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Abstract
Genetic association studies for binary diseases are designed as case-control studies: the cases are
those affected with the primary disease and the controls are free of the disease. At the time of
case-control collection, information about secondary phenotypes is also collected. Association
studies of secondary phenotype and genetic variants have received a great deal of interest recently.
To study the secondary phenotypes, investigators use standard regression approaches, where
individuals with secondary phenotypes are coded as cases and those without secondary
phenotypes are coded as controls. However, using the secondary phenotype as an outcome
variable in a case-control study might lead to a biased estimate of odds ratios (ORs) for genetic
variants. The secondary phenotype is associated with the primary disease; therefore, individuals
with and without the secondary phenotype are not sampled following the principles of a case-
control study. In this article, we demonstrate that such analyses will lead to a biased estimate of
OR and propose new approaches to provide more accurate OR estimates of genetic variants
associated with the secondary phenotype for both unmatched and frequency-matched (with respect
to the secondary phenotype) case-control studies. We also propose a bootstrapping method to
estimate the empirical confidence intervals for the corrected ORs. Using simulation studies and
analysis of lung cancer data for single-nucleotide polymorphism associated with smoking
quantity, we compared our new approaches to standard logistic regression and to an extended
version of the inverse-probability-of-sampling-weighted regression. The proposed approaches
provide more accurate estimation of the true OR.

Keywords
Odds ratio; bias; secondary phenotype; un-matched and frequency-matched study; SNP; genome-
wide association study

1. Introduction
Genome-wide association (GWA) study has recently become a popular approach for
detecting genetic variants for common diseases without prior knowledge of the variant's
location or function. Typically, GWA studies were originally designed as case-control
studies of the primary disease of interest, such as lung cancer, diabetes, or breast cancer
(cases are those affected with the primary disease and controls are free of the disease). At
the time of case-control collection, information about secondary phenotypes, which we
define as traits associated with the primary disease of interest, such as smoking behavior and
body mass index (BMI), are also collected. Thus, GWA studies provide a large number of
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datasets that can be used in studies of the association between secondary phenotypes and
genetic variants. For example, in lung cancer GWA studies, data about smoking behavior
and chronic obstructive pulmonary disease (COPD) are also available; both are secondary
traits that are highly associated with lung cancer risk. The association studies between
smoking and single-nucleotide polymorphisms (SNPs) have received a great deal of interest
[Amos et al., 2008; Hung et al., 2008; Spitz et al., 2008; Thorgeirsson et al., 2008; Wang et
al., 2010]. Similarly, in the GWA studies of type 2 diabetes, investigators also collected data
for secondary phenotypes such as BMI and physical activity and were interested in the
association between these secondary phenotypes and genetic variants [Frayling et al., 2007].
Similarly, in the GWA studies of breast cancer, the associations between genetic variants
and different secondary phenotypes, such as ages of menarche and puberty, have been
studied [He et al., 2009; Ong et al., 2009].

To study the secondary phenotypes, investigators have used the standard regression
approaches, such as logistic regression, where individuals with secondary phenotypes are
coded as cases and those without secondary phenotypes are coded as controls. However,
using the secondary phenotype as an outcome variable in a case-control study might lead to
a biased estimate of odds ratios (ORs) for genetic variants. This is because the secondary
phenotype is associated with the primary disease of interest; therefore, individuals with (case
subject) and without (control subject) the secondary phenotype are not sampled following
the principle of a case-control study design, where cases are randomly ascertained from the
group of individuals in the general population who have the specified phenotype and
matched with a group of controls who do not have the phenotype. The commonly used
solution to this problem is to utilize primary disease status as a covariate in the regression
analyses. However, through simulation (see below) we showed that in many situations
adjusting for the primary disease status will still result in a biased estimate of the OR.
Alternative approaches for estimating ORs of genetic variants associated with secondary
phenotypes include using only cases or only controls with respect to the primary disease.
However, these approaches were similarly biased. Richardson et al. [2007] used stratum-
weighted logistic regression to assess associations between the explanatory variables and the
secondary phenotype for a nested case-control study within a prospective cohort, where the
inverses of the sampling fractions were used as the weights. Monsees et al. [2009]
investigated different scenarios for the problem of marker-secondary trait association in
nested case-control samples using the inverse-probability-of-sampling-weighted (IPW)
regression method proposed by Richardson et al. [2007] to estimate genotype-secondary
trait association when the sampling fractions are available for case-control studies nested
within a prospective cohort. Lin and Zeng [2009] proposed a likelihood-based approach for
the analysis of a secondary phenotype. They considered several different scenarios involving
a rare or not rare disease and a known or unknown disease rate, and for each scenario, they
maximized the corresponding log-likelihood function via the Newton-Raphson algorithm. Li
et al. [2010] focused on the situation when the primary disease is rare. They found that,
when the primary disease is rare, some standard approaches (e.g. controls only or cases
only) would still result in biased estimates if the secondary phenotype and the genetic
variant have an interaction effect on the primary disease; and proposed an adaptively
weighted method using both cases and controls for the study of association between
secondary phenotype and the genetic variant. None of these authors considered commonly-
used frequency-matched case-control design in their studies.

In this study, we focused on the scenario in which both the genetic variant and the secondary
phenotype are associated with the primary disease. Under this scenario, it has been shown
that the bias in the estimates of marker-secondary trait association is present under both the
null and alternative hypotheses [Monsees et al., 2009]. Using a simulated example, we
showed that either adjusting or not adjusting for the primary disease status resulted in a
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biased estimate of the OR of the genetic variant associated with the secondary phenotype
and further demonstrated that the magnitude of the bias depended on the prevalence of the
primary disease and, to a lesser extent, on the prevalence of the secondary phenotype.
Therefore, we propose an approach to reduce the bias in OR estimation of the genetic
variants associated with the secondary phenotype that accounts for the prevalences of the
primary disease and secondary phenotype. The corrected ORs were obtained by solving non-
linear equations involving prevalences iteratively. We also propose a bootstrapping method
to estimate the empirical confidence intervals for the corrected ORs. We extended the IPW
regression approach [Richardson et al., 2007] from the original nested case-control studies
within a prospective cohort to retrospective case-control studies. We compared our proposed
approach to the standard logistic regression method as well as to the extended IPW
regression method. The performance of our approach was demonstrated via simulation
studies as well as a real data analysis of SNPs associated with smoking quantity using lung
cancer GWA data.

Frequency-matching is an important and commonly used study design for known risk
confounders and has been widely used in case-control studies [Rothman and Greenland,
1998]. For example, in lung cancer studies, because smoking is a well-known risk
confounder for the association between lung cancer and other risk factors, controls are
typically frequency matched to cases with respect to smoking behavior. In this situation,
both the logistic and IPW regression methods will result in a biased estimate of the OR of
marker-secondary phenotype association. Therefore, we also propose a bias correction
approach for the studies of marker-secondary phenotype associations in which the secondary
phenotype in controls is frequency matched to that in primary disease cases. The results of
this matched study design using logistic regression, the extended IPW regression, and our
approach are reported.

2. Demonstration of Bias using a Simulated Example
2.1 Simulation Approach

We used the following simulation approach to demonstrate the bias of the OR estimates in
studies of the association between genetic variants and secondary phenotypes using the
logistic regression approach. First, denote two alleles at a SNP locus by A and a. Let A be
the deleterious allele and a be the normal allele. We used a categorical random variable, X =
{0,1, 2}, to denote the three genotypes, (a,a), (A,a), and (A,A). This coding assumes an
additive genetic model, where the values of the random variable correspond to the number
of copies of the A allele. When the dominant or recessive genetic model was assumed, we
used a binary random variable, X = {0,1}, to denote the three genotypes. For the dominant
genetic model, 0 represents genotype(a,a), and 1 represents genotypes (A,a) and (A,A). For
the recessive genetic model, 0 represents genotypes (a,a) and (A,a), and 1 represents
genotype (A,A). We defined another categorical random variable, Y = {0,1}, to indicate the
case-control status of primary disease, with 0 representing individuals in the control group
and 1 representing individuals in the case group. We defined the status of the secondary
phenotype, also as a binary random variable, T = {0, 1}, with 0 representing individuals
without the secondary phenotype and 1 representing individuals with the secondary
phenotype.

In this article, we considered the simulation scenario as shown in Figure S1(A) in the
Supplementary Materials. The simple network structure in Figure S1(A) represents the
associations among the SNP (X), the secondary phenotype (T), and the primary disease (Y),
where the SNP is associated with both the secondary phenotype and the primary disease and
the secondary phenotype is associated with the primary disease.
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First, genotypes of the SNP X were generated with the use of the genotype frequencies
assuming the SNP is in Hardy-Weinberg proportion. We assumed a common SNP with a
minor allele frequency (MAF) of 0.4. Therefore, the genotype frequencies were 0.36, 0.48,
and 0.16 for the three genotypes (a,a), (A,a), and (A,A), respectively. Given the dataset of
realizations of SNP X, secondary phenotype T was generated using logistic model Logit
(Pr(T = 1| X)) = α0 + α1X and conditioned on the values of X and T, disease outcome Y was
generated using the following logistic model: Logit (Pr(Y = 1|T, X)) = β0 + β1X + β2T.

In this way, we simulated a large amount of data on the population of interest and then
randomly sampled 1,000 cases (individuals with the primary disease) along with 1,000
normal controls (individuals without the primary disease) from the population. When a
frequency-matched study based on the secondary phenotype was considered, the cases were
still sampled randomly. However, the controls were sampled so that the proportion of the
presence of the secondary trait in the controls was approximately equal to that in the cases
[Rothman and Greenland, 1998]. We assumed that the difference between the proportions of
the presence of the secondary trait in cases and controls was ±2% with equal probability.

2.2 The Demonstration of Bias in OR Estimation as a Function of Primary Disease
Prevalence

We assumed an additive genetic model for the SNP. We setα1 = β1 = 0.4055, which
corresponds to an OR of 1.5 for the SNP association with primary and secondary
phenotypes, and β2 = 1.9086, which corresponds to an OR of 3 for the association between
secondary phenotype and primary trait. The intercept coefficients α0 and β0 were set from
−6 to 3.5, with a 0.5 interval, for a total of 300 pairs of values of (α0,β0). Each pair of
(α0,β0) values corresponds to specific prevalences of the secondary phenotype and the
primary disease in the general population, denoted by fT and fD, respectively. This setting
can cover a wide range of fD from ~0.5% to ~99% and of fT from ~3% to ~96%. Although,
in reality, a disease prevalence of greater than 80% might not be realistic, many complex
diseases, such as cancers and autoimmune disorders, will have an fD of less than 10%
(nonetheless, we simulated the entire range of prevalence for the sake of completeness). For
each pair of specific intercept coefficients, we simulated 1,000 replicates, each with 1,000
cases and 1,000 controls. Given a dataset of observations of random variables X, Y, and T,
the OR of the SNP X associated with the secondary phenotype T for each replicate was
determined by logistic regression. The ORs were estimated with and without using the
primary disease status as a covariate. Medians of the ORs based on 1,000 replicates are
shown in Figure S1 (B1, without adjusting for primary disease status; B2, with adjusting for
primary disease status) as functions of the prevalence of disease fD. Meanwhile, we also
estimated the percentages of replicates for which 95% confidence intervals include the pre-
specified OR (OR = 1.5), based on 1,000 replicates. The results are shown in Figure S1 (C1,
without adjusting for primary disease status; C2, with adjusting for primary disease status).
The relationship between the median of the ORs and the prevalence of the secondary
phenotype fT was also investigated but is not reported in this article because the impact of fT
on bias in the estimation of OR is low.

Our results show that the bias exists for both logistic regression approaches, and the
magnitude of the bias depends on the prevalence values of the primary disease and the
secondary phenotype. Furthermore, it is clear that estimating ORs by simply adjusting for
primary disease status in the logistic regression is not a uniformly better strategy than
estimating ORs without adjustment. Similarly, ignoring primary disease status is also not a
good strategy and leads to biased estimates of OR depending upon the prevalence values. If
investigators decide to use one of these two strategies, it is necessary to define a threshold
for disease prevalence values. That is, based on whether the disease is rare, very common, or
moderately common, one chooses to adjust for the primary disease status as a covariate in
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the regression analysis or not. However, choosing threshold values for the prevalence of
disease is not straightforward because the threshold value differs according to the true
underlying OR, which is unknown. In addition, near the threshold value, both approaches
will result in biased estimation of ORs. Therefore, developing a uniformly better approach
for reducing the bias of OR estimates will result in a robust tool for case-control studies of
secondary phenotypes and genetic variants. In this article, we have proposed a novel
approach that uses information about the prevalence of both the primary disease and
secondary phenotype to provide an accurate estimate of OR.

3. Model and Methods
3.1 OR Estimation of SNP Associated with Secondary Phenotype

Recall that we assumed binary random variables for primary disease and secondary
phenotype, denoted as Y = {0, 1} and T = {0, 1}, respectively. We assumed a sample with N
individuals, N = N0 + N1, where N0 is the number of controls and N1 is the number of cases
with respect to the primary disease. For ease of presentation, we first present the dominant
or recessive genetic model, so the SNP variable is denoted as X = {0,1}. The more
complicated additive genetic model will be discussed later. According to the network
structure shown in Figure S1(A), we can express the dependency of each random variable
using the conditional probabilities as

(1)

for i, j, k = 0, 1. The conditional probabilities are explained by the logistic regression
models. Note that the OR of the SNP's association with the secondary phenotype is a
function of the regression coefficient α1 : OR = exp(α1). The OR of the SNP can be
estimated as

where nki is the number of individuals in the sample with the secondary phenotype random
variable T = k and the SNP random variable X = i. For example, n11 is the number of
individuals in the sample for which the secondary phenotype is present and the SNP coding
variable X is 1. Conditional on N1 and N0, the expected numbers of individuals nki can be
obtained as

(2)

The conditional probabilities of pki|j in the above equation can be written as

Note that the conditional probabilities on the right hand side of the above equation are
functions of parameters as shown in Equation (1). The probabilities pi, i = 0, 1, are related to
the genotypic frequencies of the SNP of interest. When the dominant genetic model was
assumed, p1 = p2 +2p(1−p); when the recessive genetic model was assumed, p1 = p2, where
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p is the MAF. The probability q1 is the prevalence of the disease (fD) in the general
population, and q0 is calculated as 1 − fD.

Therefore, the OR of the SNP associated with the secondary phenotype can be written using
the expected numbers of individuals Eki,

(3)

The conditional probabilities were given in Equation (1) expressed by logistic regression
models. Recall that the true OR of the association between the secondary phenotype and the
SNP is exp(α1), which is embedded in the conditional probabilities of pj|ki and pk|i, for i, j, k
= 0, 1. It is easy to verify that the right-hand side of Equation (3) equals to the 
estimated from the data if we substituted all the regression coefficients assessed by logistic
regressions, including , , ,  and , and also when  is estimated using
these regression coefficients. However, if we employed the estimated prevalence of the
disease  obtained from the literature, the right-hand side of the equation would fail to equal
to the estimated . This is because, generally, for the logistic regression models, the
estimated values of intercept coefficients, such as  and  in our models, are biased
because not every explanatory variable is modeled in the logistic regression. The bias also
arises because the proportion of cases in a case-control study is much higher than the
prevalence of the cases in the population. Therefore, the estimated intercept coefficients 
and  will not reflect the true prevalence of the disease and the secondary phenotype;
therefore, the use of them directly in the conditional probabilities in Equation (3) will lead to
a biased estimator for the OR. In other words, when we substituted the estimated intercept
coefficients  and  to estimate the prevalence value, , and estimate
conditional probabilities,  and , we also introduced bias to these estimates. This, in
turn, introduces bias into the estimated value  of the genetic variant from
Equation (3). Therefore, in this study, we put constraints on prevalence values when
assessing the estimated  using the right-hand side of Equation (3). We incorporated
information about the true prevalences of the disease and secondary phenotype on the
estimated values of the intercept coefficients α0 and β0 (as described in the next section) to
estimate the intercept coefficients more accurately. We then estimated the OR as a function
of the regression coefficients α0, β0 and α1, where the intercept coefficients α0 and β0
incorporate the information about the known prevalence values.

3.2 Prevalences of the Primary Disease and the Secondary Phenotype
Once again consider the network structure shown in Figure S1(A), which represents the
dependent relationship among the three random variables. We can write the estimated
prevalences of the primary disease and the secondary phenotype as

(4)
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(5)

The conditional probabilities were given in Equation (1), and pi was defined above.
Equations (4) and (5) show that the prevalence of the primary disease fD is a function of
regression coefficients of β0, α0, and α1, and the prevalence of the secondary phenotype fT is
a function of regression coefficients of α0 and α1.

3.3 Correction Approach for Estimating the OR for a SNP Associated with the Secondary
Phenotype

Given a sample with N independent individuals for a case-control study of the primary
disease of interest, one can estimate the regression coefficients  and , as well as the
biased  for the SNP, using logistic regression as described above. Meanwhile, the
genotype frequencies of the SNP , i = 0, 1, can also be estimated from the data set.
Moreover, the estimated prevalences of the primary disease  and the secondary phenotype

 in the general population can be obtained from the literature. Therefore, the Equations (3),
(4), and (5) are a system of nonlinear equations with three unknown variables, β0, α0, and
α1. The solution to this nonlinear equation system will give us the corrected OR for the SNP

associated with the secondary phenotype. We denote the corrected OR as ,
where  is the solution from the system of nonlinear equations (3), (4), and (5). We
employed the `fsolve' function in Matlab [Mathworks, 2002] to solve the nonlinear equation
system with the use of default settings. By default, the `fsolve' function uses the trust-region
dogleg algorithm, which is a variant of the Powell dogleg method [Powell, 1970]. From now
on, we will use  to represent the biased OR for SNPs obtained using logistic regression
without adjusting for the primary disease status and  to refer to the corrected OR obtained
by solving the system of nonlinear equations (3), (4), and (5). Furthermore, we will use

 to represent the biased OR obtained using logistic regression after adjusting for the
primary disease status.

3.4 Additive Genetic Model
When an additive genetic model was assumed for the SNP, we used a categorical random
variable, X = {0, 1, 2}, to denote the three genotypes (a,a), (A,a), and (A,A). The primary
disease status and secondary phenotype status were denoted by binary random variables, Y =
{0,1} and T = {0, 1}, as in the previous sections. In this situation, the biased  obtained
using logistic regression is given by the per-allele odds ratio, which corresponds to the odds
ratio with respect to each copy of the deleterious allele. There are different ways to assess
the per-allele odds ratio. We applied two approaches to evaluate the per-allele estimated OR,
and therefore, obtained two corrected s. The final corrected  was calculated as the
average of the two per-allele s. First, the per-allele OR can be estimated as the odds ratio
of X = 1 versus X = 0, so the equation will be the same as Equation (3). Therefore, using the
system of nonlinear equations (3), (4), and (5), we can obtain a corrected per-allele

. Meanwhile, it is known that the natural logarithm of the per-allele odds ratio
can be evaluated as half of the natural logarithm of the odds ratio of X = 2 versus X = 0, as
shown in the following equation
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(6)

where the conditional probabilities were given in Equation (1), and pi, i = 0, 1, and 2, are the
frequencies for the three genotypes, which equal to (1 − p)2, 2p(1 − p), and p2, respectively,
under Hardy-Weinberg proportion, where p is the MAF. The second corrected per-allele

 can be obtained by solving the system of nonlinear equations (4), (5), and (6).
Therefore, the final corrected  for an additive genetic model can be estimated as the

average of the two .

3.5 Confidence Intervals: Bootstrapping
We provided the empirical confidence intervals, using a resampling-based method [Efron

and Tibshirani, 1993]. Given regression coefficient estimate , the empirical
confidence interval of corrected  was obtained by the following steps:

1. Take B samples from the normal distribution with mean  and variance , where
 is the standard error of estimate . Denote the bootstrap samples as , u = 1,

2, …, B. The bootstrap  is then estimated as , u = 1, 2, …, B.

2. For each , calculate the bootstrap corrected , u = 1, 2, …, B by solving
the system of nonlinear equations as described in the previous sections. For the
dominant or recessive genetic model, the equations (3) ~ (5) are employed; for the
additive genetic mode, the equations (3) ~ (6) are employed.

3. Let  be the uth ordered bootstrap estimate. Then 100(1− γ)% confidence

interval of corrected  is given as , .

3.6 Extended IPW Regression Approach for Retrospective Case-Control Studies
The IPW regression approach was first proposed by Richardson et al. to evaluate the OR
estimate of secondary trait–genotype association in a nested case-control study within a
prospective cohort [Richardson et al., 2007]. The idea is to use different weights for cases
and controls in the logistic regression model, where the weights are given by the inverses of
the sampling fractions of cases and controls in a study base or a prospective cohort.
However, in a retrospective case-control study, the sampling fractions are usually unknown.
In this article, we extended the IPW regression approach to the retrospective case-control
study by introducing new weights based on use of the primary disease prevalence value
similar to our proposed approach.

We assumed that there are M individuals in the finite general population. Given the
prevalence of the primary disease fD, the number of cases with respect to the primary disease
is fD × M, and the number of controls free of the primary disease is (1 − fD) × M.
Considering a retrospective case-control study of N1 cases and N0 controls, the
corresponding sampling fractions can be estimated as N1 /(fD × M) for cases and N0 /((1 −
fD) × M) for controls. The weights for cases and controls are given as the reciprocals of the
sample fractions. Moreover, if we use weight 1 for cases, then the weight for controls can be
given as a ratio of (N1(1 − fD))/(N0fD). The size of the general population M is cancelled in
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the ratio formula; therefore, it does not have an impact on the weights. However, the
prevalence of the primary disease still plays a major role in estimating the weights in the
IPW regression approach. The IPW regression can be performed by using the SAS or R
software packages [Monsees et al., 2009; Richardson et al., 2007]. We used ORIPW to
represent the OR of the marker-secondary phenotype association obtained by using this
extended IPW regression approach.

3.7 Bias Correction Approach for Frequency-Matching Study Design with Respect to the
Secondary Phenotype

In many case-control studies, controls are frequency-matched to cases in order to reduce the
effect of a known confounding factor. In the study of frequency-matched case-control design
with respect to the secondary phenotype, in addition to the reasons we describe above,
frequency matching also contributes to bias in the estimate of the OR for genetic variants
associated with the secondary phenotype. The IPW regression approach and the proposed
bias correction approach will not perform well unless accounted for in the frequency-
matched study design. Currently, it is not clear to us how the IPW approach can be extended
to frequency-matched case-control studies. However, we have adapted our proposed bias
correction approach to frequency-matched case-control data analysis.

Note that the expected numbers of individuals Eki for T = k and X = i were calculated as the
summation of the expected numbers of individuals from cases (Eki|1) and from controls
(Eki|0) (see Equation (2)). When the frequency-matching design with respect to the
secondary phenotype of interest is employed, the distribution of the secondary trait in
controls should be the same as that in cases. That is, the expected numbers of individuals
from cases are still the same as those in the unmatched case-control studies. However, the
expected numbers of individuals from controls will be different from those in the unmatched
case-control studies due to the frequency-matching design. Therefore, Equation (2) can be
modified as follows:

(7)

The conditional probabilities of pki|1 were given in Section 3.1. After some manipulations,
the conditional probabilities hi|k0hk|1 can be written as

The probabilities on the right-hand side of the above equation were given in Section 3.1.
Equations (3) and (6) could then be modified accordingly using the new expected numbers
of individuals Eki as in Equation (7).

Recall that the estimated regression coefficient  (corresponding to the disease-secondary
phenotype association) in our approach was evaluated from the sample data using logistic
regression. In the frequency-matching case-control studies, the estimated value of  is non-
significant and could not represent the true association between the secondary phenotype
and the primary disease. However, because the matching design considers the known risk-
confounding factor at the study design phase, we typically know the associated risk for the
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primary disease and the secondary phenotype before the phase of analysis. Therefore, for the
frequency-matching case-control studies, we added one more constraint on the value of ,
which is fixed as the risk coefficient estimated in the related unmatched case-control studies.
The correct OR for the frequency-matching study was denoted as .

4. Results
4.1 Simulation Results

We examined the performance of the proposed approach  by performing simulation
studies. The details of the simulation approach have been presented in Section 2.1. Here we
simulated different genetic models when simulating values for the SNP, including additive,
dominant, and recessive models. We used the same specific parameters as those in Section
2.2, where α1 = β1 = 0.4055 and β2 = 1.9086. The same 300 pairs of the intercept
coefficients α0 and β0 were used. The results of the simulation studies were based on 1,000
replicates, each replicate with 1,000 cases and 1,000 controls according to primary disease.

We compared the corrected  to the biased  and  obtained without or with
adjusting for the primary disease status, respectively, as well as ORIPW obtained by the
extended IPW regression.

The results of the simulation studies were grouped into three columns with respect to three
different genetic models: dominant, additive, and recessive (Figure 1). Within each column,
the upper panel shows the median ORs based on 1,000 replicates obtained with the use of
the different approaches: logistic regression without adjusting for the primary disease status
(red symbol “◯”), logistic regression with adjusting for the primary disease status (green
symbol “△”), the extended IPW regression (purple symbol “□”), and the bias correction
approach proposed in this article (blue symbol“*”). For all three genetic models, the medians
of ORIPW and our  corrected were close to the pre-specified OR = 1.5 for the entire range
of the prevalence of the primary disease. The other two logistic regression approaches,
however, provided either upward- or downward-biased estimates of ORs. The middle panel
in each column of Figure 1 represents the percentages of 95% confidence intervals for the
1,000 replicates covering the pre-specified OR of 1.5. These results also showed that both
the extended IPW approach and the bias correction approach provide confidence intervals
with accurate coverage probabilities for the underlying true OR. For example, considering
the additive model, when , the median  was 1.60, which overestimated the true

OR, the median  was 1.43, which underestimated the true OR, and the ORIPW and the
corrected  were 1.50; the corresponding percentages of 95% confidence intervals that
included the true OR (OR = 1.5) were 85.1%, 90.2%, 94.6% and 94.5%, respectively. In
another example with rare prevalence of disease, when , we obtained a median

estimated  of 1.66 and , ORIPW, and  of 1.50. The corresponding percentages of
95% confidence intervals that included the true OR were 68.4%, 96.3%, 95.5%, and 96.3%,

respectively. Compared to , the extended ORIPW, the corrected , and  reduced the
bias in risk estimation by 16% and estimated the true OR accurately.

Overall, both the extended IPW regression and our bias correction approaches performed
well when estimating the ORs for the genetic variants associated with the secondary
phenotype. However, the confidence intervals (CI) for true OR based on our approach were
always smaller than or equal to those based on the IPW regression at a fixed level of
confidence coefficient. In the lower panel of each column of Figure 1, we show that the
differences evaluated by subtracting the median lengths of 95% CIs based on our approach
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from those based on the extended IPW approach are always non-negative for the dominant,
additive, and recessive model. In other words, the median lengths of the 95% CIs of the bias
correction approach are always smaller than or equal to those of the IPW approach. For
example, when  in the additive genetic model, the median length of 95% CI of the
bias correction approach is 0.38, compared with 0.51 for the IPW regression approach.
Given Pr(real OR ε CI based on the IPW regression) ≈ Pr(real OR ε CI based on the
proposed approach) at a fixed confidence coefficient then a desirable property would be to
have a smaller length of CI. Because Length(CI based on the proposed approach) ≤
Length(CI based on the IPW regression), our proposed approach is preferred.

In addition, we also performed simulation studies where the secondary phenotype was the
protective factor for the primary disease and the SNP was a risk factor for both the primary
disease and the secondary phenotype. We used a set of specific parameters of the logistic
models, where α1 = β1 = 0.4055 corresponded to OR = 1.5 and β2 = −0.6931 corresponded

to OR = 0.5. Three genetic models were studied. The median , , ORIPW and
corrected  values, as well as the percentages of 95% confidence intervals covering OR =
1.5 for different approaches, were calculated (showed in Figure S2 in the Supplementary
Materials). As expected, in the simulation studies in which the secondary phenotype was the

protective factor for the primary disease, the median values of  and  were biased in a
manner similar to those obtained when the secondary phenotype was a risk factor for the
primary disease, as discussed previously. Except in these studies, the downward bias arose
when using logistic regression without adjusting for the primary disease status, while the
upward bias arose when using logistic regression with adjusting for the primary disease
status. However, our proposed corrected  estimated the underlying OR more accurately
than both logistic regression approaches. Therefore, the bias correction approach proposed
here and the extended IPW approach would perform well for estimating the OR, whether the
secondary phenotype (or the SNP) is a risk or a protective factor to the primary disease.
However, our bias correction approach is favored because it leads to smaller confidence
intervals with the same confidence coefficient.

4.2 Sensitivity Analysis
In the simulation studies, we assumed that the prevalences of the primary disease and
secondary phenotype were known. However, in reality, it cannot be known with certainty
that prevalences obtained from the literature are accurate. Here, we assessed the sensitivity
of the corrected  to the estimated prevalence of the primary disease  and the secondary
phenotype . We considered several simulation scenarios under the assumption of an
additive genetic model, and the real prevalence of the primary disease fD values used to
simulate the data were 1.6%, 10.5%, and 54.3% (from rare disease to common disease), and
the prevalence of the secondary phenotype fT was set as a fixed value of 34%. We evaluated
the corrected  using a range of prevalence values centered on the true prevalence values
([fD −△D, fD +△D] and [fT −△T, fT +△T]). The error term △D was defined differently with
respect to different fD. We defined △T as 3% in all situations. The specific parameters and
the results are listed in Table 1. All the results were very similar to those obtained using the
real prevalences. For example, when the true prevalence of the primary disease and the
secondary phenotype were 1.6% and 34%, respectively, the corrected  was estimated as
1.4983 using real prevalence values, 1.4973 when  and , 1.4969 when

 and , 1.4999 when  and , and 1.4993 when  and
.
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4.3 Frequency-Matched Case-Control Studies with Respect to the Secondary Phenotype
To investigate the performance of the proposed bias correction approach in frequency-
matched case-control studies with respect to the secondary phenotype of interest, we
performed simulations. We assumed a dominant genetic model. Without loss of generality,
we considered different scenarios involving different prevalences of the primary disease
(10%, 20%, 40%, and 60%), different prevalences of the secondary trait (5%, 15%, 40%,
60%, and 80%), and different ORs of genotype-secondary trait association (1.5, 2, and 3).
All the other parameters were the same as those in Section 4.1. We simulated 1,000
replicates, each with 1,000 randomly sampled cases and 1,000 frequency-matched controls,
with respect to the secondary phenotype. Median ORs obtained with the use of different
approaches are reported in Table 2, including logistic regression without adjusting for the
primary disease status ( ), the extended IPW regression (ORIPW), and the proposed bias
correction approach ( ). Among all the scenarios with frequency-matching case-control
data, both  and ORIPW were biased. The extended IPW regression performed very
similarly to the logistic regression. We observed that the magnitude of the bias in  and
ORIPW varied with respect to prevalence values of both the primary disease and secondary
trait. However, the  performed very well for estimating the true OR in all scenarios. For
example, when the true OR of the genotype-secondary phenotype association was 2,

 and , we found that , ORIPW = 1.90, and  = 2.00. Both  and
ORIPW had about a 10% bias in risk estimation, while  estimated the real OR accurately.

5. Real Data Analysis
We next applied our approach to the case-control association study of smoking behavior and
the CHRNA5-A3 region SNP, rs1051730, using lung cancer GWA study data [Amos et al.,
2008; Spitz et al., 2008; Wang et al., 2010]. This analysis included N1 = 1153 lung cancer
case subjects who were current or former smokers and N0 = 1137 control subjects
frequency-matched to the cases by age, sex, and smoking status. All the case and control
subjects were Caucasian. Lung cancer cases were accrued at The University of Texas MD
Anderson Cancer Center and were histologically confirmed. Controls were ascertained
through a multi-specialty physician practice from the same area. Questionnaire data were
obtained by personal interview. This study was approved by the institutional review board at
MD Anderson Cancer Center, and all participants provided written informed consent. We
selected the number of cigarettes per day, or daily smoking quantity (SQ), a commonly used
measurement of smoking intensity. Typically, the SQ measure is categorized into two levels:
SQ<25, light smokers (coded as 0); SQ≥25, heavy smokers (coded as 1) [CDC, 2005]. The
genetic variant (rs1051730) was coded assuming dominant, additive and recessive genetic
models. In the original case-control association study of lung cancer, the lung cancer
controls are frequency-matched to the cases by smoking status. Therefore, we employed the
proposed bias correction approach for frequency-matching study design with respect to
secondary phenotype to obtain the corrected . The ORIPW obtained by using the
extended IPW regression was also reported.

Our aim here was to evaluate the performance of the proposed approach with real data. We
first estimated the regression coefficients required to be substituted into the system of
nonlinear equations, as well as the biased  for rs1051730 associated with SQ, by applying
logistic regression to the lung cancer case-control data. The regression coefficients  and
the biased s for different genetic models are reported in Table 3. For example, when the
recessive genetic model was assumed, ,  (95% confidence interval (CI)
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= (1.2492, 2.0269)) and  (95% CI = (1.2223, 1.9866)). The MAF was also
estimated from the data as 37%, and therefore under Hardy-Weinberg proportion, the
genotyping frequencies , i = 0, 1, and 2, were calculated as 0.40, 0.46, and 0.14,
respectively. The prevalences of lung cancer ( ) and heavy smokers ( ) in ever smokers
were obtained from the literature as 14% and 12%, respectively [CDC, 2005;Villeneuve and
Mao, 1994]. We further assumed the OR of association between SQ and lung cancer as 1.86
as reported by Peto et al. [2000], therefore,  for all models. The estimatedORIPW
values were slightly higher than those from logistic regressions, and always had the widest
95% CIs among all the estimators. For the example of recessive genetic model, ORIPW =
1.6026 (95% CI = (1.1737, 2.1882). The corrected  values of the SNP rs1051730 were:
1.3416 for dominant genetic model (95% CI = (1.1353, 1.5883)), 1.3214 for additive genetic
model (95% CI = (1.1711, 1.4914)), and 1.6831 for recessive genetic model (95% CI =
(1.3213, 2.1489). Therefore, the corrected  could reduce the bias in risk estimation by
certain percentages according to different genetic models. For example, when the recessive

genetic model was assumed, ,  and ORIPW concluded that the individuals with one
copy of the deleterious allele are about 59.1%, 56.0% or 60.3%, respectively, more likely to
be heavy smokers than those with no deleterious allele, whereas the corrected  reduced
the bias in risk estimation by about 8~12% and suggested that individuals with one copy of
the deleterious allele are 68.3% more likely to be heavy smokers. Moreover, the 95% CIs
based on our approach are much smaller than those based on IPW regression, which
suggests that our approach provides a more accurate estimation of the OR of SNP rs1051730
associated with smoker behavior.

6. Discussion
In genetic association studies, cases and controls were ascertained with respect to the
primary diseases of interest. Other traits associated with the primary diseases were also
collected. Recently, in the GWA studies, the same data is now used to identify SNPs that are
associated with these secondary phenotypes. However, using logistic regression to study the
secondary phenotype is problematic, since the data associated with secondary phenotype is
not sampled according to the principals of case-control study design. In this article, we
found that the odds ratios for genetic variants associated with secondary phenotypes can be
biased. Generally, investigators assume that their results will not be biased if the odds ratios
are adjusted for the primary disease status as a covariate in the association study. We show,
however, that adjusting for primary disease status will still result in a biased estimate of the
OR in many situations.

In our study, we further found that the magnitude of bias in the OR estimate of the genetic
variant depends on the prevalence values of the primary disease and secondary phenotype in
the general population. Moreover, the prevalence of the primary disease is most important in
the determination of bias when estimating the OR. Therefore, we proposed an approach to
provide a more accurate estimate of the OR, which incorporates information about the true
prevalence values. The corrected  obtained using the new approach was shown in our
simulation studies to be a more accurate estimator of OR. In addition to the prevalence
values of the primary disease and secondary phenotype, several other parameters also have
an impact on the magnitude of bias in the OR estimate, including the correlation between the
genetic variant and primary disease and the correlation between the secondary phenotype
and primary disease. However, these parameters would not affect the performance of our
approaches, since our approaches account for these parameters.
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The major advantage of our approach is that there is no need to decide whether the primary
disease is rare or common. Given a case-control sample and corresponding prevalences of
disease and secondary phenotype, the corrected  can be assessed by solving a nonlinear
equation system with the use of iterative algorithms. Therefore, the estimates of the two
prevalence values are the most important parameters for the performance of our approach.
Generally, the true prevalence values in a population are not known with certainty, and we
showed, by using a sensitivity analysis, that the misspecification of primary disease and
secondary phenotype prevalence would not have a large impact on the estimate of the
corrected . It should also be noted that in our theoretical model, the prevalences were
defined as the proportion of individuals with the disease in the general population. Also, in
this study, we investigated issues related to OR estimate for binary secondary phenotypes.
Issues related to continuous secondary phenotypes will be considered in the future.

We also extended the IPW regression method originally proposed by Richardson et al. for
prospective case-control studies [Richardson et al., 2007] to retrospective case-control
studies based on our philosophy of using the prevalence of the primary disease. We
compared the performance of our bias correction approach proposed in this article with that
of the IPW approach. Overall, the two approaches performed similarly well, and both could
provide more accurate estimations for the OR of genotype-secondary phenotype than the
standard logistic regressions. However, our approach has a few advantages over IPW
regression. First, our proposed approach always provides smaller or equal CIs at a fixed
confidence coefficient, which is a desirable attribute. Furthermore, in addition to the
prevalence of the primary disease, our approach can also account for the prevalence of the
secondary phenotype. Although the prevalence of the secondary phenotype has less impact
on OR estimation than the prevalence of the primary disease, it still introduces a bias in the
estimation of true OR. Finally, our approach is robust even if the prevalence of the disease
and the secondary trait are rare, whereas the approach based on the IPW method is sensitive
to rare diseases. In this study, we also considered more complex association structures in
which multiple covariates were included in the analysis. The proposed approach still
resulted in accurate estimators; while interestingly, the IPW approach was biased for some
scenarios (simulation results not reported).

Frequency matching has been widely applied in case-control association studies. When the
secondary trait of interest is the risk-confounding factor in a frequency-matched case-control
study, neither the standard logistic regression nor the IPW regression approach could
estimate the OR of the genotype-secondary trait correctly. In this article, we also proposed a
bias correction approach for the frequency-matched case-control study with respect to the
secondary trait of interest. The simulation studies were performed to show that the corrected

 obtained using our approach is a more accurate estimator of OR than both standard
logistic and IPW regressions. We also applied this proposed approach to a real data analysis
of genetic variant (rs1051730) associated with number of cigarettes per day using lung
cancer case-control study data.

In conclusion, to estimate the OR for genetic variants associated with a secondary
phenotype, we propose a new approach that incorporates information about the prevalences
of the primary disease and secondary phenotype. The proposed approach is more accurate
and robust than the standard logistic regression and the extended IPW regression
approaches, and the coverage probability of corresponding bootstrap confidence intervals is
higher than that of the standard approach. We also propose a new approach for estimating
the OR for genotype-secondary trait association in a frequency-matched case-control study
with respect to the secondary trait of interest, which also provides an accurate estimation of
the true OR.
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Figure 1. Simulation results for three genetic models with risk secondary phenotype, based on
1,000 replicates, each with 1,000 cases and 1,000 controls. The true OR of the SNP associated
with secondary phenotype was 1.5
OR = odds ratio fD = estimated prevalence of primary disease
CI = confidence interval
Symbol “○” represents the results obtained by using logistic regression without adjusting for
the primary disease status. Symbol “Δ” represents the results obtained by using logistic
regression with adjusting for the primary disease status. Symbol “□” represents the results
obtained by using the extended IPW regression approach. Symbol “*” represents the results
obtained by using the bias correction approach proposed in this article. (A) Dominant
genetic model. (B) Additive genetic model. (C) Recessive genetic model.
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