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In innate immune sensing, the detection of pathogen-associated
molecular patterns by recognition receptors typically involve
leucine-rich repeats (LRRs). We provide a categorization of 375
human LRR-containing proteins, almost half of which lack other
identifiable functional domains. We clustered human LRR proteins
byfirst assigning LRRs to LRR classes and thengrouping theproteins
based on these class assignments, revealing several of the resulting
protein groups containing a large number of proteins with certain
non-LRR functional domains. In particular, a statistically significant-
number of LRR proteins in the typical (T) andbacterial + typical (S+T)
categories have transmembrane domains, whereasmost of the LRR
proteins in the cysteine-containing (CC) category contain an F-box
domain (which mediates interactions with the E3 ubiquitin ligase
complex). Furthermore, by examining the evolutionary profiles of
the LRR proteins, we identified a subset of LRR proteins exhibi-
ting strong conservation in fungi and an enrichment for “nucleic
acid-binding” function. Expression analysis of LRR genes identifies
a subset of pathogen-responsive genes in human primary macro-
phages infected with pathogenic bacteria. Using functional RNAi,
we show that MFHAS1 regulates Toll-like receptor (TLR)–dependent
signaling. By using protein interaction network analysis followed
by functional RNAi, we identified LRSAM1 as a component of the
antibacterial autophagic response.
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Innate immunity is a conserved host response that entails the
sensing of pathogen-associated molecular patterns through

germline-encoded pattern recognition receptors (1), which initiate
pathway-specific signaling networks, resulting in rapid responses
that serve as thehost’sfirst line of defense.A striking feature among
families of proteins functioning as sensors or effectors of innate
immunity is the inclusion into their structure, various combinations
of the following domains: Leucine-rich repeat (LRR), Toll/IL-1
receptor, Ig, nucleotide-binding site, pyrin, RIG-I–like receptor,
caspase-recruitment, coiled-coil, immunoreceptor tyrosine-based
activation motif, and C-type lectin (2).
The LRR domain is present in a large number of prokaryotic

and eukaryotic proteins and is one of the most commonly oc-
curring protein domains in proteins associated with innate im-
munity. This is especially so in invertebrates (e.g., sea urchin) and
Cephalochordata (e.g., amphioxus) which have vastly expanded
repertoires of LRR proteins (3) in the absence of adaptive im-
munity. In jawless vertebrates, combinatorial assembly of LRR
gene segments in variable lymphocyte receptors generates the
structural diversity for antigen recognition and forms the basis of
an adaptive immune system (4, 5). Toll-like receptors (TLRs) and
NOD-like receptors (NLRs) recognize via the LRR domain,
molecular determinants from a structurally diverse collection of
bacterial, fungal, viral, and parasite-derived components (6, 7).
Mutations or polymorphisms in more than 30 LRR-containing

proteins have been implicated in human diseases to date, notably
polymorphisms in NOD2 in Crohn disease (8, 9), CIITA in
rheumatoid arthritis and multiple sclerosis (10), and TLR5 in
Legionnaire disease (11).
Most LRR domains consist of a chain of between 2 and 45

LRRs (12). Each repeat in turn is typically 20 to 30 residues long
and can be divided into a highly conserved segment (HCS) fol-
lowed by a variable segment (VS). The HCS usually consists of
either the 11-residue sequence LxxLxLxxNxL or the 12-residue
sequence LxxLxLxxCxxL, where L is Leu, Ile, Val, or Phe; N is
Asn, Thr, Ser, or Cys; and C is Cys, Ser, or Asn (13, 14). Al-
though these substitutions often preserve hydrophobicity or po-
larity, it is possible for the first and last leucines to be replaced by
relatively hydrophilic residues (15). The function of many LRR
domains is to provide a structural framework for protein–protein
interactions (PPIs) (13). PDB structures for LRR-containing pro-
teins show the LRR domains in an arc or horseshoe shape. The
concave face (corresponding to the HCS of each LRR) consists of
parallel β-strands, each usually three residues long, flanked by
loops. Conversely, the convex face (corresponding to the VS of
each LRR) is composed of a variety of secondary structures, which
are often helical (13). Ligands can interact with either the convex
or the concave face, although the latter is more typical (13, 16). The
core of the arc is hydrophobic, typically shielded by caps at the N
terminus of the first LRR and at the C terminus of the last LRR. In
extracellular proteins or domains, these caps often contain two- or
four-residue cysteine clusters (14).
Beyond innate immunity, extensive functional diversity occurs

among LRR-containing proteins, which are involved in a variety of
cellular processes including apoptosis, autophagy, ubiquitin-related
processes, nuclear mRNA transport, and neuronal development.
Although the presence of well characterized non-LRR domains
can be used to classify LRR proteins along functional lines, such
a classification scheme will place LRR proteins lacking any other
identifiable functional domains into a single group unrelated to
any specific function. To fully appreciate the signaling functions of
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LRR proteins, we devised semi-automated methods for grouping
them on the basis of LRR classes. We identified the positions of
individual LRR sequences within each LRR domain, and classified
each repeat based upon consensus sequences and lengths of their
VSs. Identified repeats were assigned into classes: bacterial (S),
ribonuclease inhibitor–like (RI), cysteine-containing (CC), SDS22,
plant-specific (PS), typical (T), and Treponema pallidum (Tp)
(13, 17). By using this approach, we reasoned that functionally re-
lated LRR-only proteins would be placed together by virtue of their
similar LRR domains. In addition, these LRR class-based clusters
would contain all of the proteins bearing similar LRR repeat
structures, with further subcategorization via the presence or ab-
sence of non-LRR domains.
In this article, we present a comprehensive categorization of

human LRR-containing proteins by LRR class composition,
functional associations, and involvement in host responses to in-
fection stimuli. We demonstrate semi-automated methods that
use LRR class composition to facilitate functional groupings. By
integrating diverse datasets and using functional RNA interfer-
ence, we experimentally place uncharacterized LRR proteins in
innate immunity and autophagy.

Results
Annotation of LRRs.We first compiled a list of 375 human proteins
annotated as containing LRRs in InterPro (18), the Swiss-Prot
section of UniProt (19), and LRRML (a conformational data-
base and an extensible markup language description of LRRs)
(17). As shown in Fig. S1, InterPro contained the largest number
of LRR proteins: it included all 19 proteins found in LRRML
and 303 of the 327 LRR proteins in Swiss-Prot.
To annotate the LRRs in the LRR proteins, we constructed

hidden Markov models (HMMs) to represent the signatures of
the seven LRR classes. That the resulting HMMs were con-
structed properly is evident from the strong similarities between
the logos for the HMMs (Fig. S2) (20) and the corresponding
consensus sequences described in the literature (13). Some dif-
ferences were observed: for example, in the HMM for the S class,
the first leucine is not as strongly conserved as in the consensus
signature. Also, whereas the sixth residue of the consensus sig-
nature is valine, the most frequently occurring residue at the
corresponding position of the HMM is cysteine, with valine as the
third most common.
We next devised an algorithm that used the HMMs to identify

the positions and class assignments of the LRRs. To fully cap-
ture the “irregular” LRRs with atypical amino acid sequences,
we implemented a combination algorithm, using the HMMs to
find regular LRRs, then pattern-matching to find adjacent, non-
overlapping matches to LRR amino acid sequences or predicted
secondary structures (15, 21). This exploits the structural obser-
vation that LRRs occur in chains, thus leveraging the discrimi-
natory power of HMMs to control otherwise promiscuous pat-
tern matching.
By applying the annotation algorithm to the 375 proteins

classified as LRR-containing, we found LRRs in almost all pro-
teins classified by multiple databases but in very few of those
classified by only a single database. There are 334 proteins in
which at least one LRR can be identified. We provide a compre-
hensive map of these human LRR proteins, graphically displaying
the LRR classes as well as non-LRR domains and their coor-
dinates in each of these proteins (Dataset S1). In many of the
proteins, most of the identified regular LRRs either belong to
a single class (e.g., CC for FBXL2, PS for LRRC30; Fig. 1A) or are
members of the S and T classes (e.g., ASPN and EPYC; Fig. 1B).
This uniformity in the class membership of the LRRs has been
observed (13, 15, 22). Nonetheless, several of the proteins contain
LRRs from multiple classes (other than S and T). For instance,
LRRC33 contains S, T, and SDS22 LRRs, whereas PS and
S LRRs occur in MFHAS1 (Fig. 1C).

It is evident from Dataset S1 that most of the proteins contain
one or more irregular LRR. As shown in Fig. 1D, these LRRs
occur both at the ends of LRR chains (FBXL3) as well as within
them (LRRC16A). By their very nature, irregular LRRs are more
difficult to identify than regular LRRs, particularly at the ends of
LRR chains. However, irregular LRRs that occur within LRR
chains can be identified with greater confidence and are likely to
be valid LRRs as they span the gaps between regular LRRs.

Clustering the LRR Proteins Using LRR Classes. Based on the LRR
class assignments, we grouped the LRR proteins in two different
ways. For the first approach, we clustered the proteins based on
the sequence similarity of their LRRs; each LRR in a given pro-
tein was allowed to match any LRR of the same class in another
protein (the irregular LRRs were placed in their own class). Fig.
1E and Fig. S3 summarize the clustered results for human LRR
proteins as a circular tree. As predicted, we observed functionally
similar proteins clustering together e.g., members of the SLITRK,
NLR (Fig. S3), and F-box families (Fig. S4). We were also able to
observe LRR-only proteins being distributed among those con-
taining non-LRR domains, fulfilling one of our goals in this effort:
to cluster LRR proteins on the basis of LRR class composition.
Because the class annotations for the LRRs are not always

optimal, the second method we used to group the LRR proteins
was designed to be more robust to annotation errors. We first
assigned all proteins containing fewer than five regular LRRs to
the “unclassified” category. We then partitioned the remaining
proteins into categories based on the class to which the majority
of LRRs in each protein belong. We placed those proteins for
which S and T LRRs together constitute the majority in a sepa-
rate S+T category, whereas we classified as “mixed” those pro-
teins for which each class is in the minority. Interestingly, more
than 25% of the proteins are in the T or S+T categories and
fewer than half contain fewer than five regular LRRs. A sum-
mary of the resulting category assignments is shown in Fig. 2A
and Dataset S2A. Again, as expected, LRR-only proteins were
found to be distributed among the categories and are thus
grouped with proteins containing non-LRR domains.
As is evident in Fig. 2B, several of the class-based categories

are associated with the presence or absence of transmembrane
(TM) regions as predicted by Phobius (23) in the corresponding
proteins. Specifically, a statistically significant number of pro-
teins in the T and S+T categories contain TM regions, whereas
a statistically significant number of proteins in the CC and un-
classified categories do not. Several of the class-based categories
are also associated with certain non-LRR domains. For example,
at least 12 of the 15 proteins in the CC category contain an F-box
domain (Fig. S4), whereas 17 of the 32 proteins in the RI cate-
gory contain a NACHT NTPase domain (Dataset S1).
As noted earlier, almost half the LRR proteins are unclassified.

Comparing these unclassified LRR proteins to those which are
classified revealed several differences. In particular, all of the
LRR proteins annotated as LRR-containing in only one database
are unclassified. This observation is not surprising; one would
expect that proteins with few LRRs would be less likely to be
identified in a database as LRR-containing. Another difference
between the classified and unclassified proteins is apparent in
Fig. 2C: the T and S classes are the most commonly occurring
regular classes in classified proteins but occur infrequently in un-
classified proteins. Third, although several non-LRR domains
occur in both classified and unclassified proteins (Fig. 2D), many
non-LRR domains are unique to just the classified or unclassified
proteins (Dataset S2B). Finally, when analyzing the sets of clas-
sified and unclassified proteins in terms of their molecular func-
tion and associated biological processes using the PANTHER
classification system (24), we observed striking differences in key
categories being over-represented (Dataset S2 C and D). Pro-
cesses associated with receptor-mediated signaling, immunity and

4632 | www.pnas.org/cgi/doi/10.1073/pnas.1000093107 Ng et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000093107/-/DCSupplemental/pnas.201000093SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000093107/-/DCSupplemental/pnas.201000093SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000093107/-/DCSupplemental/sd01.doc
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000093107/-/DCSupplemental/sd01.doc
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000093107/-/DCSupplemental/pnas.201000093SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000093107/-/DCSupplemental/pnas.201000093SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000093107/-/DCSupplemental/pnas.201000093SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000093107/-/DCSupplemental/sd02.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000093107/-/DCSupplemental/pnas.201000093SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000093107/-/DCSupplemental/sd01.doc
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000093107/-/DCSupplemental/sd02.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000093107/-/DCSupplemental/sd02.xls
www.pnas.org/cgi/doi/10.1073/pnas.1000093107


defense were significantly enriched among the classified LRR
proteins. In contrast, nucleic acid–binding functions and cell
structure–related processes were over-represented among the
unclassified LRR proteins.
Because S and T are the most commonly occurring regular

LRR classes in classified LRR proteins and such proteins are
enriched for terms related to immunity and receptor-mediated
signaling, we examined whether the subset of classified proteins
with S or T LRRs would also exhibit such enrichments. Using
the PANTHER classification system, a number of processes as-
sociated with receptor-mediated signaling were found to be
statistically significant, including cytokine and chemokine medi-

ated signaling and “immunity and defense” (FDR-adjusted P
values, 0.02 and 0.05, respectively; Dataset S2E), suggesting that
S and T LRRs might play a role in these processes.

Evolutionary Characteristics of the LRR Proteins. We next examined
the evolutionary profiles of the LRR proteins to determine whether
the resulting patterns of conservation might yield any insights into
the protein family. To generate this evolutionary profile, we clus-
tered the LRR proteins so that proteins grouped together have
orthologues in many of the same organisms. A heat map depicting
this clustering is shown in Fig. 3. Fig. 3 also shows the heat maps
generated by performing the same procedure for human proteins
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Fig. 1. Examples of annotated LRR proteins. (A) Proteins containing LRRs from predominantly one class. (B) Proteins containing LRRs from predominantly the
S and T classes. (C) Proteins containing LRRs frommultiple classes. (D) Examples of proteins illustrating the occurrence of irregular LRRs both at the ends of LRR
chains as well as within them. (E) Clustering of LRR proteins using LRR classes. A larger “zoomable” version is shown in Fig. S3. Cluster descriptions illustrate
certain predominant features observed among representative LRR protein members in the respective clusters, e.g., F-box cluster consists predominantly of LRR
proteins that also contain the F-box domain, whereas the NLR cluster consists mostly of NLR family members.
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containing PDZ and SH2 domains. It is apparent that the evolu-
tionary profiles for the PDZ and SH2 protein families are quite
similar. Both protein families can be partitioned into two major
groups: proteins with orthologues in all metazoans (group 4) and
proteins with orthologues only in chordates (group 5). There are
also some unique characteristics observed for a small number of
SH2 proteins but not among PDZ proteins, such as those having
orthologues primarily in mammals (group 6). Interestingly, none of
the SH2 proteins have orthologues in eubacteria or archaea.
The evolutionary profile heat map for the LRR proteins exhibits

striking differences from those for the PDZ and SH2 proteins. For
example, a significantly large number of the LRR proteins have
orthologues primarily in mammals (group 1), whereas very few of
the SH2 proteins and none of the PDZ proteins exhibit this prop-
erty. Further, several of the LRR proteins that have orthologues
only in eukaryotes do not have orthologues in fungi (group 2),
whereas no such proteins are evident in the PDZ and SH2 heat
maps. One particularly striking feature of the LRR heat map is the
presence of a set of 21 proteins with strong conservation in fungi
(group 3). Analyzing this set of proteins for over-represented
PANTHER terms revealed an enrichment (with a P value adjusted
formultiple testing of 1.277e-05) for the term “nucleic acid-binding”
for the following seven proteins: CNOT6, CNOT6L, NXF1, NXF2,
NXF2B, PDS5A, and SNRPA1.
To further stratify the clusters of LRR proteins shown in

Fig. 3, we reclustered the proteins based on the relative degree of
similarity between each protein and its orthologues. A heat map
depicting the updated clustering is shown in Fig. S5A. For each
species represented in the heat map, red denotes proteins that
are more similar to their human orthologues than those depicted
in green are to theirs. Because it was difficult to discern any clear
patterns in the revised heat map, we rearranged the proteins so
they would be grouped by their class-based categories (Fig. S5B).
Doing so revealed that the SDS22, RI, and mixed categories
contain very few proteins with high degrees of conservation

(relative to the other LRRs). It is now also apparent that almost
all the proteins in the T and S+T categories have orthologues
only in metazoans.

Expression-Based Classification of LRR Genes Reveal Neuronal and
Immune Clusters. To build on the information derived from LRR
class classification methods, we were interested to identify sub-
sets of LRR genes that might have roles in processes associated
with specialized tissue types. We examined the expression of
LRR genes across 79 tissues in a human microarray panel (25).
Of the 230 LRR genes for which probes were available, 39
showed higher-level expression across neuronal compared with
other tissues (Wilcoxon test, P < 0.05; Fig. S6A), including genes
known to be associated with the CNS such as NTRK2/SLIT and
LRRTM family members, and functionally uncharacterized
ones, e.g., C22orf36 and LRRC49 (Dataset S2H). Of particular
interest are 93 LRR genes exhibiting elevated expression in
immune tissues (Wilcoxon test, P < 0.05; Fig. S6A). These in-
clude, in addition to well studied pattern-recognition molecules
such as TLRs and NLRs, others that are not presently known
to be directly associated with immune function, such as SCRIB
(a PDZ-domain–containing cell-junction protein) and genes in-
volved with nuclear transport (NXF1, ANP32A, B, E; Dataset
S2G). In addition, there is also a significant over-representation
of genes encoding proteins associated with ubiquitin ligase com-
plexes or activities (e.g., PPIL5, SKP2, LRSAM1, FBXL5, FBXL6,
FBXO9, FBXO7, FBXO11, FBXW5; P = 4 × 10−15) in this
immune cluster.

Pathogen-Responsive LRR Gene Expression in Human Primary
Macrophages. To uncover candidate LRR genes that might be in-
volved in host-pathogen innate immune response but have not
been previously identified to have immunologically defined roles,
we examined the expression profiles of a subset of LRR genes
by semiquantitative RT-PCR in primary human macrophages in-
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fected with Staphylococcus aureus, Mycobacterium tuberculosis,
Listeria monocytogenes, enterohemorrhagic Escherichia coli (EHEC),
and Salmonella enterica serovar typhi (S. typhi), across four time
points (0 h, 1 h, 2 h, and 6 h after infection; Fig. 4A). The gene
subset was selected as having possible innate immune involve-
ment based on text mining, Gene Ontology annotations, or expres-
sion profiling. We observed a cluster of LRR genes (LRRC48,
BPI, LRRK2, FLRT3, LRRTM3, TMOD1, NLRP11) that was
strongly induced by L. monocytogenes and EHEC, showing early
and sustained induction across the time periods examined (1 h to
6 h).Another group of genes (PHLPPL, SYNE2, SHOC2, LRRC28)
displayed elevated expression when infected by each of the five
pathogens but exhibited a particularly strong response at 6 h to
EHEC. In contrast, the expression of FBXL11, LRCH4, and
LMOD2 was decreased when infected with S. aureus, M. tuber-
culosis, L. monocytogenes, and EHEC. The expression of NLRP1,
LRRTM2, LRRC59, and NXF1 was induced in response to
M. tuberculosis and S. typhi, but appears to be refractory to the
other infectious agents tested. A strong induction signal for
MFHAS1 was observed with EHEC, L. monocytogenes, S.typhi,
andM. tuberculosis (Fig. 4A andB). Taken together, these findings
suggest that these LRR proteins function as sensors or effectors of
pathogen-mediated stress signals. The precise mechanisms by
which microbial cues are sensed and regulated by these proteins
remain to be determined.

LRR-Containing Protein MFHAS1 Regulates TLR-Dependent Signal
Transduction. We next investigated whether LRR proteins, espe-
cially MFHAS1 (malignant fibrous histiocytoma amplified se-
quence 1), were essential for the activation of TLR-dependent
pathways. For this, we down-regulated MFHAS1 expression in
RAW macrophages using siRNA. siRNA knockdown of MFHAS1
in RAW 264.7 macrophages strongly enhanced IL-6 production
following LPS and polyI:C stimulation (Fig. 4 C and D), suggest-
ing a potential immune modulatory role for MFHAS1. Under
similar experimental conditions, knockdown of CNOT6L did not
alter LPS- and polyIC-mediated TLR activation. Apart from its
LRR domain, MFHAS1 contains one other identifiable and re-
cently described Roco (Ras-like GTPase and C-terminal of Roc)

domain (26), which is also present in a group of LRR proteins in
Dictyostelium and prokaryotes. Although there is currently no
reported involvement of MFHAS1 in host defense processes, the
strong induction of MFHAS1 expression observed following
pathogen challenge (Fig. 4 A and B) is consistent with a role in
immune regulation.

Network Analysis Identifies a Potential Autophagy-Related Role for
the LRR Protein LRSAM1. Previously we identified FNBP1L as
a protein required for anti-bacterial autophagy, based on PPI
data (27). Using a similar approach, we constructed first-order PPI
networks for human LRR proteins to explore whether LRR pro-
teins interacted with components of the core autophagy “machin-
ery.” Interestingly, WDFY3 was the only human LRR protein
that has been previously linked to autophagy (28). From network
analysis, we identified LRSAM1 (leucine-rich repeat and sterile
α-motif containing 1) as a potential interactor with GABARAPL2,
which belongs to the MAP1 LC3/ATG8 family of proteins. RNAi
directed against LRSAM1 resulted in good knockdown for two
duplexes (siRNA1 and 2) and a modest reduction in RNA level
for the third (siRNA3; Fig. S6C). The level of LRSAM1 knock-
down correlated with the level of anti-Salmonella autophagy ob-
served in HeLa cells, with higher knockdown resulting in lower
rates of successful autophagy of intracellular bacteria. This result
was confirmed in three separate experiments and the data pooled
(Fig. 4E). Statistically significant reductions in anti-Salmonella
autophagy were observed in FNBP1L and LRSAM1 (siRNA 1
and 2), but not LRSAM1 siRNA3, compared with control siRNA
duplex transfection. Thus, LRSAM1 has an essential role in anti-
bacterial autophagy.

Discussion
In this report, we have described two approaches for grouping the
human LRR-containing proteins using predicted class assign-
ments for the individual LRRs. For the first approach, we clustered
the proteins based on the sequence similarity of the LRRs be-
longing to each class. As illustrated by the NLR and SLITRK
clusters in Fig. S3 and F-box–containing proteins in Fig. S4, this
method was able to group together proteins with similar function
while distributing the LRR-only proteins among those containing
non-LRR domains, thereby allowing the assignment of putative
functional extensions to LRR-only proteins within these clusters.
This is necessary because, based on the annotations in InterPro,
almost half the 375 human LRR proteins do not contain non-
LRR domains. The absence of these domains from which func-
tional insights could usually be gleaned, limits their characteriza-
tion. Hence, a majority of these LRR proteins have no known
function. On the basis of very similar LRR class composition, we
found CEP72 [an LRR-only protein that was recently implicated
in ulcerative colitis from genome-wide association studies (29)]
clustered with LRRC36 (Fig. S3), an RORγ-binding protein, sug-
gesting a gene-regulatory connection that requires additional func-
tional studies to validate.
For the second approach, we partitioned the LRR proteins

into categories based on the majority LRR class of each protein.
As demonstrated in Fig. 2A, this method yielded categories in
which LRR-only proteins are grouped with non-LRR domains.
These categories also have the potential to yield insights into the
functions of uncharacterized proteins. In particular, as shown in
Fig. 2B, several of the categories are associated with the presence
or absence of TM regions. Further, most of the proteins in the
CC category contain an F-box domain, whereas half the proteins
in the RI category contain a NACHT NTPase domain. Finally,
although the unclassified category contains almost half the LRR
proteins, we still found statistically significant associations with
several ontology terms when we compared the proteins in this
category to those in the remaining categories. Specifically, the
unclassified LRRs exhibit an over-representation of terms related
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to nucleic acid binding and cell structure, whereas the classified
LRR proteins are enriched for terms related to immunity and
receptor-mediated signaling. We also observed that this latter
enrichment is valid for the subset of classified proteins which
contain S or T LRRs. As classified LRRs all contain five or more
LRRs, this observation suggests a possible link between receptor-
mediated signaling and LRR proteins with an S or T LRR and
at least four other LRRs.

To obtain further insight into function, we also examined the
evolutionary profiles of the LRR proteins. We observed striking
differences in the profile for human LRR proteins when com-
pared with those of PDZ and SH2 proteins. In particular, a small
subset of the LRR proteins exhibits strong conservation in fungi
and is enriched for the PANTHER ontology term “nucleic acid
binding.” One of these, NXF1, a nuclear RNA-export factor, was
recently identified in two genome-wide siRNA screens as a host-
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Fig. 4. Identifying genes encoding LRR proteins involved in immunity and antibacterial autophagy. (A) Heat map shows gene expression of LRR genes in
human primary macrophages infected by the indicated pathogens at various time-points: 0 (uninfected) and 1, 2, and 6 h after infection (as examined by RT-
PCR). GAPDH-normalized log2 expression values are expressed as signed difference ratios relative to the uninfected state and scaled by normalizing to the
maximum absolute deviation of each gene’s expression level from the uninfected control, so that all values lie between −1 and +1. (B) Further RT-PCR
validation of a subset of M. tuberculosis–responsive genes from independent set of samples from human primary macrophages uninfected and infected with
M. tuberculosis for 1 and 6 h after infection. Values are GAPDH-normalized log2 fold change relative to uninfected control, performed in duplicate. Error bars
indicate ± SD. (C) Knockdown using siRNA directed against Mfhas1 in RAW 264.7 macrophages enhanced the level of secreted IL-6 production following LPS
and (D) polyIC stimulation, as measured by ELISA. Data from three experiments is shown as mean ± SD. Asterisk indicates P < 0.05 as assessed using two-tailed
t test. RT-PCR validation of siRNA knockdown is shown in Fig. S6B. (E) LRSAM1 is required for antibacterial autophagy. Knockdown of LRSAM1 results in loss
of anti-Salmonella autophagy in HeLa cells. siRNA directed against FNBP1L or LRSAM1 resulted in loss of autophagic membranes surrounding internalized
S. typhimurium. The anti-Salmonella autophagy rate was significantly lower for two of three LRSAM1 duplexes, correlating with effective knockdown at the
RNA level (Fig. S6C). Data are shown as mean ± SE and are pooled from three independent experiments, each counting at least 50 infected cells per condition.
Significance (P < 0.05) was assessed using two-tailed t tests with Bonferroni correction.
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dependency factor for influenza virus (30, 31). We also uncov-
ered an intriguing connection between the class-based LRR
categories and the degrees to which the categories’ members are
conserved. As illustrated in Fig. S5B, we found that the SDS22,
RI, and mixed categories contain very few proteins with high
degrees of conservation (relative to the other LRRs).
Next, we were interested in identifying a subset of LRR genes

in immunity and host defense. To identify bacterial-responsive
LRR genes, we examined expression profiles of LRR genes in
primary human macrophages infected with five pathogenic bac-
teria and across multiple time points using RT-PCR. We iden-
tified MFHAS1 as a candidate gene for further investigation as
a result of its induction response to four of the five pathogens
examined. Validation by siRNA knockdown in RAW macro-
phages places MFHAS1 in the signaling network downstream of
TLR signaling and highlights its potential role as a modulator of
the inflammatory response.
We experimentally validated candidate LRR genes identified

through integrating information from diverse sources including
ontology annotations, literature co-citations, PPI data, and gene
expression microarray data, with the aim of gaining additional
insights for functional exploration. From literature mining, we
note that the LRR protein WDFY3 has been previously impli-
cated to play a role in autophagy by binding to phosphatidyli-
nositol-3-phosphate (Ptdlns3P), which regulates endocytic and
autophagic membrane traffic (28). Extending this search by using
PPI network analysis, we identified LRSAM1 as the only human
LRR protein in the network that potentially interacted with
GABARAPL2, a member of the MAP1 LC3/ATG8 family of
proteins, in the core autophagy apparatus. LRSAM1, also known
as Tal, has a SAM domain and a RING (E3 ubiquitin-protein
ligase) domain, which mediates monoubiquitination of TSG101
at multiple sites and regulates receptor endocytosis by inacti-
vating the ability of TSG101 to sort endocytic and exocytic (as
observed with HIV-1 viral protein) cargos (32). Given this role in
cargo sorting and membrane packaging of cargos, as well as the
known role for bacterial ubiquitination in triggering antibacte-
rial autophagy (33), we postulated that LRSAM1 was a plausible
candidate to operate within the anti-Salmonella autophagy path-
way. Using a functional siRNA approach, knockdown of LRSAM1
resulted in reductions in anti-Salmonella autophagy.
We provide a resource and framework to facilitate the func-

tional understanding of 375 human LRR proteins, many of which
are currently uncharacterized. The results of this study have
contributed to our understanding of how LRR class composition
might be used to facilitate the functional classification of less well
studied LRR proteins alongside those of known function. Using
an integrative approach, we elucidated functions of two LRR
genes in regulating responses to pathogens. First, via expression
profiling of pathogen-responsive LRR genes, followed by func-
tional siRNA, we show that MFHAS1 regulates TLR signaling.
Finally, by using PPI data, we identified LRSAM1 as a component
of the anti-bacterial autophagic response. Together these findings
provide insights into the function and molecular pathways asso-
ciated with LRR proteins.

Materials and Methods
Construction of the LRR HMMs.We extracted for each LRR class the associated
set of LRR sequences in the LRRML database. As LRRML contained no
sequences for the TpLRR class and very few for the PS class, we added to
these classes’ sets sequences obtained from two publications (34, 35), re-
spectively. After removing the duplicate sequences in each set, we used
the remaining sequences to construct a “seed” HMM for each LRR class. To
construct each HMM, we first iteratively aligned and filtered the associ-
ated sequences using Clustalw2 (36) (version 2.09, default options) until no
positions in the resulting alignment were associated with gaps in 95% or
more of the sequences. We then used HMMER (37) (version 2.3.2, default
options) to build and calibrate an HMM from the alignment. As the HMMs

were to be used to annotate the LRRs only in human proteins but the
sequences used to construct the HMMs were not specific to humans, we
modified each HMM by repeating the following steps three times. (i ) With
HMMER, all human UniProt sequences were scanned for matches to the
HMMs using a domain E-value cutoff of 0.1 and a global E-value cutoff of
1 × 1020. (ii) Each matching sequence segment is assigned to the class for
which it has the smallest E-value. (iii ) For each class, the new sequences
were added to those already used to construct the class’s HMM, removing
any duplicates. (iv) As described earlier, we iteratively aligned and filtered
the sequences for each class. The final alignments were used to construct
new HMMs.

Annotation of the LRRs. We first scanned every LRR protein using the LRR
HMMs and compiled a list of all matches with positive scores. We then
identified and scored potential irregular LRRs according to the criteria de-
tailed in SI Materials and Methods. For a given LRR arrangement and reg-
ular LRR class assignment for a protein, we defined the total score for the
protein to be the sum of the LRR scores adjusted for the inter-LRR regions.
We next used an HMM to simultaneously identify the LRR arrangement
and regular LRR class assignment, which maximized the total score for
each protein. Each identified regular and irregular LRRs were rescored
using the LRR HMMs to fine-tune the associated class assignment. LRRs
with negative HMM scores were annotated as irregular. A graphical rep-
resentation of LRR proteins is provided in Dataset S1. For clarity of display,
we merged any overlapping, non-LRR InterPro domains using dependency
or relational terms.

Clustering LRR Proteins Using LRR Sequence Similarity. Sequences of the an-
notated LRRs in LRR proteins were extracted and placed into groups based
on LRR classes. The irregular LRRs constituted a separate class and were
placed in their own group. Similarity scores were then computed for every
pair of LRRs belonging to the same class. For BLAST E-values greater than 1,
the similarity score was defined as 0, whereas for E-values of 0 or lower, the
similarity score was defined as the negative log10 of the E-value. Using
these scores, we next identified for each LRR the best matching LRR in
every protein. For each LRR protein, a similarity score was also computed
for every other LRR protein by summing the scores of the best-matching
LRRs in that protein. To summarize this formally: for each protein i, we
then calculated for every protein j a similarity score si,j equal to the sum of
the scores of the best-matching LRRs in protein j or −∞ if no matching LRRs
existed (in the latter case, we also set sj,i equal to −∞). Using the resulting
similarity scores, we constructed a matrix D = [di,j], where for all i and j, di,j

represented the normalized distance between proteins i and j and is de-
fined by the following formula:

di;j ¼
si; i − si; j

si; i − min
k
fsi; k :−∞< si; k < si; ig if −∞< si; j < si; i;

0 if si; j ¼ si; i;
1 otherwise:

8><
>:

[1]

Next, a symmetric matrix E = (D + DT) / 2 was created. We then used E to
hierarchically cluster the LRR proteins with the method of McQuitty (38) and
the hclust function in the R programming language. The clustering result
was combined with positional information for each LRR class in each LRR
protein using a Perl program and visualized using the representation scheme
described previously (39).

Determining Association Between LRR Categories and TM Regions. For each
LRR category, we computed the P value for the two-sided Fisher exact test,
implemented in the R programming language. A P value of 0.01 was used to
determine statistical significance.

Identification of Enriched PANTHER Ontology Terms. Enrichment of ontology
terms from the PANTHER classification system (24) was computed using
one-sided Fisher exact test implemented in the R programming language.
P values were corrected for multiple-hypothesis testing using the method of
Benjamini and Hochberg (40).

Generation of Evolutionary Profile Heat Maps. Genes for the 375 LRR proteins
were mapped to Ensembl protein IDs. The OrthoMCL database (41) was
queried for each protein to identify orthologues and the organisms in which
orthologues are present. Vectors containing strings of 0s and 1s denoting
the extent of orthologue representation across taxonomic groupings were
constructed and used to hierarchically cluster the LRR genes with Cluster
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3.0 (42). The clustered results were represented using a heat map. To gen-
erate a heat map depicting the relative degrees of conservation of the LRRs,
we also incorporated distances (percent divergences) computed using Clus-
talw2 (36) between LRR proteins and their orthologues (details in SI Mate-
rials and Methods).
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