
study.
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Figure 4.
A) Social network of EHR users for an arbitrary weekday in 2006. B) Projection of network
against first two principal components. In these graphs, each node correspond to a distinct
EHR user and each edge represents that two users accessed at least one patient in common.
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Figure 5.
Number of rules mined each week at the user and department levels.
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Figure 6.
Distribution of rules for each user (log scale) during an arbitrary week in April 2006.
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Figure 7.
Presence of rules throughout the lifetime of the study (interpolated).
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Table 1

HCO departmental association rules. The scores correspond to the mean over the weeks when the rule was
detected

Department A Department B Support
(A and B)

Confidence
(A ⇒ B)

Weeks

High Confidence Rules

Organizational Development School of Nursing 3.60 × 10−5 0.4 7

Hypertension Clinic Nephrology Clinic 4.16 × 10−5 0.378 3

Business Office: Correspondence Learning Center 5.71 × 10−6 0.33 3

Business Office: Fees Group Office of Compliance 7.94 × 10−6 0.25 4

Main OR Vanderbilt Medical Group - [Anonymized City] 5.94 × 105 0.2 6

High Support Rules

Emergency Medicine Emergency Medicine 6.48 × 10−2 6.47 × 10−4 21

Ophthalmology Ophthalmology 2.85 × 10−2 3.36 × 10−3 21

Obstetrics & Gynecology Obstetrics & Gynecology 2.69 × 10−2 1.55 × 10−3 21

Orthopedics & Rehabilitation Orthopedics & Rehabilitation 2.06 × 10−2 1.47 × 10−3 21

Pediatric Hematology Pediatric Hematology 2.06 × 10−2 4.28 × 10−3 21

Low Confidence Rules

Emergency Medicine Post Anesthesia Care Unit 2.31 × 10−6 2.25 × 10−8 5

Emergency Medicine Developmental Disability Center 2.00 × 10−6 2.29 × 10−8 3

Emergency Medicine Psychology & Human Development 2.00 × 10−6 2.29 × 10−8 3

Emergency Medicine Cardiology 2.40 × 10−6 2.35 × 10−8 9

Emergency Medicine Pulmonary Clinic 2.73 × 10−6 2.93 × 10−8 4

Low Support Rules

Nursing Support Services Medical Intensive Care Unit 5.11 × 10−7 1.18 × 10−5 3

Medical Intensive Care Unit Nursing Support Services 5.11 × 10−7 1.37 × 10−6 3

General Surgery Special Procedures 5.81 × 10−7 4.45 × 10−6 3

General Surgery Hematology 5.81 × 10−7 4.45 × 10−6 3

Special Procedures General Surgery 5.81 × 10−7 4.98 × 10−4 3
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