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SUMMARY
The developmental potential of human pluripotent stem cells suggests that they can produce
disease-relevant cell types for biomedical research. However, substantial variation has been
reported among pluripotent cell lines, which could affect their utility and clinical safety. Such cell-
line-specific differences must be better understood before one can confidently use embryonic stem
(ES) or induced pluripotent stem (iPS) cells in translational research. Toward this goal we have
established genome-wide reference maps of DNA methylation and gene expression for 20
previously derived human ES lines and 12 human iPS cell lines, and we have measured the in
vitro differentiation propensity of these cell lines. This resource enabled us to assess the epigenetic
and transcriptional similarity of ES and iPS cells and to predict the differentiation efficiency of
individual cell lines. The combination of assays yields a scorecard for quick and comprehensive
characterization of pluripotent cell lines.

INTRODUCTION
Human embryonic stem (ES) cell lines can be cultured and expanded for many passages in
vitro, without losing their ability to differentiate into all three embryonic germ layers
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(Thomson et al., 1998). The same is true for induced pluripotent stem (iPS) cell lines, which
are obtained by reprogramming somatic cells using ectopic expression of the transcription
factors OCT4, SOX2, KLF4, and C-MYC (Takahashi et al., 2007) or alternative
reprogramming cocktails (reviewed in Stadtfeld and Hochedlinger, 2010). Both ES and iPS
cell lines are powerful research tools and could provide substantial quantities of disease-
relevant cells for biomedical research. Several groups have already used human pluripotent
cell lines as a model system for dissecting the cellular basis of monogenic diseases, and the
range of diseases under investigation is rapidly expanding (reviewed in Colman and
Dreesen, 2009). Future applications of human pluripotent stem cell lines could include the
study of complex diseases that emerge from a mixture of genetic and environmental effects;
cell-based drug screening in disease-relevant cell types; and the use of pluripotent cells as a
renewable source for transplantation medicine (Colman and Dreesen, 2009; Daley, 2010;
Rubin, 2008).

All of these applications require the selection and characterization of cell lines that reliably,
efficiently, and stably differentiate into disease-relevant cell types. However, significant
variation has been observed for the differentiation efficiency of various human ES cell lines
(Di Giorgio et al., 2008; Osafune et al., 2008), and further concerns have been raised about
the equivalence of human ES and iPS cell lines. For example, it has been reported that
human iPS cells collectively deviate from ES cells in the expression of hundreds of genes
(Chin et al., 2009), in their genome-wide DNA methylation patterns (Doi et al., 2009), and
in their neural differentiation properties (Hu et al., 2010). Such differences must be better
understood before human ES and iPS cell lines can be confidently used for translational
research. In particular, it is necessary to establish genome-wide reference maps for patterns
of gene expression and DNA methylation in a large collection of pluripotent cell lines,
providing a baseline against which comparisons of epigenetic and transcriptional properties
of new ES and iPS cell lines can be made. Previous research has shown that human
pluripotent cells exhibit highly characteristic patterns of DNA methylation and gene
expression (Guenther et al., 2010; Hawkins et al., 2010; Lister et al., 2009; Müller et al.,
2008). However, these studies focused on few cell lines and therefore could not
systematically investigate the role of epigenetic and transcriptional variation.

In order to firmly establish the nature and magnitude of epigenetic variation that exists
among human pluripotent stem cell lines, three genomic assays were applied to 20
established ES cell lines (Chen et al., 2009; Cowan et al., 2004; Thomson et al., 1998) and
12 iPS cell lines that were recently derived and functionally characterized (Boulting et al.,
2011). The assays performed on each cell line included DNA methylation mapping by
genome-scale bisulfite sequencing, gene expression profiling using microarrays, and a novel
quantitative differentiation assay that utilizes high-throughput transcript counting of 500
lineage marker genes in embryoid bodies (EBs). Collectively, our data provide a reference
of variation among human pluripotent cell lines. This reference enabled us to perform a
systematic comparison between ES and iPS cell lines, to identify cell-line-specific outlier
genes, and to predict each cell line's differentiation propensity into the three germ layers.
Finally, we show that the differentiation propensities that we report here are highly
predictive of the efficiencies by which Boulting and colleagues could direct the
differentiation of the 12 iPS cell lines into motor neurons (Boulting et al., 2011).

In summary, we found that epigenetic and transcriptional variation is common among
human pluripotent cell lines and that this variation can have significant impact on a cell
line's utility. Our observation applies to both ES and iPS cell lines, underlining the need to
carefully characterize each cell line, regardless of how it was derived. As a step toward
lowering the experimental burden of comprehensive cell line characterization and to
improve the accuracy over existing assays, we have combined our three genomic assays into
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a bioinformatic scorecard. This scorecard enables high-throughput prediction of the quality
and utility of any pluripotent cell line.

RESULTS
A Reference of DNA Methylation and Gene Expression in Human ES Cell Lines

Human ES cell lines are subject to many factors of influence that could contribute to
epigenetic and transcriptional variation, such as their genetic background, differences
between derivation protocols, and varying cell culture conditions. To establish a baseline of
variation among high-quality pluripotent cell lines, we obtained low-passage freezes of 20
well-characterized and widely used human ES cell lines (Table S1). These cell lines were
cultured for several passages under standardized conditions, and we confirmed the
expression of pluripotency markers by immunostainings (Figure S1A) before collecting
material for genomic analysis of DNA methylation and gene expression.

DNA methylation profiling was performed by reduced-representation bisulfite sequencing
(RRBS) as described previously (Gu et al., 2010; Meissner et al., 2008) and resulted in DNA
methylation measurements for approximately four million individual CpG dinucleotides per
cell line. The genomic coverage was sufficient to determine DNA methylation levels for
three quarters of all gene promoters, the majority of CpG islands and many other genomic
elements (Figures S1B and S1C). Gene expression profiling was performed using
commercially available Affymetrix microarrays and gave rise to expression levels for a total
of 15,210 Ensembl genes. All data are publicly available for visual browsing and download
(http://scorecard.computational-epigenetics.org/).

To determine whether the global patterns of DNA methylation and gene expression would
segregate ES cell lines into subclasses, we performed hierarchical clustering (Figure 1A,
Table S2), which also included data from the 6 primary fibroblast cell lines as
nonpluripotent controls. Two well-separated clusters emerged, one comprising all ES cell
lines and the other comprising all fibroblast cell lines. Within the ES cell cluster, there was
some indication that cell lines derived at the same institution cluster together (HUES cell
lines versus H1, H7, and H9), which is consistent with a prior study of marker gene
expression in human ES cell lines (Adewumi et al., 2007). However, this trend was mild
compared to the difference between pluripotent and nonpluripotent cells and did not
significantly influence the results reported below.

Consistent with the overall similarity among all 20 ES cell lines, the majority of genetic loci
exhibit similar DNA methylation and gene expression levels between different ES cell lines,
as exemplified by the DNA methyltransferase gene DNMT3B (Figure 1B). However, a
moderate number of genes show variable DNA methylation and/or gene expression levels.
For example, the antioxidant gene CAT exhibits substantial and correlated variation of DNA
methylation and gene expression; the developmental regulator PAX6 exhibits gene
expression variation and a consistently unmethylated gene promoter; and the macrophage/
granulocyte surface marker CD14 exhibits DNA methylation variation while not being
expressed in any of the 20 ES cell lines (Figure 1B). Importantly, cell-line-specific
differences were maintained when we collected biological replicates from different passages
of the same cell line (Figure S1D).

To investigate the variation observed among human ES cell lines in a more quantitative
manner, we calculated, for each gene, the distribution of DNA methylation and gene
expression among the 20 ES cell lines (Table S3). The resulting “reference corridor”
quantifies the range of DNA methylation and gene expression values for a given gene (or
genomic region) in a reference set of pluripotent cell lines. Any measurement that falls
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outside of this corridor is regarded as an outlier and could potentially affect that cell line's
functional properties. We illustrate the concept of the reference corridor using boxplots
(Figure 1C), which display the median and range of observed DNA methylation/expression
levels for representative genes with different degrees of variability. For each gene (or
genomic region), these plots impose upper and lower thresholds between which the DNA
methylation/expression levels must fall to be considered “within the range of the current ES
cell reference.” With this reference in hand, it becomes possible to determine the number
and identity of deviations in any pluripotent cell line by using a statistical outlier filter
(Tukey, 1977) and to investigate the causes and potential consequences of this variation.

Causes and Consequences of Epigenetic and Transcriptional Variation among Human ES
Cell Lines

Plotting the deviation from the ES cell reference maps for all genes confirmed our initial
observation that epigenetic and transcriptional variation focuses on a subset of genes,
whereas most genes exhibit little deviation from the reference in any of the ES cell lines
(Figure 2A). Specifically, 13% of genes account for half of the total DNA methylation
variation, and 20% of genes account for half of the total gene expression variation (Table
S3). As one might have expected, housekeeping genes such as GAPDH were among the
least variable genes between the cell lines. Similarly, we observed relatively low variation
among several genes that are highly expressed in pluripotent cell lines, including SOX2 and
DNMT3B. In contrast, moderate to high levels of variation were found for several genes that
regulate embryonic development and are induced upon ES cell differentiation, including
GATA6, LEFTY2, and PAX6. Finally, a small number of loci exhibited highly variable DNA
methylation levels between cell lines, ranging from close to 0% methylation in some cell
lines to almost 100% methylation in other cell lines. The most prominent cases were CAT
and CD14 (both shown in Figure 1B) and the transferrin-encoding gene TF.

To gain insight into potential causes of the differences in variation, we bioinformatically
compared the top 1000 most variable genes with all other genes that were covered by our
dataset. We detected a striking enrichment of DNA methylation-variable genes located on
the sex chromosomes (Figure 2B), which is—at least partially—due to the fact that we
included both male and female cell lines in our comparison. The measured levels of Y-
linked methylation and transcription vary between cell lines because the Y chromosome is
absent in female lines. Similarly, DNA methylation measurements vary between cell lines
because female ES cell lines often exhibit high levels of DNA methylation on the
inactivated X chromosome, which is not observed in male cell lines (Lengner et al., 2010).
As X-linked and Y-linked genes were such a significant source of variation, we were
concerned that they might interfere with our ability to identify gene features that more subtly
influence transcriptional or epigenetic variability. We therefore excluded all loci that map to
the sex chromosomes from subsequent analyses.

We also found significant overlap between the sets of genes that showed the greatest
epigenetic and transcriptional variability (Figure 2C). This observation suggests that DNA
methylation may play a regulatory role for a subset of the most transcriptionally variable
genes. Furthermore, bioinformatic analysis identified significant enrichment of specific gene
functions and promoter patterns that characterize highly variable genes (Figure 2D). The
most variably expressed genes were strongly enriched for Gene Ontology categories related
to cellular signaling, development, and the response to external stimuli. In contrast, genes
with variable DNA methylation levels showed little evidence of enrichment for any
particular function. Instead, we found that the promoters of these genes shared common
structural characteristics. Most notably, these promoters were relatively depleted in CpG
dinucleotides compared to the promoters of nonvariable genes (most of which are CpG
island promoters). Comparatively low CpG frequency is a known characteristic of genomic
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regions that are susceptible to variation in DNA methylation (Bock et al., 2008; Keshet et
al., 2006; Meissner et al., 2008). These observations suggest that variation among ES cell
lines is not random but follows certain biological principles.

To test whether epigenetic variation has consequences for ES cell function, we compared the
differentiation potential of ES cell lines that differed in the DNA methylation level at the
CD14 locus, which stood out as one of the most epigenetically variable genes in our dataset
(Figure 2A). CD14 encodes a well-characterized macrophage/granulocyte surface marker
and is functionally important for the innate immune response to bacterial lipopolysaccharide
(Kitchens, 2000). Epigenetic defects at this locus could therefore compromise the ability of
ES cell lines to differentiate into CD14-positive macrophages. We selected two ES cell lines
that differed in their DNA methylation at the CD14 locus (HUES6: partial methylation,
HUES8: complete methylation) and performed directed differentiation toward the
hematopoietic lineage (Figure 2E). We found that HUES6 was able to upregulate CD14
expression, whereas the CD14 locus remained fully methylated and silent during
hematopoietic differentiation of the HUES8 cell line. Two additional macrophage marker
genes (CD33 and CD64) were also more highly expressed in hematopoietic cells derived
from HUES6 compared to HUES8, indicating that the latter cell line is compromised in its
ability to produce macrophage-like cells in vitro.

To identify further examples of cell-line-specific DNA methylation defects that might
interfere with differentiation, we compared the DNA methylation and gene expression levels
of five ES cell lines with their corresponding day 16 EBs (Figure 2F). Among the most
interesting cases were two additional genes with a known role in hematopoietic cells: the
alpha-globin transcription factor TFCP2 is hypermethylated and lowly expressed in the H1
ES cell line, indicating that this cell line may be less suitable for studying erythrocyte
differentiation; and the lymphocyte antigene LY6H is hypermethylated and silenced
specifically in the HUES3 cell line. We also found that the widely varying DNA methylation
and gene expression levels of CAT (Figure 1B) were maintained during EB differentiation
(Figure 2F). Given the central role of CAT in the response to oxidative stress, these
differences could be relevant for a wide range of cell types including hematopoietic and
neural cells. COMT is another example with potential relevance for neural cells. It is
hypermethylated and downregulated in HUES6 and H1, suggesting that these two cell lines
may produce neural cells that are defective in their ability to inactivate neurotransmitters,
which is an important function of the COMT gene. All of these cases highlight the relevance
of monitoring DNA methylation and gene expression to prospectively identify cell-line-
specific defects that could interfere with their differentiation or the functional properties of
derived cell types.

Comparison of DNA Methylation and Gene Expression Variation between Human ES and
iPS Cell Lines

The reference maps of variation among ES cell lines enabled us to systematically address
the contentious issue of epigenetic and transcriptional differences between human ES and
iPS cell lines (Chin et al., 2009, 2010; Doi et al., 2009; Guenther et al., 2010; Newman and
Cooper, 2010). Four technical aspects distinguish our comparison from previous studies: (1)
we compare both DNA methylation and gene expression in the same cell lines; (2) we use a
relatively large sample size of 20 ES and 12 iPS cell lines; (3) all cell lines were maintained
under the same standardized culture conditions; (4) we compare each ES or iPS cell line
individually against the ES cell reference, rather than comparing the set of all ES cell lines
against the set of all iPS cell lines (this approach increases the robustness toward a small
number of strong outliers that could easily skew a group-wise comparison).
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The iPS cell lines were derived by Boulting and colleagues using retroviral transduction of
OCT4, SOX2, and KLF4 of fibroblasts obtained from six unrelated donors. This “test set” of
12 well-characterized human iPS cell lines is available as an independent resource via the
Harvard Stem Cell Institute's iPS Cell Core Facility (Boulting et al., 2011). To match the
passage numbers of the 20 ES cell lines and to avoid increased noise in extremely low-
passage iPS cell lines (Chin et al., 2009; Polo et al., 2010), we focused our analysis on iPS
cells in the range of passage 15 to passage 30 (Table S1). DNA methylation and gene
expression profiling were performed on these iPS cell lines in the same way as for the ES
cell lines.

Hierarchical clustering confirmed that all iPS cell lines grouped with the ES cell lines, rather
than with the fibroblasts (Figure 3A and Figure S2A). No clear-cut separation between ES
and iPS cell lines was observed, indicating that their global DNA methylation and gene
expression profiles are highly similar. However, hierarchical clustering has known
limitations (Allison et al., 2006), which may prevent it from picking up subtle differences
between these ES and iPS cell lines.

For a more quantitative comparison, we calculated—for each cell line—the mean deviation
from the ES cell reference over all genes (Figure 3B). The results indicate that many iPS cell
lines fall well within the range of global deviation that is also observed among ES cell lines,
although the average deviation is somewhat higher among the iPS cell lines compared to the
ES cell lines. We also investigated whether there are any specific marker genes that
reproducibly distinguish ES and iPS cell lines. To that end, we calculated—for each gene—
the mean deviation from the ES cell reference separately in all ES and iPS cell lines and
plotted these gene-specific deviations against each other (Figure 3C). The vast majority of
genes exhibit similar deviation averages in ES cell lines and in iPS cell lines. This is true for
highly variable genes (e.g., CAT) as well as for genes that exhibit little variation (e.g.,
GAPDH). This global concordance is also reflected in high correlation between deviation in
ES and iPS cell lines (Pearson's r = 0.87). However, for a small number of genes we
observed substantially increased deviation from the ES cell reference among the iPS cell
lines (Figure 3C). Some of these genes were hypermethylated in a subset of iPS lines, for
example the protease HTRA4 (9 out of 12 iPS cell lines) and the relaxin hormones RLN1/2
(9 out of 12 iPS cell lines; although also hypermethylated in one ES cell line). Others were
transcribed at higher levels in some iPS cell lines, such as the transcription factor EGR4 (6
out of 12 iPS cell lines) and the matrix Gla protein MGP (3 out of 12 iPS cell lines).

The HTRA4 gene, which is most frequently hypermethylated in iPS cell lines compared to
ES cell lines (9 out of 12 iPS versus 0 out of 20 ES cell lines), is also hypermethylated in all
six fibroblast cell lines. This observation suggests that somatic cell memory (i.e., incomplete
reprogramming of DNA methylation at genes that are methylated in fibroblasts) might
provide a potential explanation for the deviation in some iPS cell lines. To address this point
in a quantitative way, we built a statistical model that estimates the relative contribution of
epigenetic memory to the DNA methylation levels observed in iPS cell lines. Specifically,
we asked how much better we can predict each gene's average DNA methylation in iPS cell
lines if we know its DNA methylation state in both fibroblasts and ES cells, compared to
knowing only its DNA methylation state in ES cells. This question can be addressed by
comparing the predictive power of linear models that implement both explanations. The
results were highly conclusive: including the DNA methylation in fibroblasts led to a
significantly more accurate model (p < 10–8), but the increase in accuracy was extremely
low (Δr2 < 10–5). Similar results were also obtained for somatic memory of gene expression
(p < 10–8, Δr2 ≈ 10–4), indicating that somatic memory cannot explain more than a very
small fraction (0.01% to 0.001%) of the DNA methylation and gene expression observed in
human iPS cell lines.
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Performance Evaluation of Classifiers for Distinguishing between ES and iPS Cell Lines
The analysis described above identified small but significant differences between the ES cell
lines and iPS cell lines. Two alternative models could explain these observations. On the one
hand, these differences could systematically affect all iPS cell lines; on the other hand, they
could be specific to a subset of “deviant” iPS cell lines. To quantitatively address this issue,
we reframed them as a classification problem: Can we use DNA methylation and gene
expression profiles to accurately predict whether a specific cell line is an ES or iPS cell line?

Several gene signatures of differences between human ES and iPS cell lines have been
reported in the literature (Chin et al., 2009; Doi et al., 2009; Stadtfeld et al., 2010). We
started our prediction efforts by evaluating the predictive power of three published
signatures on the current sample set. (1) The iPS-specific transcription signature reported by
Chin et al. exhibits significant overlap with the set of genes that are more highly expressed
in iPS than in ES cell lines in the current study (odds ratio = 1.54, p = 0.01, Table S4).
However, the overlap is low in absolute terms and insufficient for correctly identifying
individual iPS cell lines (Figure 3D). (2) The iPS-specific DNA methylation signature
reported by Doi et al. also shows a trend toward being consistent with the current sample set
(odds ratio = 1.58, p = 0.73, Table S4), but this trend was not significant and also
insufficient for correctly identifying individual iPS cell lines (Figure 3D). Importantly, a
much higher concordance was observed for the fibroblast-specific DNA methylation
signature from the same study (odds ratio = 152.03, p < 10–15, Table S4), suggesting that the
low concordance for the iPS-specific DNA methylation signature cannot be explained by the
different DNA methylation assays used. (3) The Gtl2/MEG3 single-gene signature that was
reported by Stadtfeld et al. in mouse exhibited 100% sensitivity but only moderate
specificity in our sample set (Figure 3D). Almost half of the ES cell lines were MEG3
negative and thus incorrectly classified as iPS cell lines (Figure S2A). It is not possible to
test whether absence of MEG3 expression has the same consequences as reported in mouse,
namely to interfere with normal development in the tetraploid embryo complementation
assay (Stadtfeld et al., 2010). However, we found no evidence that would speak against
using MEG3-negative ES or iPS cell lines in biomedical research. Specifically, MEG3-
negative ES cell lines exhibit similar levels of variation in DNA methylation and gene
expression as did MEG3-positive ES cell lines (Figure S2B), and several MEG3-negative
ES cell lines have been widely and productively used for in vitro studies.

Finally, we tested whether we could use the current dataset to develop a more accurate
classifier for distinguishing between ES and iPS cell lines. To minimize the risk of
overfitting to the training data, or overestimating the prediction accuracy of our classifier,
we employed a stringent statistical learning approach (Hastie et al., 2001). Specifically, we
abstained from any manual parameter optimization or feature selection (which are notorious
for inflating accuracies when used incorrectly), and we assessed the performance of the
trained classifiers only on test cases that were not included in the training dataset. The best
classifier—a support vector machine trained on DNA methylation and gene expression data
—achieved an overall accuracy of 81%, which outperformed all three previously reported
iPS gene signatures. The classifier's specificity was high (91%), indicating that few ES cell
lines were incorrectly predicted to be iPS cell lines. However, it achieved only moderate
sensitivity (64%), hence there were more iPS cell lines predicted to be ES cell lines than
vice versa. In summary, these results indicate that most, but not all, iPS cell lines exhibit
characteristic DNA methylation and/or gene expression profiles by which they can be
distinguished from ES cell lines.
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A Scorecard for Evaluating the Quality and Utility of Human Pluripotent Cell Lines
It has become clear from our analysis so far that human pluripotent cell lines vary in their
DNA methylation and gene expression (Figure 1), which can have functional implications
(Figure 2) and affects both ES and iPS cell lines (Figure 3). These results indicate that all ES
and iPS cell lines should be carefully monitored for DNA methylation or gene expression
alterations that could interfere with an intended application or confound biological
interpretations. To provide an informative and practically useful method for high-throughput
cell-line characterization, we bioinformatically integrated several genomic assays into a
scorecard that measures the quality and utility of any human pluripotent cell line.

In a first step, we compared the DNA methylation and gene expression profiles of the 12 iPS
cell lines with the ES cell reference, in order to identify iPS cell lines with epigenetic or
transcriptional defects that might interfere with motor neuron differentiation. The
hierarchical clustering already yields important information (Figure 3A): All 12 iPS cell
lines globally cluster with the ES cell lines, confirming that no partially reprogrammed or
grossly abnormal cell lines were included in our study. Next, we tested for each gene
whether or not its DNA methylation and gene expression levels fall within the range
observed among ES cell lines (Figure 4A). Genes outside of this range were flagged, and the
number and identity of these outlier genes were tracked for each iPS cell line. The results of
the outlier detection were summarized as a “deviation scorecard” (Figure 4B). It is apparent
from this scorecard that individual iPS cell lines can harbor several hundred outlier genes.
Importantly, this was also true for the ES cell lines we studied, and it is likely that not all
outliers will have detectable functional consequences. We manually inspected the extended
version of the deviation scorecard (Table S5), searching for known genes that might
specifically interfere with neural differentiation or motor neuron function. One cell line
(hiPS 17a) was flagged because it exhibits significantly increased DNA methylation at the
glutamate receptor gene GRM1, a gene that is important for motor neuron function and
survival (Nistri et al., 2006). In contrast, if we were studying pancreatic differentiation rather
than motor neuron function, we might have kept hiPS 17a but avoided hiPS 27b due to
hypermethylation at the pancreatic transcription factor PAX4.

In summary, DNA methylation and gene expression profiling in combination with
bioinformatic comparison to an ES cell reference provide a quick and comprehensive
method for excluding cell lines that could be problematic for an intended application.
However, there may be other characteristics of a cell line that we cannot readily predict from
epigenetic and transcriptional profiles, for example its specific genetic background or the
presence of acquired mutations in key developmental genes. To overcome these limitations,
we sought to complement the “deviation scorecard” with a “lineage scorecard” that directly
reflects a cell line's in vitro differentiation potential. To be practically useful, such a lineage
scorecard cannot rely on expensive and time-consuming directed differentiation protocols.
Instead we chose a simple nondirected EB differentiation assay and combined it with highly
quantitative gene expression profiling and a bioinformatic algorithm that quantifies a cell
line's differentiation propensity for multiple lineages. The experimental and bioinformatic
protocol of this quantitative differentiation assay is outlined in Figure 5A and described in
more detail in Figure S4 and in the Extended Experimental Procedures.

To test and calibrate the lineage scorecard for pluripotent cells, we initially applied it to our
reference set of 20 ES cell lines. Embryoid bodies were obtained in biological duplicate for
each ES cell line, RNA was collected and profiled for the expression levels of 500 marker
genes, and the cell-line-specific differentiation propensities were estimated for each of the
three germ layers as well as for the neural and hematopoietic lineages (Figure 5B, Table S6).
The resulting lineage scorecard pinpoints quantitative differences among the cell-line-
specific differentiation propensities. For example, HUES8 showed the greatest propensity
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for endoderm differentiation, corroborating previous results showing that this cell line
performs well in directed endoderm differentiation (Osafune et al., 2008). This result may
also explain why HUES8 is frequently used for directed endoderm differentiation (Borowiak
et al., 2009). In contrast, H1 and H9 received high scores for neural lineage differentiation
(Figure 5B), suggesting that they might be an excellent choice for applications in the study
or treatment of neural degeneration. These cell lines indeed performed well in a recent report
of directed differentiation into motor neurons (Hu et al., 2010).

We performed several additional validations of the lineage scorecard, in order to establish its
utility for quantifying cell-line-specific differentiation propensities. First, we compared the
differentiation propensities determined by the lineage scorecard with the expression levels of
five widely used lineage marker genes (NES, TUBB3, KDR, ACTA2, AFP) and found good
qualitative agreement (Figure S3A). Second, we subjected four ES cell lines to two
differentiation protocols that were biasing cells toward ectoderm and mesoderm,
respectively. Cell lines that were cultured in the presence of Noggin and an ALK inhibitor
(SB431542) to promote ectoderm differentiation exhibited substantially increased ectoderm
scores and lower mesoderm scores, compared to cell lines that were cultured in the presence
of Activin A and BMP4 to promote mesoderm differentiation (Figure S3B). These
validation data suggested that the lineage scorecard accurately detects differences in the
differentiation propensity of human pluripotent cell lines.

We next performed nondirected differentiation of 14 iPS cell lines into EBs and profiled the
expression levels of the 500 marker genes after 16 days of EB differentiation. To globally
assess the similarity between ES cell- and iPS cell-derived EBs, we calculated a two-
dimensional similarity map of all biological replicates (Figure 5C). The results were
consistent with Figure 3, indicating that most, but not all, EBs can be identified as ES cell or
iPS cell derived. Furthermore, the scorecard predicted that three iPS cell lines had an
impaired ability to differentiate (hiPS 15b, hiPS 27e, and hiPS 29e), which might limit their
usefulness for many applications. Indeed, the lineage scorecard indicates that the neural
differentiation propensity of hiPS 27e and hiPS 29e is very low, whereas the predicted
neural differentiation propensity of hiPS 15b is only marginally reduced relative to an
average human ES cell line (Figure 5D). This prediction is consistent with observations by
Boulting and colleagues, who showed that lines 27e and 29e are impaired in motor neuron-
directed differentiation, whereas line 15b differentiated relatively well (Boulting et al.,
2011). In addition, line 27e seemed to be impaired in its ability to differentiate into any germ
layer. To confirm this prediction for an additional germ layer, we performed flow cytometry
to analyze the percentage of cells that expressed the endodermal marker gene AFP in
dissociated EBs (Figure S3C). The percentage was substantially lower in hiPS 27e as
compared to hiPS 17a (which we used as a control), providing further confirmation of the
lineage scorecard's ability to detect cell-line-specific differences in the differentiation
propensities.

Based on the results of the lineage scorecard, hiPS 18b, hiPS 18c, and hiPS 27b appear to be
well-suited for studying neural function in vitro, as these cell lines obtained high scores for
ectoderm and neural differentiation propensity. Independent results obtained in the study by
Boulting et al. provide an opportunity to quantitatively test these predictions. They used the
test set of iPS cell lines, applied a 32 day motor neuron-directed differentiation protocol (Di
Giorgio et al., 2008), and then quantified the efficiency with which each cell line could be
differentiated into motor neurons. When we compared the scorecard predictions for neural
differentiation for each iPS cell line with the actual motor neuron differentiation efficiency
they observed (Figure 6, Table S7), we found a remarkably high correlation (Pearson's r =
0.87). Notably, the three iPS cell lines that were predicted to behave optimally by our
scorecard (hiPS 18b, hiPS 18c, and hiPS 27b) were all among the cell lines they found to
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differentiate best into motor neurons. The high correlation between the lineage scorecard
predictions and the experimentally determined differentiation efficiencies was specific for
the ectoderm germ layer and did not extend to mesoderm or endoderm (Figure 6). This final
observation shows that the scorecard can detect lineage-specific differences in the
differentiation propensities of a given cell line, rather than merely measuring the overall
recalcitrance or amenability of a cell line toward differentiation into any sort of cell.

In summary, we have described how a “deviation scorecard” derived from genome-wide
maps of DNA methylation and gene expression can have utility for predicting which iPS cell
lines should be avoided for a given application. In addition, we developed a “lineage
scorecard” that combines simple nondirected differentiation with RNA counting, which
could predict the efficiency with which iPS cell lines made motor neurons in an independent
study (Boulting et al., 2011). Together, these scorecards enabled us to predict the quality and
utility of more than 30 pluripotent cell lines for a broad range of applications.

DISCUSSION
To better understand the causes and consequences of variation among human pluripotent
cell lines, we used genomic methods to characterize a panel of 20 ES cell lines and 12 iPS
cell lines. All cell lines exhibited similar DNA methylation and gene expression levels,
which clearly denoted them as pluripotent and set them apart from somatic cells. Despite
their global similarity, we could identify in each cell line a number of genes that deviated
from the DNA methylation or gene expression levels of the other cell lines. These cell-line-
specific outliers were relatively stable over time, and our dataset suggests that some may
have functional consequences, for example by interfering with differentiation into certain
cell types. Cell-line-specific outliers were slightly more prevalent among iPS cell lines than
among ES cell lines, but we could not find any epigenetic or transcriptional deviation that
was unique to and shared by all iPS cell lines. This observation was confirmed by
developing bioinformatic classifiers, which could correctly identify most but not all iPS cell
lines in our dataset based on their DNA methylation and gene expression profiles.

These results suggest that ES and iPS cells should not be regarded as one or two well-
defined points in the cellular space but rather as two partially overlapping point clouds with
inherent variability among both ES and iPS cell lines (Figure 7A). In this model, a single
iPS cell line can be indistinguishable from ES cell lines, even though there is a difference in
our current dataset between the average ES cell line and the average iPS cell line (denoted
by the two crosses in Figure 7A).

These observations have important practical implications. On the one hand, equivalence to
ES cell lines is unlikely to be a sufficient indicator of an iPS cell line's utility for a specific
application, given that cell-line-specific outliers were prevalent even among ES cell lines.
On the other hand, no single cell line may be equally powerful for deriving all cell types in
vitro, implying that researchers would benefit from identifying the best cell lines specifically
for each application. Unfortunately, the teratoma assay (Daley et al., 2009) does not provide
the level of specificity and detail that would support application-specific selection of the
most suitable cell lines (cf. Boulting et al., 2011). Teratomas are also too time consuming
and expensive to be feasible for validating a large cohort of iPS cell lines, highlighting the
demand for more informative and efficient assays that can be used to validate human
pluripotent cell lines.

We sought to address the need for better validation assays by developing a genomic
scorecard of pluripotent cell line quality and utility. The cell-line-specific outliers detected
by DNA methylation and gene expression profiling were aggregated into a deviation
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scorecard (Figure 4 and Table S5), which enables researchers to quickly identify defects at
known genes that are relevant for the intended application. This gene-specific view was
complemented by the lineage scorecard, which provides a systems-level assay for
quantifying how well each cell line can be differentiated into the neural and hematopoietic
lineages, and into the three germ layers (Figures 5B and 5D). We tested the practical utility
of this scorecard by comparing its results with independently derived motor neuron
differentiation efficiencies and showed that it was highly predictive (Boulting et al., 2011).

Because the scorecard does not involve any labor-intensive steps, it becomes feasible to
quickly screen through a large number of iPS cell lines in order to find the most appropriate
cell lines for an intended application (Figure 7B). Furthermore, the scorecard provides a
substantially more detailed characterization than for example the teratoma assay, and it
therefore seems plausible that genomic scorecards could over time supersede the teratoma
assay as the gold standard for validating human pluripotent cell lines. To assist researchers
who want to use the scorecard on their own cell lines, we provide an extended technical note
in the Extended Experimental Procedures. The scorecard can readily be adapted to other
protocols for DNA methylation and gene expression profiling, and it is easy to incorporate
new cell types in the prediction of the lineage scorecard. In the future, it will be necessary to
validate the predictiveness for additional directed differentiation protocols, and it may
occasionally be necessary to recalibrate the scorecard (e.g., for directed differentiation
protocols that do not involve an EB step). The scorecard could also provide a useful readout
when optimizing cell culture conditions, developing new reprogramming protocols, or
continuously monitoring cell line quality in large-scale production facilities. For example, it
will be interesting to measure whether the use of integration-free methods for
reprogramming (Soldner et al., 2009; Warren et al., 2010) has an effect on the differentiation
propensities of iPS cell lines.

In conclusion, the discovery of human pluripotent cells and the reprogramming methods to
produce them from selected patient populations has revolutionized the way we think about
studying and treating human disease. However, if we are to efficiently and effectively use
these discoveries to improve the lives of patients, we must continue to develop tools (such as
the scorecard described herein) that optimize and streamline the selection and monitoring of
pluripotent cell lines and their differentiating progeny.

EXPERIMENTAL PROCEDURES
Cells Lines

A total of 20 human ES cell lines, 14 human iPS cell lines, and 6 primary fibroblast cell
lines were included in the study (Table S1). The ES cell lines were obtained from the
Human Embryonic Stem Cell Facility of the Harvard Stem Cell Institute (17 ES cell lines)
and from the WiCell Research Institute's WISC Bank (3 ES cell lines). The iPS cell lines
were derived by retroviral transduction of OCT4, SOX2, and KLF4 in dermal fibroblasts
(Boulting et al., 2011). All pluripotent cell lines have been characterized by conventional
methods (Chen et al., 2009;Cowan et al., 2004) and were grown under standardized
conditions as described in the Extended Experimental Procedures.

DNA Methylation Mapping
RRBS was performed according to a previously published protocol (Smith et al., 2009) with
some optimizations for small cell numbers (Gu et al., 2010). Using Maq's bisulfite alignment
mode (Li et al., 2008), the raw sequencing reads were aligned to a human genome sequence
that had been MspI-digested and size-selected in silico. DNA methylation calling was
performed using custom software (Gu et al., 2010). Next, we calculated mean DNA
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methylation levels for all gene promoters that were covered by a minimal number of DNA
methylation measurements (Bock et al., 2010). Gene promoters were defined as the –5 kb to
+1 kb sequence window surrounding the annotated transcription start site of Ensembl-
annoted genes (Hubbard et al., 2009). Data processing was performed by custom Python
(http://python.org/) and R(http://www.r-project.org/) scripts.

Gene Expression Profiling
Microarray analysis was performed by the microarray core facility at the Broad Institute.
Affymetrix GeneChip HT HG-U133A microarrays were used throughout. The microarray
intensity data were normalized using Bioconductor's gcRMA package (Gentleman et al.,
2004) and quality-controlled using arrayQualityMetrics (Kauffmann et al., 2009). Data
analysis was performed with the R statistics package (http://www.r-project.org/).

Quantitative Embryoid Body Assay
EB differentiation was performed as described in the Extended Experimental Procedures.
On day 16, cells were lysed and total RNA was extracted using Trizol (Invitrogen), followed
by column clean-up using the RNeasy kit (QIAGEN). Subsequently, 300 ng to 500 ng of
RNA was profiled on the Nano-String nCounter system according to manufacturer's
instructions. A custom nCounter codeset was used, which covers 500 genes that were
selected for their ability to monitor cell state, pluripotency, and differentiation (Table S6).
Because the nCounter system has been introduced only recently, no best practices exist for
normalizing the expression values. We tested several different procedures and found that a
combination of spike-in normalization using positive controls and the VSN algorithm
(Huber et al., 2002) produced best results. Data analysis was performed with the R statistics
package (http://www.r-project.org/).

Scorecard Calculation and Bioinformatics
The deviation scorecard is based on Tukey's outlier filter (Tukey, 1977), denoting all genes
as putative outliers whose DNA methylation or gene expression levels fall by more than 1.5
times the interquartile range outside of the center quartiles. The lineage scorecard performs a
parametric gene set enrichment analysis on t scores obtained from a pairwise comparison
between all replicates of the cell line of interest and the reference of ES cell-derived EBs. A
more detailed description of the bioinformatic methods is available in Figure S4 and in the
Extended Experimental Procedures.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. DNA Methylation and Gene Expression Profiles Quantify Variation among Human ES
Cell Lines
(A) Joint hierarchical clustering of DNA methylation and gene expression in 20 human ES
cell lines (“HUESx,” “Hx”) and 6 primary fibroblast cell lines (“hFibx”). Light colors
indicate high levels of DNA methylation (red) or gene expression (green), and dark colors
indicate low levels. Joint DNA methylation and gene expression data are available from
Table S2.
(B) High-resolution view of DNA methylation and gene expression at four selected genes.
DNA methylation patterns are shown for the promoter regions (–5kb to +1 kb) of
representative Ensembl-annotated transcripts. Each box on the left represents a single CpG
dinucleotide (dark red: high methylation, light red: little or no methylation). The single
boxes on the right visualize the normalized expression levels of each gene (dark green: little
or no expression, light green: high expression). The DNA methylation patterns are not
drawn to scale.
(C) Boxplots of gene-specific DNA methylation (left) and gene expression levels (right)
among 20 low-passage human ES cell lines, illustrating the concept of an epigenetic/
transcriptional reference corridor. Boxplot boxes correspond to center quartiles, the median
is marked by a black bar, and whiskers indicate the width of the reference corridor as
defined in the Extended Experimental Procedures (i.e., value of the most extreme data point
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that is no more than 1.5 times the interquartile range from the box if the distance from the
median exceeds a minimum threshold of 0.2 for DNA methylation and 1 for gene
expression; otherwise these thresholds—which correspond to 20 percentage points for DNA
methylation and a 2-fold change for gene expression—define the reference corridor). Data
points that fall outside the whiskers are flagged as outliers and are suppressed in this figure;
their position relative to the reference corridor is shown in Figure 4A.
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Figure 2. Epigenetic and Transcriptional Variation Targets Specific Genes and Influences
Cellular Differentiation
(A) Distribution of cell-line-specific variation in terms of DNA methylation and gene
expression. The histogram shows the number of genes (y axis) that fall into each interval
when calculating the mean absolute deviation of individual ES cell lines relative to the
reference of all other ES cell lines (x axis). The position of selected genes within each
histogram is highlighted on top. Note that the DNA methylation histogram (left) is
extremely skewed; for better representation the x axis has been compressed 5-fold for the
right half of the diagram, which gives rise to an artificial peak in the center of the histogram.
The gene expression histogram (right) is characterized by a strong peak at zero, due to a
large number of genes with zero expression and zero variation in all ES cell lines. Variation
data for all genes are available from Table S3.
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(B) Chromosomal distribution of the 1000 most variable genes in terms of DNA methylation
(top left) and gene expression (bottom left). For comparison, the diagram also shows the
chromosomal distribution of all genes with sufficient DNA methylation (top right) or gene
expression data (bottom right).
(C) Comparison of the 1000 most variable genes in terms of DNA methylation (left) and
gene expression (right). To prevent bias due to the chromosomal differences of male versus
female cell lines, all X-linked and Y-linked genes were excluded. Significance of overlap
was confirmed by Fisher's exact test.
(D) Functional and structural characteristics of the 1000 most variable genes in terms of
DNA methylation (left) and gene expression (right). Functional annotation clustering was
performed with the DAVID software (Huang et al., 2007), and the promoter characteristics
were analyzed by the EpiGRAPH web service (Bock et al., 2009). This panel provides a
summary of the results; the full results tables are available online
http://scorecard.computational-epigenetics.org/.
(E) Epigenetic and transcriptional differences between two ES cell lines (HUES6 and
HUES8) subjected to a defined hematopoietic differentiation protocol. DNA methylation
levels were measured by clonal bisulfite sequencing at day 0 and day 18 of the
differentiation protocol. White beads correspond to unmethylated CpGs, and black beads
correspond to methylated CpGs. Rows correspond to individual clones, and columns
correspond to specific CpGs in the promoter region of CD14. Similarly, gene expression of
CD14 and two additional macrophage marker genes (CD33 and CD64) was measured by
qPCR in two independent experiments (shown are three technical replicates) at day 0 and
day 18 of the differentiation protocol. Error bars indicate ± one standard deviation.
(F) Cell-line-specific DNA methylation and gene expression levels at four genes with a
known role in hematopoiesis (TFCP2, LY6H) and neural processes (COMT, CAT). Each data
point denotes the combined DNA methylation (x axis) and gene expression (y axis) levels of
an ES cell lines (“ES”) or the corresponding 16 day embryoid body (“EB”).
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Figure 3. Cell-Line-Specific Deviation from the Reference Is Slightly Higher in iPS than in ES
Cell Lines
(A) Joint hierarchical clustering of 12 iPS cell lines (“hiPSx”), 20 ES cell lines (“HUESx,”
“Hx”), and 6 primary fibroblast cell lines (“hFibx”). An extended version that includes
heatmaps is available from Figure S2A. The numbers of the iPS cell lines connect them to
the fibroblasts from which they were derived (e.g., hFib 18 was used to generate hiPS 18a,
18b, and 18c).
(B) Boxplots of the cell-line-specific deviation from the ES cell reference, averaged over all
genes and scaled such that the mean deviation of the 20 ES cell lines is equal to 100%.
(C) Scatterplots comparing the gene-specific deviation of 20 ES cell lines (x axis) with the
gene-specific deviation of 12 iPS cell lines (y axis), in both cases measured relative to the
ES cell reference and averaged over all ES or iPS cell lines, respectively. To prevent
comparing cell lines to themselves, each ES cell line was temporarily removed from the ES
cell reference when it was compared to the reference. Selected genes are highlighted in
orange, rp refers to Pearson's correlation coefficient, and the inset Venn diagrams visualize
the overlap between the 2000 most deviating genes in ES versus iPS cell lines. The
reprogramming factors OCT4, SOX2, and KLF4 were excluded from the DNA methylation
analysis because transgene silencing gives rise to spurious hypermethylation among the iPS
cell lines (Figure 4A and Figure S2C).
(D) Performance table summarizing the predictive power of three previously published iPS
cell signatures and three newly derived classifiers for distinguishing between ES and iPS
cell lines. For comparison, the table also lists the performance of three newly derived
classifiers for distinguishing between ES cell lines and fibroblasts (positive controls) and the
performance of three trivial classifiers (negative controls). Shown are the prediction
accuracy, sensitivity, and specificity for identifying iPS cell lines (true positives, TP) among
ES cell lines (true negatives, TN), while minimizing the number of cell lines that are
incorrectly predicted as iPS cell lines (false positives, FP) or incorrectly predicted as ES cell
lines (false negatives, FN). To increase the robustness of the results, all values were
averaged over 100 randomized repetitions of the cross-validation. Minor numerical
inconsistencies in the table are due to rounding all values to whole numbers.
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Figure 4. Comparison with the Reference Corridor Identifies Cell-Line-Specific Outlier Genes
(A) Distribution of gene-specific DNA methylation (left) and gene expression levels (right)
among 20 ES cell lines and 12 iPS cell lines, plotted against the ES cell reference corridor
(cf. Figure 1C). ES or iPS cell lines that fall outside of the corridor are highlighted by
colored triangles.
(B) Deviation scorecard summarizing the cell-line-specific number of outliers relative to the
ES cell reference, in terms of DNA methylation (left) and gene expression (right). As an
additional indication of a cell line's quality, the scorecard lists the number of affected lineage
marker genes. The table also shows the mean number of deviating genes in the 20 low-
passage ES cell lines (bottom row), providing an indication of what numbers are within a
range that is also observed among low-passage ES cell lines. A more comprehensive version
of this scorecard is available from Table S5.
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Figure 5. A Quantitative Differentiation Assay Measures Cell-Line-Specific Differentiation
Propensities
(A) Outline of the lineage scorecard assay for quantifying cell-line-specific differentiation
propensities using a combination of nondirected EB differentiation, highly quantitative
expression profiling, and bioinformatic analysis of lineage marker gene enrichment.
(B) Lineage scorecard summarizing cell-line-specific differentiation propensities of a set of
low-passage human ES cell lines. The numbers indicate relative enrichment (positive
values) or depletion (negative values) of lineage marker expression in the EBs derived from
each cell line. An ES cell line will exhibit a differentiation propensity of zero if it
differentiates just like the average of all other ES cell lines that were used to calibrate the
assay. Values should be interpreted relative to each other, with higher numbers indicating
higher differentiation propensities and lower values indicating lower differentiation
propensities, while the absolute values have no measurement unit and no direct biological
interpretation. Gene lists, expression values, and gene-specific enrichment values are
available from Table S6.
(C) Multidimensional scaling map of the transcriptional similarity between ES and iPS cell
lines, ES-derived and iPS-derived EBs, and primary fibroblast cell lines. Each point
corresponds to a single biological replicate. Cell lines that were impaired or unable to form
normal EBs are highlighted by arrows.
(D) Lineage scorecard summarizing cell-line-specific differentiation propensities of a set of
human iPS cell lines. The scorecard was derived in the same way as Figure 5B, and all
values were normalized relative to the ES cell reference. The scores were calculated across
all biological replicates that were available for each cell line. Further details on single
biological replicates and the reproducibility of the lineage scorecard are available from
Table S6G.
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Figure 6. The Lineage Scorecard Predicts Cell-Line-Specific Differences in the Efficiency of
Motor Neuron Differentiation
Correlation between the lineage scorecard estimates for the neural lineage and three germ
layers versus the cell-line-specific efficiency of directed differentiation into motor neurons
(rp, Pearson's correlation coefficient; rs, Spearman's correlation coefficient). Motor neuron
efficiencies were measured by the percentage of ISL1-positive cells at the end point of a 32
day neural differentiation protocol. Further details including biological replicates and
standard errors are available from Table S7.
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Figure 7. The Scorecard Enables Quick and Comprehensive Characterization of Human
Pluripotent Cell Lines
(A) Schematic illustration of the similarity between ES and iPS cell lines in the epigenetic
and transcriptional space. The density plot on the left depicts the variation observed among
human ES cells. The two crosses indicate the (hypothetical) average of all ES and iPS cell
lines, which this study approximated by profiling 20 human ES cell lines and 12 human iPS
cell lines. The scatterplot on the right simulates the distribution of a large number of human
iPS cell lines, taking into account their moderately increased variation (Figure 3B) as well as
the observation that a minority of iPS cell lines were indistinguishable from ES cell lines
(Figure 3D). Gaussians were used to simulate the ES cell and iPS cell distribution in silico.
(B) Outline of a workflow for high-throughput characterization of human pluripotent cell
lines. Cell line characterization is performed in an iterative fashion, starting with the
quantitative differentiation assay and performing additional characterizations only on those
cell lines that the lineage scorecard identifies as useful for the application of interest.

Bock et al. Page 24

Cell. Author manuscript; available in PMC 2012 February 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


