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Abstract
Some suggest that arousal is the essential element in order to engage the amygdala. However, the
role of arousal in the larger emotional memory network may differ depending on the valence
(positive, negative) of the to-be-remembered information. The goal of the current study was to
determine the influence of arousal-based changes in amygdalar connectivity for positive and
negative items. Participants were shown emotional and neutral pictures while they underwent a
functional magnetic resonance imaging (fMRI) scan. The emotional pictures varied by valence
(positive or negative), and arousal (high or low). Approximately 45 minutes later, outside of the
scanner, participants took a surprise recognition test. Effective connectivity analysis examined
how arousal affected successful encoding activity. For negative information, arousal increased the
strength of amygdala connections to the inferior frontal gyrus and the middle occipital gyrus,
while for positive information arousal decreased the strength of these amygdala efferents. Further,
while the effect of arousal on memory for positive information was restricted to amygdalar
efferents, arousal had a more widespread effect for negative items, enhancing connectivity
between other nodes of the emotional memory network. These findings emphasize that the effect
of arousal on the connectivity within the emotional memory network depends on item valence.

The amygdala has long been cited as an important part of the neural circuitry for processing
emotion. Its importance in emotion processing has been found in studies that have focused
on the processing of a variety of stimuli, including emotional faces (e.g., Morris et al.,
1998), pictures (e.g., Glascher & Adolphs, 2003), and words (e.g., Hamann & Mao, 2002;
Isenberg et al., 1999). When processing these emotional stimuli, the amygdala activation has
been linked to modulation of other brain areas, including the fusiform gyrus, the middle
occipital gyrus, and the parahippocampal gyrus (e.g., Kilpatrick & Cahill, 2003; Tabert et
al., 2001; Vuilleumier et al., 2001), leading to enhancements in attention directed towards
the emotional stimuli (Phan, Wager, Taylor, & Liberzon, 2002; Stein, et al., 2007). The
amygdala’s modulation of these networks during emotion processing also has been shown to
be important in the retention of emotional information over time (Cahill et al., 1996;
Kilpatrick & Cahill, 2003; Richardson, Strange, & Dolan, 2004).

It has been debated whether the amygdala’s role in information processing and retention is
modulated by arousal (the stimulating or calming nature of a stimulus) or valence (the
positive or negative nature of a stimulus). Initial studies suggested that the amygdala
primarily responded to threatening stimuli (Kluver & Bucy, 1937; Weiskrantz, 1956;
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Whalen, 1998), and there has been some evidence from lesion studies that the amygdala
may be more involved in the recognition of negative stimuli than of positive stimuli
(Adolphs, Russell, & Tranel, 2001; Tranel, Gullickson, Koch, & Adolphs, 2006). However,
recent neuroimaging and lesion evidence has suggested that arousal may be the key factor;
the amygdala may respond to any arousing stimulus regardless of valence. Further, the
arousal response might be essential in order for the amygdala to modulate memory
(Adolphs, Russell, & Tranel, 1999; Anderson, 2005; Anderson, Wais, & Gabrieli, 2006;
Kensinger, 2004; Cahill & McGaugh, 1995; Canli, Zhao, Brewer, Gabrieli, & Cahill, 2000;
Cahill et al., 2003).

The focus of the current study is to examine how arousal affects connectivity within an
amygdala-modulated emotional memory network, and to examine whether the influence of
arousal varies depending on whether stimuli are of positive or negative valence. As
reviewed above, the link between amygdala activity and subsequent memory may not differ
based upon item valence (Hamann & Mao, 2002; Kensinger & Schacter, 2006), yet this does
not mean that the effect of arousal on the amygdala’s role in guiding memory must be
identical for positive and negative stimuli. Based on prior research, we hypothesized that
increasing stimulus intensity would have a greater impact on amygdala connectivity with
regions of the emotional memory network when stimuli were negative than when they were
positive. This hypothesis stemmed from a few lines of prior research. First, the effect of
arousal may differ based on valence. Garavan, Pendergrass, Ross, Stein, & Risinger (2001)
found that when processing emotional pictures, arousal modulated amygdala increases for
negative stimuli, while the amygdala response remained high across positive stimuli. In
addition, Bernsten, Bechara, Damasil, Tranel & Cacioppo (2007) found that people with
amygdalar lesions did not show a typical behavioral gradient in arousal ratings to negative
pictures, while the gradient in ratings for positive pictures was preserved. These findings
suggest that the amygdala is particularly important for processing the arousal tied to
negative stimuli. Second, amygdala damage disrupts the ability to re-experience the negative
affect that accompanied prior events (Buchanan, Ezel, Adolphs, & Tranel, 2006),
corroborating a strong link between amygdala function and the experience of arousal during
a negative event. Third, amygdala damage has a detrimental impact on the ability to recall
negative arousing life experiences, whereas it does not have as large an effect on the recall
of positive arousing experiences (Buchanan et al., 2006), suggesting that the amygdala may
play a particularly central role in the emotional memory network when information is both
arousing and also of negative valence. These studies suggest that arousal may affect
amygdala activity differently depending on the valence of the item. This differential effect
of arousal may have implications for the amygdala-based processes that guide emotional
memory (see McGaugh, 2004).

Arousal seems to affect memory by leading to amygdala-related modulation of other areas,
including other regions of the medial temporal lobe (McGaugh, 2004; Kilpatrick & Cahill,
2003), regions with the temporo-occipital cortex (Lane, Chua, & Dolan, 1999; Dolan &
Vuilleumier, 2003), and regions within the prefrontal cortex (Zald et al., 1998). Yet these
studies have primarily focused on the role of arousal when information is negative in
valence, leaving open the possibility that the ability for arousal to modulate the strength of
connections between the amygdala and other peripheral areas may depend of the valence of
the to-be-remembered item. Because negative and arousing information is often recollected
with a sense of strong visual detail, and has been associated with encoding activity in the
middle occipital gyrus and fusiform gyrus (Kensinger & Corkin, 2003; Mickley &
Kensinger, 2008; Mickley Steinmetz & Kensinger, 2009), it is possible that for negative
information, arousal may be especially likely to increase connections between the amygdala
and these areas associated with visual processing for negative information. By contrast, for
positive information, arousal may not elicit the same magnitude of strengthened
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connections. Thus, differences in arousal based memory for positive and negative items
might be due to changes in the way in which arousal influences the connections between the
amygdala and a broader emotional memory network. To address this hypothesis, the present
study employed effective connectivity analyses using structural equation modeling (SEM).

Methods
Participants

Participants included the same nineteen right-handed young adults, aged 19 – 35, reported in
Mickley Steinmetz and Kensinger (2009). All participants were native English speakers and
had normal or corrected to normal vision. Participants with a history of psychiatric or
neurological disorders or participants taking medication that would affect the central
nervous system were excluded from the study. Informed consent was obtained in a method
approved by the Institutional Review Boards at Massachusetts General Hospital and Boston
College.

Materials and Procedure
The materials and procedure were identical to those described in Mickley Steinmetz and
Kensinger (2009). Behavioral data can also be found in that publication. To briefly reiterate
those parameters, stimuli were 350 pictures: 70 negative arousing, 70 negative nonarousing,
70 positive arousing, 70 positive nonarousing and 70 neutral pictures taken from the
International Affective Picture System database (Lang et al., 1999). Positive and negative
pictures were matched on visual complexity, brightness [as indicated in Adobe Photoshop
(Adobe Systems, San Jose, CA)], and number pictures that included animals, people,
buildings or landscapes (normative data from Kensinger & Schacter, 2006b). Positive and
negative pictures were equated for arousal and for absolute valence (i.e., distance form
neutral valence). High and low arousal images were equated for valence ratings.

Participants viewed 175 pictures (35 from each emotion category) for 2 sec each while
undergoing a functional magnetic resonance imaging (fMRI) scan. Interstimulus intervals
were jittered, ranging from 2 to 14 s (Dale, 1999). About an hour and a half later and outside
of the MRI scanner, participants performed a recognition memory task. During the delay
interval, all participants completed a verbal attention task. On the recognition memory task,
participants were shown the 175 pictures that they had viewed in the scanner intermixed
with 175 new pictures. The studied pictures varied across participants, counterbalancing
whether an image appeared on the recognition test as a studied item or as a novel foil. Each
picture was shown for 2 sec, and participants were asked to indicate if they recognized the
picture as “old” or if it was “new.” If the participant recognized the picture as “old,” they
were asked to complete a modified version of the Memory Characteristics Questionnaire
(Johnson, Foley, Suengas, & Raye, 1988), rating their memory for confidence, remembered
thoughts, feelings, intensity of feelings, associations, visual details, and temporal
information they remembered about the item’s presentation. There were no significant
valence x arousal interactions for any of the ratings. Therefore, these memory characteristic
data will not be discussed further.

Image Acquisition and Preprocessing
Data were acquired on a 1.5 Tesla Siemens Avanto whole body MRI system (Erlangen,
Germany) with a standard birdcage head coil. Stimuli were projected from a Macintosh
iBook G4 using a Sharp200 color LCD projector with a collimating lens (Buhl Optical). The
image was shown on a screen that was mounted at the end of the magnet bore. The screen
was viewed via mirrors placed on the head coil.
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Anatomic images were acquired with a multi-planar rapidly acquired gradient echo (MP-
RAGE) sequence with a repetition time (TR) of 2730 ms, an echo time (TE) of 3.31 ms, a
flip angle of 40°, a field of view of 256 x 256 mm, an acquisition matrix of 256 x 256, slice
thickness of 1.33 mm, no gap, and a 1x1x1.33 mm resolution. Co-planar and high-resolution
T1 weighted localizer images were acquired. In addition, a T1 weighted inversion recovery
echo planar image was acquired for auto alignment.

Functional images were acquired via at T2* weighted echo planar imaging sequence
sensitive to blood oxygenation dependant contrast (BOLD). The TR was 3000 ms, the
effective TE was 40 ms, and the flip angle was 90°. The slices were taken in an interleaved
fashion, at an axial-oblique angel (parallel to the AC-PC line). Twenty-nine slices were
acquired in a 3.125 mm x 3.125 mm x 3.72 mm matrix. The slices were 3.12 mm thick and
had a 0.6 mm skip between slices.

Preprocessing and data analysis were completed using SPM2 (Wellcome Department of
Cognitive Neurology, London, UK). Preprocessing included: slice time correction, motion
correction (which used a six parameter, rigid body transformation algorism from SPM2),
normalization (to the Montreal Neurological Institute template, with resampling at 3mm
isotropic resolution), and spatial smoothing (at a 7.6 mm isotropic Gaussian kernel).

Region Selection
Regions were selected a priori based on those areas known to be an important part of the
emotional memory network (e.g., LaBar & Cabeza, 2006; Mickley & Kensinger, 2008).
Five regions were included in our model: left amygdala, left hippocampus, left inferior
frontal gyrus, left middle occipital gyrus, and left fusiform gyrus (see Table 1). We defined
these ROIs using coordinates selected from a contrast that examined the regions whose
encoding-related activity corresponded parametrically with a more confident response
during retrieval. At the first level, the parametric modulation function was used, entering the
corresponding confidence ratings for each trial in each of the five emotion conditions.
Contrast images of the parametric effect of confidence (collapsed across emotion condition)
were entered into a second level (group) one sample t-test to identify a network of regions
involved in the encoding of confident emotional memories. This analysis collapsed across
emotion types, so that regions were not biased with regard to how they processed the
emotional content of the items. Further, there were no statistically significant differences in
confidence ratings across the five emotion categories (F (4,72) = 1.145, p > .05, partial eta
squared = 0.06). Our model included left-lateralized ROIs because the amygdalar activity
revealed in the parametric analysis was left-lateralized, and because evidence suggests that
the strongest amygdalar connections were likely to be ipsilateral (Amaral, Behniea, & Kelly,
2003; Kilpatrick & Cahill, 2003; Vuilleumier, Richardson, Armony, Driver & Dolan, 2004).
A significance threshold of p < .001 (uncorrected for multiple comparisons), and an extent
threshold of five contiguously active voxels (3x3x3mm) was applied to this parametric
analysis. MNI coordinates were converted to Talairach space and regions of activation were
localized in reference to a standard stereotaxic atlas (Talairach & Tournoux, 1988).

From each region in our model, we then extracted BOLD signal from a 5 mm sphere
centered on the local maximum coordinate. Using the Marsbar toolbox in SPM2 (Brett,
Anton, Valabregue, & Poline, 2002), a hemodynamic response function was calculated for
each individual subject and for each emotion type (positive arousing, positive non-arousing,
negative arousing, and negative non-arousing) relative to baseline (fixation). Note that signal
was only extracted from encoding trials of items that were subsequently remembered, so that
differences in connectivity between the two item types would not be due to differences in
later memory accuracy given that more arousing than non-arousing items were later
remembered. Thus, if signal from all trials (remembered and forgotten) was entered into the
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analysis, differential connectivity between arousing and non-arousing conditions could have
nothing to do with arousal-based processing but rather to changes in the proportion of
processes that were associated with successful vs. unsuccessful encoding. We then
computed the average of the signal change within peristimulus times 4-6 seconds, and these
values were used to construct the functional models for the SEM analyses, as described
below.

Effective Connectivity Analysis—We investigated the effective connectivity of the
regions within the emotional memory network using structural equation modeling (SEM;
McIntosh & Gonzalez-Lima, 1994). This is a multivariate technique that uses the
neuroanotomical model of connections and assesses its fit with the interregional covariances
associated with the BOLD signal. SEM provides information about the strength of the
connections in the model, and how these connections vary under different conditions.
Moreover, unlike correlations, SEM analysis can also determine the directionality of the
connections between different regions given that path coefficients can be asymmetric (e.g.,
the influence of region A upon region B can be greater than the influence of region B upon
region A). The anatomical model specified the location and potential direction of the
connections to ensure that the significant functional differences were anatomically viable.
The connections in this model were based on known primate and rodent anatomy (Amaral,
Behniea, & Kelly, 2003; Burman, Palmer, Gamberini & Rosa, 2006; Petrides & Pandya,
1999; Rosene & Van Hoesen, 1977) and were further refined to ensure stability of the
model. First a model was made in which all connections were reciprocal connections. This
model did not have good stability (i.e., stability estimates were above 1, indicating an
unstable model) and so it was necessary to revise that model. Because the amygdala
efferents were the dominant connections, and because of our theoretical motivation for
studying the amygdala’s modulation of other brain areas, we revised the model to include
only amygdalar efferents, leaving the bidirectional connections between the hippocampus
and fusiform and the fusiform and the middle occipital gyrus. This model revealed beta
weights that were greater than 1 for the hippocampus to fusiform connection. Beta weights
that are greater than 1 are theoretically impossible and indicate the presence of an
inappropriate reciprocal connection. Replacing the reciprocal connection between the
fusiform and hippocampus with a unidirectional connection eliminated these inflated beta
weights. This model also had good stability, and so it was this anatomical model that we
used in the present study. Once the anatomical model was set, a functional model was then
constructed for each emotion category condition (positive arousing, positive nonarousing,
negative arousing, and negative nonarousing) by correlating the percent signal change for
that condition across the regions in the anatomical model.

All SEM calculations were performed using Lisrel 8.30 (Joreskog & Sorbom, 1993). Two
separate SEM analyses were computed. One compared negative arousing to negative
nonarousing items. The other compared positive arousing to positive nonarousing items1.
These two SEM analyses were therefore designed to reveal whether there were arousal-
dependent changes in connectivity for (1) negative items or for (2) positive items. For each
of the two SEM analyses, estimates of path coefficients were calculated based on the
correlation matrices (i.e., the functional models).

To determine whether there were significant differences in connectivity between the
conditions (i.e., between negative arousing and negative nonarousing, or between positive
arousing and positive nonarousing), we used a stacked-model approach (McIntosh &

1Models that compared positive to negative items (collapsing across arousal types) were also created and compared. However, the null
and the alternate model in this analysis did not differ significantly. Thus, there does not appear to be an overall effect of valence on the
connectivity within the network examined here, but rather a difference in the way that arousal modulates that network.
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Gonzalez-Lima, 1994). Using an omnibus test, a null model was constructed in which the
path coefficients from both conditions were assumed to be equal. The fit of this model was
determined using a goodness-of-fit χ2 test. The fit of the null model was compared to the fit
of an alternative model in which the path coefficients were allowed to vary. The fit of the
alternate model was also determined using a goodness-of-fit χ2 test, and the differences
between the models were calculated by comparing these goodness-of-fit χ2 values to obtain
a χ2

diff. If the χ2
diff was significantly lower for the alternate model relative to the null model

(significance being determined by taking into account the difference in degrees of freedom
between the two models), it indicated that at least some connections within the emotional
memory network differed as a function of stimulus arousal (p < .05).

Thus, the next step was to determine which connections contributed significantly to the
omnibus difference between the null and the alternate model. To do so, the amygdalar
efferents and then the other connections were allowed to vary in a stepwise manner
(following the methods of Gilboa et al., 2004). First, an alternate model was created in
which only the amygdalar efferents were allowed to vary, and the significance of the
decrease in the goodness-of-fit χ2 value relative to the null model was assessed (i.e., a χ2

diff
was computed as described above for the omnibus analysis). If the χ2

diff was not significant
(p > .05), then the strength of the amygdalar efferents were permanently set as equivalent for
the two conditions (e.g., between negative arousing and negative nonarousing) in all
subsequent alternate models. If the χ2

diff was significant (p < .05), then the amygdalar
efferents were permanently allowed to vary between the two conditions (e.g., between
negative arousing and negative nonarousing) for all subsequent models. Then a second
alternate model was created, in which the extra-amygdalar connections were now allowed to
vary, and if this caused a further reduction in the goodness-of-fit χ2 value, then those
connections also were set to vary between the conditions in the final model; otherwise the
strength of these connections were fixed to be equivalent.

Results
Effects of Arousal on the Connectivity for Negative Items

The first SEM analysis compared the connectivity among regions in the emotional memory
network for subsequently remembered negative items that were either arousing or non-
arousing. The omnibus SEM analysis revealed that the goodness-of-fit was significantly
better for the alternate model relative to the null model fit (χ2

diff = 16.48, df = 7, p < .05),
indicating there was a significant effect of condition on the effective connectivity of the
emotional memory network. A stepwise assessment of connections was conducted to
determine which connections differed significantly across conditions. This assessment
revealed that the networks differed in both the amygdalar efferents (p < .01) and also the
extra-amygdalar connections (p < .01; See Figure 1). The encoding of subsequently
remembered negative arousing items was associated with stronger connections from the
amygdala to the left inferior frontal gyrus and left middle occipital gyrus than was the
successful encoding of negative nonarousing items. Connectivity between the fusiform and
middle occipital gyrus was also stronger when encoding negative arousing versus non-
arousing items. Finally, there was evidence that when successfully encoding negative low
arousing items relative to negative arousing items, amygdala influences on the hippocampus
became weakly negative, while positive influences of the fusiform upon the hippocampus
became stronger.

Effects of Arousal on the Connectivity for Positive Items
An omnibus SEM analysis comparing the connectivity within the emotional memory
network during the successful encoding of positive arousing versus nonarousing items
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revealed that the goodness-of-fit was significantly better for the alternate model relative to
the null model fit (χ2

diff = 14.68, df = 7, p < .05), indicating there was a significant effect of
condition (p < .05). A stepwise assessment of connections was revealed that the networks
differed in terms of the connectivity of amygdalar efferents (p < .01) but not extra-
amygdalar connections (See Figure 2). The encoding of subsequently remembered positive
nonarousing items was associated with stronger connections from the amygdala to left
inferior frontal gyrus, left hippocampus, and left middle occipital gyrus (See Figure 2) than
was the successful encoding of positive arousing items.

DISCUSSION
The current study demonstrates that the level of arousal of successfully encoded items
modulates the connectivity between the amygdala and other regions of the emotional
memory network. Although past studies have suggested that the amygdala may play a
particularly important role during the encoding of high-arousal stimuli, this study adds the
important caveat that the effect of arousal may critically depend on the valence of the
stimuli. To briefly summarize the results, for both positive and negative items, arousal
modulated the strength of amygdalar efferents. However, the effects of arousal on those
efferents differed for negative and for positive items. For negative items, there were stronger
amygdalar efferents when encoding arousing items as compared to nonarousing items, both
to the left middle occipital gyrus and the left inferior frontal gyrus. For positive items, on the
other hand, it was nonarousing items that resulted in stronger amygdala connectivity to the
left middle occipital gyrus, the left inferior frontal gyrus and the left hippocampus.
Furthermore, only for negative items did arousal modulate the connections among regions
aside from the amygdala, with arousal modulating connections between the middle occipital
gyrus and the fusiform gyrus, as well as from the fusiform to the hippocampus.

Only a small number of studies have assessed the encoding of low-arousal positive and
negative stimuli as well as high-arousal positive and negative stimuli, and this is the first
study to examine changes in the neural connectivity of the emotional memory while using
this broader range of stimuli. Therefore, this study opens a number of questions for future
research. The most notable question is why amygdala connectivity would strengthen as
arousal increases for negative stimuli but weaken as arousal increases for positive stimuli, a
point which we will return to later in this discussion.

The finding for the negative stimuli is generally consistent with prior proposals regarding
the role of the amygdala in encoding: It makes sense that amygdala connectivity would
strengthen with increasing arousal if the amygdala plays a particularly important role in the
encoding of negative, high-arousal stimuli (e.g., Adolphs, Russell, & Tranel, 1999;
Kensinger & Cokrin, 2004; Cahill & McGaugh, 1995). It also makes sense that if this
enhanced connectivity were disrupted – such as by damage to the amygdala – then this could
disrupt the perception of negative arousal, or the preferential retention of negatively
arousing memories (e.g., Bernsten et al., 2007; Buchanan et al., 2006).

A particularly interesting finding for the negative items was that arousal seemed to change
the way in which valence modulated the neural connectivity that would be tied to sensory
processing. For the encoding of negative items that are low in arousal, the amygdala exerted
its influence on the hippocampus via the fusiform gyrus. Thus, even when negative items
did not elicit high arousal, there was a pathway through which the amygdala could influence
the amount of sensory input being received by the hippocampus. This finding may explain
why negative events are sometimes remembered vividly, and with sensory detail, even when
they are not high in arousal (e.g., Kensinger & Corkin, 2003) although it is important to note
that in the present study, subjective perceptual memory vividness was not greater for
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negative pictures than it was for positive or neutral pictures. Because differences in
connectivity are evident despite a lack of difference in the subjective vividness ratings, this
connectivity does not seem to necessitate that a perceptually vivid memory will be
maintained. However, previous studies using neutral and emotional stimuli have suggested
that differences in fusiform-hippocampal connections may be associated with differences in
memory for perceptual details (Dickerson et al. 2007; Kensinger & Schacter, 2007). Thus, in
general these changes in connectivity may increase the likelihood that perceptual
information is retained, thereby explaining why it is more common to find perceptual
enhancements in memory for negative low-arousal stimuli than for other types of low-
arousal information.

For negative items that were high in arousal, the connection through the fusiform gyrus was
not as strong, and instead the middle occipital gyrus played a significant role, forming a loop
from the amygdala to the middle occipital gyrus and the fusiform and then on to the
hippocampus. Numerous studies have found amygdala activity to be coupled with activity in
the visual cortex when processing negative information (Hamann, Ely, Hoffman & Kilts,
2002; Morris et al., 1998; Tabert et al., 2001; Vuilleumier, Armony, Driver, & Dolan, 2001;
Vuilleumier, et al., 2004), and studies have revealed that the encoding of negative
information that is high in arousal is specifically associated with activity in the middle
occipital gyrus (Mickley & Kensinger, 2008; Mickley Steinmetz & Kensinger, 2009). It
therefore makes sense that the connectivity between the amygdala and these occipital
regions would be enhanced during the encoding of negative information that is arousing.
This finding may also help to explain why there is such perceptual vividness associated with
memories for items that are negative and high in arousal (Dewhurst & Parry, 2000;
Doerksen & Shimamura, 2001; Kensinger & Schacter, 2006a; Kensinger, Garoff-Eaton, &
Schacter, 2007). The perceptual quality associated with negative information that is high in
arousal may be due to the overall strength of connections through the occipital cortex, or it
may be due to the alternate pathway through the occipital gyrus, or a combination of the
two. Future research will be necessary to directly examine whether these changes in
connectivity modulates the specific phenomenological qualities of a memory.

Although the findings for the negative stimuli can be interpreted within existing frameworks
regarding the role of the amygdala in emotional memory, the findings for the positive
stimuli are not consistent with existing frameworks and suggest that the link between high-
arousal and amygdala engagement may be more nuanced than previously discussed. The
finding that high arousal decreases the strength of most amygdala efferents when stimuli are
positive cannot be accounted for by the hypothesis that it is the high arousal level of stimuli
that strengthens the amygdala’s role in memory encoding, nor can it be accounted for by any
hypothesis that suggests that the amygdala only is engaged for negative stimuli and not for
positive stimuli. The present data suggest that amygdala efferents can be strong for both
positive and negative stimuli, and that the strength of those efferents can be modulated by
arousal for both valences of stimuli, yet the direction of that modulation is opposite
depending on the item valence.

As indicated in the introduction, studies have shown that arousal may have different effects
depending on the valence of the item. For example, Bernsten, et al. (2007) found that people
with amygdalar lesions did not show a typical behavioral gradient in arousal ratings to
negative pictures, while the gradient in ratings for positive pictures was preserved. In
addition, Garavan et al. (2001) found that arousal modulated amygdala activity for
processing negative information, but amygdala activity remained constant for the processing
of all positive stimuli, regardless of arousal. The present study extends these prior findings,
revealing that arousal can have fundamentally different effects on amygdala connectivity
with other regions of the emotion memory network, depending upon the valence of the
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information. Although arousal enhances amygdala connectivity for negative items, it does
not do so for positive items. The present study cannot explain the basis for the enhanced
connectivity for positive items that are low in arousal, but one interesting possibility is that
the amygdala efferents for positive stimuli could be tied to more controlled or elaborative
processes, which may be particularly likely to occur for low-arousal stimuli, whereas the
amygdala efferents for negative stimuli may be linked to a different type of processing,
perhaps one that is more automatic in nature, and thus that is more likely to occur for high-
arousal stimuli. Although speculative, this proposal is consistent with the fact that amygdala
efferents to the prefrontal cortex were particularly strong for positive, low-arousal items,
whereas bottom-up inputs from sensory cortices to the amygdala were particularly strong for
negative, high-arousal items.

Positive information has often been associated with a more global, heuristic, and elaborative
processing than negative information (Fredrickson, 2004; Gasper & Clore, 2002), and the
engagement of these types of processes seems to lead to the successful encoding of positive
information (reviewed by Kensinger, 2009). Because elaborative processes have been
proposed to be particularly important for the encoding of low-arousal information (e.g.,
Kensinger & Corkin, 2004), it is possible that these elaborative processes are most likely to
be implicated in successful encoding when information is positive and of low arousal,
whereas they may be less likely to correspond with successful encoding when arousal level
is increased. Although the tie to elaborative processing is a speculative one at this point, the
present results clearly demonstrate that arousal influences amygdala connectivity differently
for negative and positive items.

A final point of interest is that, while the effect of arousal on memory for positive
information was restricted to the amygdalar efferents, arousal had a more widespread effect
for negative items. It was only for negative stimuli that arousal modulated connections
among regions beyond the amygdala, between the fusiform and the hippocampus and the
fusiform and the middle occipital gyrus. Thus, it seems that for the encoding of negative
items, arousal has a more global effect, while the effect of arousal on positive items is more
focused upon the amygdala efferents. The reason for this difference across valences is an
open question for further research but it emphasizes that the power for arousal to enhance
neural connectivity may be exaggerated for items that are of negative valence.

In summary, the current study is the first to reveal that the effect of arousal on the
connectivity within the emotional memory network differs depending on the valence of the
to-be-remembered item: while amygdala efferents ramp up in strength as arousal increases
for negative items, this is not the case for positive items. This finding sheds light on
previous findings which indicate that amygdalar involvement and encoding processes may
differ depending on valence (Berntson et al., 2007; Dolcos, LaBar, & Cabeza, 2004;
Mickley & Kensinger, 2008; Mickley Steinmetz & Kensinger, 2009), revealing that the way
in which arousal influences how the amygdala is incorporated into the emotional memory
network depends critically upon the valence of the information. These results underscore the
importance of considering how the effects of arousal may be qualified by the valence of the
item.
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Figure 1.
Anatomical model for the effective connectivity analysis of negative items. Arrows
represent anatomical connections used in the model based on known primate and rodent
neuroanatomy. Connections that are significantly different between the two arousal
conditions are in blue. All connections were significantly different in this model. For
Talairach coordinates of peak voxels see Table 1. L=Left, IFG = Inferior Frontal Gyrus,
Amyg = Amygdala, HC = Hippocampus, Fusi = Fusiform, MOG = Middle Occipital Gyrus.
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Figure 2.
Anatomical model for the effective connectivity analysis of positive items. Arrows represent
anatomical connections used in the model based on known primate and rodent
neuroanatomy. Connections that are significantly different between the two arousal
conditions are in green. For Talairach coordinates of peak voxels see Table 1. L=Left, IFG =
Inferior Frontal Gyrus, Amyg = Amygdala, HC = Hippocampus, Fusi = Fusiform, MOG =
Middle Occipital Gyrus.
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Table 1

Brain Area Talairach Coordinates Brodmann Area

Left Inferior Frontal Gyrus (OFC) −40, 24, −18 47

Left Amygdala −24, −1, −13

Left Hippocampus −34, −9, −12

Left Fusiform Gyrus −30, −45, − 18 37

Left Middle Occipital Gyrus −26, −86, −1 18
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