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The colonization process of the infant gut microbiome has been
called chaotic, but this view could reflect insufficient documentation
of the factors affecting the microbiome. We performed a 2.5-y case
study of the assembly of the human infant gut microbiome, to relate
life events to microbiome composition and function. Sixty fecal
samples were collected from a healthy infant along with a diary of
diet and health status. Analysis of >300,000 16S rRNA genes indi-
cated that the phylogenetic diversity of the microbiome increased
gradually over time and that changes in community composition
conformed to a smooth temporal gradient. In contrast, major taxo-
nomic groups showed abrupt shifts in abundance corresponding to
changes in diet or health. Community assembly was nonrandom: we
observed discrete steps of bacterial succession punctuated by life
events. Furthermore, analysis of ~500,000 DNA metagenomic reads
from 12 fecal samples revealed that the earliest microbiome was
enriched in genes facilitating lactate utilization, and that functional
genes involved in plant polysaccharide metabolism were present
before the introduction of solid food, priming the infant gut for
an adult diet. However, ingestion of table foods caused a sustained
increase in the abundance of Bacteroidetes, elevated fecal short
chain fatty acid levels, enrichment of genes associated with carbo-
hydrate utilization, vitamin biosynthesis, and xenobiotic degrada-
tion, and a more stable community composition, all of which are
characteristic of the adult microbiome. This study revealed that
seemingly chaotic shifts in the microbiome are associated with life
events; however, additional experiments ought to be conducted to
assess how different infants respond to similar life events.
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he assembly of the human gut microbiota begins during birth
with colonization by microbes from the environment. In the
first few hours of life, the mother’s vaginal and fecal microbiomes
are usually the most important source of inoculum (1, 2). During
the initial few months of a milk diet, bacteria such as Bifidobac-
teria, highly adapted to process milk oligosaccharides, can be
abundant (3). The introduction of solid foods heralds a shift to-
ward bacterial consortia characteristic of the adult microbiota (4).
Although before weaning, the diet is a relatively constant supply
of milk, during this time the microbiome can display large shifts in
the abundances of bacterial taxa. For instance, in a time series
analysis of 14 infants, Palmer et al. (4) documented fluctuations in
the abundances of major bacterial taxonomic groups, and the
temporal patterns of variation differed between individuals. In-
terpersonal variation in gut microbial diversity is greater between
infants than between adults, and furthermore, the infant micro-
biome displays more interpersonal variability in functional gene
content than the adult microbiome (5). The large functional and
phylogenetic variation observed between infant gut microbiomes
may be due to random colonization events, differences in immune
responses to the colonizing microbes, changes in host behavior, or
other aspects of host lifestyle (4, 6). How each of these factors
contributes to shaping the infant microbiome remains unclear.
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To investigate how life events impact the developing infant gut
microbiome, we performed a case study to monitor the gut mi-
crobial composition of one infant over a period of 2.5 y. We
analyzed a set of more than 60 fecal samples collected concur-
rently with detailed information regarding diet, health status, and
activities. The infant was a full-term, vaginally delivered healthy
male. He was placed in a daycare facility during weekdays starting
at 3 mo and then removed from group care at 1 y. His diet reg-
imen consisted of exclusive breast-feeding for the first 134 d of
life, supplemented with formula until he was no longer breast-fed
at 9 mo. The first solid food introduced to the diet was rice cereal
at 4 mo, followed by table foods, and the replacement of formula
with cow milk at 1 y. The child suffered from several ear infec-
tions for which he was treated with antibiotics, but was otherwise
healthy, and he was immunized according to the US Centers for
Disease Control and Prevention’s recommended schedule.

We profiled the bacterial diversity of the fecal samples with
454-pyrosequencing: First, we generated 318,620 16S rRNA gene
sequences (Table S1), which we used to map the dynamics of the
developing microbiota onto a timeline of changes in diet and
other life events. On the basis of the patterns observed from the
16S rRNA gene analysis, we performed a metagenomic analysis
of >500,000 sequences from 12 samples to study in greater detail
key transitions in microbial community composition triggered
by life events (Table S2). These data were used to address the
following questions: How does the diversity of the microbiota
relate to the functional gene content of the microbiome over
time? How are the communities that constitute the microbiota
structured? How do changes in diet and events, such as antibiotic
treatment, affect the succession and functions of bacteria con-
sortia? This analysis allowed us to pinpoint specific events (e.g.,
illness, diet change, and antibiotic treatment) likely to have
triggered significant changes in this infant’s intestinal microbiota.

Results
16S rRNA Gene Analysis Reveals Temporal Patterns of Qualitative

Diversity. For each sample, we measured phylogenetic diversity
(PD), the sum of all of the branch lengths in a 16S rRNA gene
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phylogenetic tree: the greater the PD, the greater the diversity
represented in the sample (7). As expected, PD increased over
time and was positively correlated with age (R*> = 0.5; Fig. 1).
The first stool sample produced by the infant (meconium, a tarry
substance consisting of the in utero accumulation of gut luminal
material) had the lowest PD, and the sample with the highest PD
was the mother’s sample collected on the same day. There are
several time points that deviate from the general trend of in-
creasing PD over time (Fig. 1). Day 85, a time point just before
a fever, had a low PD compared with preceding days; day 168,
when peas and formula were introduced to the diet, had a rela-
tively high PD compared with the previous sample day; and day
195 also had a high PD; however, this was not associated with
any documented changes. Two of the three antibiotic treatments
are followed by a decrease in PD relative to previous sample
days. Although PD for day 244 is located on the trend line il-
lustrated in Fig. 1, it is lower than previous sample days. The
second treatment with amoxicillin, however, does not seem to
affect the PD of the infant’s microbiome as judged by 16S rRNA
sequence analysis of sample day 297; this may be an indication of
the adaptive power of the human microbome as it pertains to
multiple exposures to the same antibiotic. Consistent with the
infant’s first amoxicillin treatment, a low PD is observed on days
413, 432, and 441 after the infant’s first exposure to the antibiotic
cefdinir (a broad-spectrum cephalosporin).

In addition to comparing samples using measures of PD, we
performed a principal coordinates analysis (PCoA) of unweighted
UniFrac (8) to determine how the diversity among samples
changed during the sampling period. This analysis showed that the
diversity changed gradually over time (Fig. 2. A-D). Fecal samples
collected early in the time series harbored microbial communities
more similar to one another than to samples collected later on,
and vice versa. The samples that deviate from this diversity gra-
dient, days 413, 432, and 441, are the samples noted above with
a lower relative PD. Samples associated with the same diet are
adjacent in the gradient because they were collected from the
same period in the infant’s life. For instance, breast-milk, formula,
and solid food associated samples form a contiguous pattern in the
PCoA plot (Fig. 2 B-D).

Succession of Bacterial Consortia and Patterns of Quantitative Diversity.
The abundance of operational taxonomic units (OTUs) was as-
sessed across all samples, and OTUs were clustered in a heat
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map according to their cooccurrence (Fig. 34). This clustering
analysis revealed a succession of bacterial communities that re-
solved four discrete phases (steps) initiated by life events (e.g.,
fever at day 92 separates step 1 from step 2, diet change at day 161
divides steps 2 and 3, and antibiotic treatment and adult diet at day
371 divides steps 3 and 4). A linear discriminant analysis (LDA)
was carried out to assess the statistical significance of these four
steps: the a posteriori assignment probabilities of the steps indicate
whether the fecal samples can be properly assigned to the steps
given their community structure. Thus, we assigned the four steps
as a priori categories in the LDA, and the resulting posterior
probabilities for steps 1-4 were 0.90, 0.64, 0.76, and 0.71, re-
spectively (Table S3). These results indicate that the steps can be
differentiated according to the bacterial consortia of their re-
spective fecal samples.

In step 1 (days 3-84; Fig. 34), the gut microbiome comprises
a specific suite of Firmicute OTUs. Step 2 is preceded by an
increase in the abundance of proteobacterial OTUs (days 92—
100), which coincided with fever symptoms. Actinobacterial and
proteobacterial OTU abundances increased in step 2, and the
suite of Firmicute OTUs observed in step 1 differed from those
observed in step 2. The introduction of formula and peas to the
infant’s diet is associated with an increase in bacteroidetes in
step 3 (days 172-297) that continues in step 4 (days 454-838);
however, the specific Bacteroidetes OTUs enriched differ be-
tween these two steps (Fig. 3 A and B). The transition phase
(days 371-441) from steps 3 to 4 is characterized by a number of
environmental changes, including cefdinir treatment for an ear
infection, exclusion of breast milk and formula from the diet, and
an introduction of cow milk and a full adult diet. Interestingly,
the transition phase preceding step 4 comprises OTUs that are
typical of those observed during step 1, and therefore appear as
outliers; again, these are the same samples that are outliers in
the PD and UniFrac patterns (Figs. 1 and 2). Because this is
a case study, we cannot attribute any single life event as the
definitive pressure leading to the formation of the gut micro-
biomes defined within step 4. One scenario is that this change in
the infant’s microbiome may have been induced by a purge in PD
as a result of cefdinir treatment. The microbial landscape in the
gut could then reform according to substrates that are typical of
an adult diet. Regardless, the abundances of bacterial phyla are
relatively constant in step 4: this constancy among samples col-
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Bacterial PD of the infant gut microbiota over time. PD provides a measure of the diversity within a community based on the extent of the 165 rRNA

phylogenetic tree that is represented by that community. Symbols are fecal samples. The mother’s fecal sample, collected at day 3, is denoted as a filled square.

Koenig et al.

PNAS | March 15,2011 | vol. 108 | suppl. 1 | 4579


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1000081107/-/DCSupplemental/st03.doc

L T

z

1\

BN AS  DNAS P

A Age
‘.

L]
° 432
Meconium 441

g

&“‘u

° 413
S
°

PC1 (20%)

838
AgeDays

C Solid food
?

&

© ooS% g

PC1 (20%)
®

° o ° °
®

AgeDays

B Breast milk
‘0 L]
:e 3
e
L]
o O
° 9o
—_ L]
X * M
o L]
o
L]
o o %
o L]
st e
e
°
°® °
° °
® L]
° ° ° °
® L TN ®
AgeDays
D Formula
‘O L]
g s
.D
P ®
o &
o %
— °
* o ®
o °
o
L]
o ° %
o
o. ° °
* e
o
e °
@ °
M L]
° ° ° °
‘. L TN ®
AgeDays

Fig. 2. Community composition changes over time conform to a smooth temporal gradient. Time and PC1 from a PCoA of bacterial communities determined
from 16S rRNA genes are plotted. (A) The color gradient corresponds to time (days): earlier samples are darkest blue, and later samples are paler. The mother’s
sample, in red, was assigned an age of 3 d and clusters along PC1 with the older samples from the infant. (B-D) Same data projection as in A; however, days
for which breast milk was part of the diet are in blue in B, days with solid food (including rice cereal) are green in C, and days with formula are green in D.
Symbols are individual fecal samples; the variance explained by PC1 is indicated on the axis.

lected over more than 400 d is an indication that the infant gut
microbiome has reached a stable state.

Species Cooccurrence and Exclusions. Because our OTU-based
cluster analysis revealed a succession of different microbial
consortia over time (Fig. 34), we tested whether the developing
infant’s gut microbiota was subject to community assembly rules.
Specifically, we invoked two measures that assess OTU cooc-
currence: the C-score and checkerboard measures. The C-score
assesses the tendency for species to exclude one another from
a given niche (9), whereas the number of checkerboard pairs
corresponds to the number of species pairs that never cooccur
(10). To assess the significance of the scores obtained from the
dataset, we compared the C-score and checkerboard indices
from actual data with scores obtained from 5,000 communities
assembled randomly from the same OTU data. The C-score for
the real dataset was 38.97, which is significantly greater than the
simulated mean C-score of 35.98 obtained from the random-
ized data (P < 0.0002). The checkerboard measure for the
microbial communities (2,561.00) was also significantly greater
than the randomized mean checkerboard measure (2, 321.03,
P < 0.0002; Fig. 4 A and B). Together, these ecological meas-
ures indicate that the developing infant gut microbiota is
composed of interacting bacterial consortia, not of randomly
assembled suites of bacteria.

4580 | www.pnas.org/cgi/doi/10.1073/pnas.1000081107

Bacterial Load and Diversity in Relation to Short Chain Fatty Acid
Concentrations. To gain insight into how community structure
relates to microbial metabolite pools, we checked for relation-
ships between bacterial diversity and short chain fatty acid
(SCFA) concentrations in fecal samples (Fig. 5 A-C). Specifi-
cally, we measured the concentration of acetate, propionate, and
butyrate in 56 fecal samples by GC-MS, and bacterial load by
quantitative PCR. Overall, levels of acetate were highest and
butyrate lowest, and levels of all three SCFAs were highly cor-
related with each other (Fig. SB). SCFA levels and bacterial load
were generally higher after the introduction of solid foods (Figs.
S1 and S2). Bacterial diversity was correlated with all three
SCFAs: PC1 of the unweighted UniFrac PCoA was negatively
correlated with all three SCFAs (R2: 0.3, 0.4, and 0.1 for acetate,
propionate, butyrate, respectively, P < 0.001). A regularized ca-
nonical correlation analysis (RCCA) indicated that Bacteroidetes
abundances were positively correlated with all three SCFAs and
most strongly with propionate levels (Fig. 5C and Fig. S3). Ver-
rucomicrobia were also positively correlated with acetate and
propionate levels. In contrast, the abundance of Firmicutes cor-
related negatively with all three SCFAs and most strongly with
propionate. Collectively, these measures suggest that community
assembly is nonrandom and likely reflects syntrophic and antag-
onistic relationships mediated by microbial metabolites.
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Fig.3. OTU-based community structure and composition in the gut microbiota. (A) Each vertical lane corresponds to a sample day, and the gray-scale shaded
rectangles represent the abundance of the different OTUs. The dendogram on the left shows how the OTUs are clustered according to cooccurrence, and
branches are colored to indicate the taxonomical assignment of the OTUs at the phylum level. Samples selected for metagenomic analyses are indicated with
asterixes. (B) Relative abundances of the bacterial phyla in each samples. (C) Significant events pertaining to changes in the infant’s diet are indicated. Steps
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PD of Metagenomic Sequences. Taxonomic assignment was de-
termined using BLASTX (11), and the majority of sequences
were bacterial genes. Low levels of fungi and viruses were also
detected, and Euryarcheaota (Archaea) were detected in all
samples including meconium (<0.01% of sequences). The ma-
jority of DNA sequences extracted from fecal samples collected
at the beginning of the time series (meconium and day 6) were
assigned to the Firmicute phylum (Fig. 64), which is consistent
with our PCR-based 16S rRNA gene survey for day 6 (Fig. S4).
However, our 16S rRNA gene results for days 92-118, which
show an abundance of Firmicute OTUs, are inconsistent with the
abundance of actinobacterial genes obtained from these samples,
likely reflecting 16S rRNA gene primer bias. Furthermore, the
metagenomic analysis recovered fewer proteobacterial genes
compared with the 16S rRNA gene-based analysis. Nevertheless,
the patterns obtained from these two methods are consistent
overall for this time period: the highest levels of actinobacterial
and proteobacterial sequences were observed on sample days
92-118 in both analyses (Fig. S4). Interestingly, day 92, which
was associated with fever, has the highest viral and fungal levels
(Fig. 64). Later in the time series (days 413, 432, and 441 after
diet change and cefdinir treatment), the relative decrease in

Koenig et al.

levels of bacteroidetes OTUs observed by 16S rRNA analysis was
not observed in our BLASTX taxonomic assignment of meta-
genomic sequences (Fig. S4).

Functional Gene Dynamics in the Developing Infant Gut Microbiome.
We used the Meta Genome Rapid Annotation using Subsystem
Technology (MG-RAST) (12) to assign gene functions to the 12
metagenomic samples. A summary of these results is represented
as normalized heat maps, also generated using MG-RAST (Fig.
6B). According to relative abundances of subsystems, samples
clustered into three main groups that reflect the time period of
sample collection (Fig. 6B). We ran bootstrapping and resam-
pling analyses to identify genes that were enriched in samples
relative to an average representation of genes across the 12
samples (Table S4). Analysis of the meconium sample (day 3)
revealed an enrichment of carbohydrate-metabolizing genes in-
volved in lactose/galactose and sucrose uptake and utilization,
genes involved in antibiotic resistance (e.g., ABC transporters),
and virulence genes (e.g., multidrug resistance efflux genes, ad-
hesion proteins, and pathenogenicity islands). Day 6 also had
many of the same enriched gene functions as the meconium
samples, in addition to gene functions associated with cell mem-
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brane and cell wall components (Table S4). Furthermore, on day
6, genes associated with vitamin biosynthesis (e.g., vitamin B12,
folate) were already present in the infant microbiome. By day 85,
carbohydrate-using genes for amylose, arabinose, and maltose
degradation, and virulence genes such as type III and I'V secretion
systems are enriched (Table S4). At day 92, when fever occurred,
enriched eukaryotic rRNA modification genes likely reflect higher
relative levels of fungi (Table S4). Carbohydrate-using genes
enriched on day 92 include rhamnose, fructooligosaccahride and
raffinose-utilization pathways, and xylose-degradation genes.
Enrichment of sialic acid metabolism genes (day 85) and p-
glucoronide utilization genes (day 100) may indicate that the
microbiota is capable of using or mimicking host glycans early in
life. Furthermore, in days 98, 100, and 118, before the introduction
of the first solid food, additional genes for the utilization of plant-
derived glycans, such as xylitol, are present (Table S4).
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Fig. 5. Relationships between phyla abundances and levels of SCFAs in fe-
ces. (A-C) Correlation matrices. (A) Phyla (V, Verrucomicrobia; P, Proteo-
bacteria; F, Firmicutes; C, Cyanobacteria; B, Bacteroidetes; A, Actinobacteria).
(B) SCFAs (A, acetate; P, propionate; B, butyrate). (C) Cross-correlation be-
tween phylum abundances and SCFA concentrations. The color scale indi-
cates that negative correlation values are in blue tones, whereas positive
correlation values are red.
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At the later time points (days 371, 431, 441, and 454) a com-
plement of genes associated with the adult microbiome’s core
metabolic functions, namely polysaccharide breakdown, vitamin
biosynthesis, and xenobiotic degradation, are evident. For instance,
on day 371, genes for the utilization of maltose, maltodextrin, xy-
lose, and mannose, which are polysaccharide breakdown products,
are enriched. In addition, vitamin and cofactor biosynthesis genes
including vitamin B6, thiamin, and flavodoxin are enriched on
these sample days. Finally, genes reflecting the diversity of sub-
strates in an adult diet were recovered; for example, genes for
cinnamic acid degradation (day 432), benzoate catabolism (day
441), and additional enzymes involved in the anaerobic degra-
dation of aromatic compounds (day 454) are present.

Relating Function to Phylogeny in the Infant Gut Microbiome. We
used RCCA to compare samples according to their gene content
(Fig. S3 A-D). One step in RCCA is to correlate the abundances
of phyla (from the phylogenetic assignhment of genes) across
samples; this revealed that the abundances of genes assigned to
the Firmicute, Bacteroidetes, and Euryarcheal phyla were posi-
tively correlated. In addition, the actinobacterial and proteo-
bacterial gene content of samples was positively correlated (Fig.
S3). RCCA resolved clusters of samples and indicated which
functional genes were driving the clustering (Fig. S3 and Tables
S5 and S6). Meconium, day 6, and day 85 form a cluster because
they are enriched in genes taxonomically assigned to the Firmi-
cutes, and their functions include Gram-positive cell wall com-
ponents and central carbohydrate and organic acid metabolism
(Fig. S3 A and B and Table S6). The sample from day 92, as-
sociated with fever, is clearly separated from the other samples in
the analysis because it is enriched with genes assigned to the
fungal phylum (Fig. S3 C and D and Table S6). The following
days (98, 100, and 118) also separate from other metagenomic
samples and are characterized by genes encoding ABC trans-
porters and assigned phylogenetically to the Actinobacteria and
Proteobacteria, (Fig. S3D and Table S6). Interestingly, the abun-
dance of actinobacterial and proteobacterial genes is strongly
negatively correlated to the abundance of Firmicute genes. Days
371, 432, 441, and 454 are clustered because of their Bacter-
oidetes gene content, and this pattern is driven by an enrichment
in genes related to carbohydrate fermentation, Gram-negative
cell wall, and capsule formation (Fig. S3 4 and B and Table S6).

Discussion

An essential goal of the human microbiome project is to un-
derstand the assembly and community composition of the
microbiota, not only to gain a better understanding of our own
biology, but also because the microbiome is implicated in human
health (13). Gut microbiotas can contribute to excess host adi-
posity (14-16), protect against the development of type 1 di-
abetes (17), and induce colitis (18) and metabolic syndrome (19).
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Fig. 6. Metagenomic analysis of DNA sequences extracted from infant fecal DNA. (A) Taxonomic assignment of metagenomic sequences. (B) Heat map and
hierarchical clustering of samples based on MG-RAST subsystem gene content.

Thus, the microbiota has been suggested as a target for thera-
peutic intervention for several chronic diseases (13, 20-22).
Adult microbiotas are thought to be relatively stable over time (14,
23, 24); this stability imparts resilience to disturbance, ensuring
continued gut function. In a disease context, however, such sta-
bility and resilience could be detrimental if the gut community is
pathogenic. Understanding the succession of bacterial consortia in
the human gut during childhood may help in the development of
strategies to guide the formation of health-promoting microbiotas
that could then be maintained throughout the life of the host.

Our study of the gut microbiome of one infant followed over
a 2.5-y period allowed an in-depth look into the dynamics of a de-
veloping intestinal ecosystem in relation to known disturbances.
We observed a gradual increase in diversity over time, related to
a gradual change in community diversity. Superimposed on these
patterns of gradual change are the effects of life events, such as
drastic diet changes or antibiotic treatments, which result in large
shifts in the relative abundances of taxonomic groups. The quali-
tative measures of diversity, such as PD and UniFrac, responded
to time, but the quantitative measures, such as the specific abun-
dances of OTUs assembled into consortia of interacting species,
responded to life events. Additional studies considering multiple
subjects will assess whether infant microbiomes respond consis-
tently to the same life events.

Our metagenomic analyses provided additional insight into the
dynamics of the developing microbiome. For instance, the infant
suffered a fever at day 92, during the exclusively breast-milk—fed
period, which is followed by a shift in the abundances of a specific
suite of OTUs. Fungal and viral genes were enriched at that time,
suggesting a transient imbalance in the microbiota that might have
been directly related to the fever. Another noteworthy observation
was that genes facilitating the breakdown of plant-derived poly-
saccharides were present during this period, despite an exclusive
breast-milk diet. This second observation is consistent with other
metagenomic analyses of infant gut microbiomes, which reported
microbial enzymes that degrade nondigestible polysaccharides of
plant origin (2, 5). Together these studies suggest that the infant
microbiome is metabolically ready for receiving simple plant-de-
rived foods, such as rice cereal. This may explain why the in-
troduction of rice cereal did not result in detectable changes in the
16S rRNA gene profiles in this intant’s gut microbiome.

The introduction of peas and formula, followed by other table
foods, may have been the cause of a codominance of the Bacter-
oidetes and Firmicutes and enrichment in functional genes char-
acteristic of the adult gut microbiome. In addition to carbohydrate-
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using genes used for the breakdown of plant polysaccharides,
functional genes present in the weaned infant microbiome in-
cluded those involved in the breakdown of xenobiotic compounds
and in vitamin biosynthesis. The abundances of bacterial phyla
were relatively constant after weaning, indicating that the infant
gut microbiome has reached a stable state. Together these results
suggest that the 2.5-y-old human gut microbiome has many of the
functional attributes of the adult microbiome.

The fine-scale temporal sampling allowed us to test whether
the gut microbial community was subject to ecological assembly
rules over time. The C-score and checkerboard analyses, which
test for species cooccurrence and exclusion, strongly support
a nonrandom pattern of community assembly. The human gut
microbiota is known to be composed of syntrophic partners (25),
as well as competing members (26, 27). Such ecological inter-
actions likely underlie the nonrandom associations of species
constituting the microbiota.

The introduction of table foods was followed by a large shift in
phyla abundances within the infant’s microbiome, in addition to
increased bacterial loads and SCFA levels. Although specific
members of the Firmicute phylum, such as Roseburia spp., are
known to produce butyrate and respond to carbohydrate levels in
the diet (28), this analysis did not detect positive relationships
between Firmicute OTUs and SCFA levels, perhaps because
a wide variety of gut bacteria can produce these metabolites.
However, our 16S rRNA gene analysis showed a dramatic and
sustained increase in the abundance of Bacteroidetes immedi-
ately after the introduction of peas and other table foods to the
diet. The Bacteroidetes are specialized in the breakdown of
complex plant polysaccharides (29); the introduction of plant-
derived carbohydrates into the diet could have boosted pop-
ulations of Bacteroidetes, which is consistent with mouse micro-
biome studies (30). The metabolic activities of these Bacteroidetes
may have either directly or indirectly increased production of
SCFAs. Consistent with these observations, low levels of Bacter-
oidetes in the gut are correlated with obesity, which itself may
result from a diet low in plant-derived polysaccharides (23, 31).
Thus, together these results further support the notion that a diet
high in plant material promotes a microbial community structure
and metabolite production that is beneficial to the human host.

This study revealed the power of sampling a microbiome over
time to gain insight into the events that can alter its phylogenetic
and functional composition. Our results complement those of
Palmer et al. (4), who documented large compositional shifts in
the abundances of major bacterial taxa over time in 14 babies,
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which they postulated could be a reflection of life events. We
also observed large shifts in the abundances of major groups;
interestingly, these shifts are associated with life events, such as
illnesses, dietary changes, and antibiotic treatment, suggesting
that differences in the colonization patterns of multiple babies
would most likely reflect differences in their daily lives. Indeed,
future temporal human microbiome studies should be performed
in parallel to assess whether individual microbiomes respond
differently to the same disturbances.

Methods

Samples and DNA Extraction. This study was approved by the Internal Review
Board of Washington University in St. Louis (protocol no. 09-0039), and
samples were transferred to Cornell University under protocol no.
0910000952. Fecal samples were collected from a full-term, healthy infant
during diaper changes. The birth was vaginal, no antibiotics were adminis-
tered to the mother or the baby at birth, and the mother was antibiotic-free
for the duration of the pregnancy. Samples were immediately frozen upon
collection at —20 °C, then transferred to the laboratory and maintained
at —80 °C until processing. Frozen samples were ground under liquid N,
then a subsample of ~100 mg was used for whole-community DNA extrac-
tion. A 100-mg aliquot of each homogenized sample was suspended while
frozen in a solution containing 500 mL of DNA extraction buffer [200 mM
Tris (pH 8.0), 200 mM Nacl, and 20 mM EDTA], 210 mL of 20% SDS, 500 mL of
a mixture of phenol/chloroform/isoamyl alcohol (25:24:1), and 500 mL of
a slurry of 0.1-mm-diameter zirconia/silica beads (BioSpec Products). Micro-
bial cells were then lysed by mechanical disruption with a bead beater
(BioSpec Products) set on high for 2 min (22 °C), followed by extraction with
phenol/chloroform/isoamyl alcohol and precipitation with isopropanol. The
quantity and quality of purified DNA was assessed using the Quant-iT
PicoGreen dsDNA Assay Kit (Invitrogen) and a plate reader.

Sample Preparation for 454 Pyrosequencing of 16SrRNA Genes. 165 rRNA genes
were amplified from each sample using a composite forward primer and
a reverse primer containing a unique 12-base barcode, which was used to tag
PCR products from respective samples (31). We used the forward primer 5'-
GCCTTGCCAGCCCGCTCAGTCAGAGTTTGATCCTGGCTCAG-3': the italicized se-
quence is 454 Life Sciences primer B, and the bold sequence is the broadly
conserved bacterial primer 27F. The reverse primer used was 5-GCCT-
CCCTCGCGCCATCAGNNNNNNNNNNNNCA-TGCTGCCTCCCGTAGGAGT-3": the
italicized sequence is 454 Life Sciences’ primer A, and the bold sequence is the
broad-range bacterial primer 338R. NNNNNNNNNNNN designates the unique
12-base barcode used to tag each PCR product (31, 32), with “CA" inserted as
a linker between the barcode and rRNA primer. PCR reactions consisted of
HotMaster PCR mix (Eppendorf), 200 uM of each primer, and 10-100 ng
template, and reaction conditions were 2 min at 95 °C, followed by 30 cycles
of 20 s at 95 °C, 20 s at 52 °C, and 60 s at 65 °C on an Eppendorf thermocycler.
Three independent PCRs were performed for each sample, combined and
purified with Ampure magnetic purification beads (Agencourt), and pro-
ducts visualized by gel electrophoresis. No-template extraction controls were
analyzed for lack of visible PCR products. Products were quantified using
Quant-iT PicoGreen dsDNA assay as described above. A master DNA pool was
generated from the purified products in equimolar ratios to a final concen-
tration of 21.5 ng mL™". The pooled products were sequenced using a Roche
454 FLX pyrosequencer at the Cornell University Life Sciences Core Labora-
tories Center.

16S rRNA Gene Sequence Analysis. Sequences generated from pyrosequencing
barcoded 16S rRNA gene PCR amplicons (average length 237 nt; Table S1)
were analyzed using default settings in the open source software package
Quantitative Insights Into Microbial Ecology (QIIME; http://giime.source-
forge.net). 16S rRNA gene sequences were assigned to OTUs using the QIIME
implementation of cd-hit (33) and a threshold of 97% pairwise identity.
OTUs were classified taxonomically using the Ribosomal Database Project
(RDP) classifier 2.0 (34). A single representative from each OTU was aligned
using PyNast (35) to build the phylogenetic tree used to for measuring the
PD of samples (7) and unweighted UniFrac (36).

1. Gueimonde M, et al. (2006) Effect of maternal consumption of lactobacillus GG on
transfer and establishment of fecal bifidobacterial microbiota in neonates. J Ped
Gastroenterol Nutr 42:166-170.

2. Vaishampayan PA, et al. (2010) Comparative metagenomics and population dynamics
of the gut microbiota in mother and infant. Genome Biol Evol 2010:53-66.
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Cooccurrence analysis. The C-score and checkerboard indices (9) were determined
using a null hypothesis of random community assembly, whereby 5,000 ma-
trices were randomly generated from the 16S rRNA gene 0.97 OTU data with
EcoSim Version 7.0. C-score and checkerboard distributions and P values were
determined from the simulations using EcoSim’s default settings.

Clustering analysis. Rarified (randomly subsampled to normalize sequence
counts) OTUs, with an abundance greater than 5% and present in two or
more samples, were hierarchically clustered using Kendall’s © similarity
metric. The Self Organizing Map was generated using 20,000 iterations, also
using the Kendall’s © similarity metric, in the freeware Cluster 3.0 (http:/
www.falw.vu/~huik/cluster.htm). Heat map graphics were generated using
JavaTreeView (37). An LDA was carried out in R for studying multivariate
clustering of fecal samples according to their associated microbiotas (abun-
dances of different RDP-assigned classes).

Metagenomic Analysis of the Infant Gut Microbiome. A metagenomic analysis
was used to assess the diversity of microbial genes within the infant gut
microbiome at different sample days. We studied three time periods: the early
infant gut microbial communities (the meconium at day 3, and day 6), days
associated with fever (days 85-118), and one time range associated with cef-
dinir treatment and diet change (days 371-454). Twelve whole-community
fecal DNA samples were barcoded, pooled, and shotgun sequenced using the
Roche-454 Titanium pyrosequencer. After filtering low-quality reads, we ob-
tained a total of 482,919 sequences (Table S2).

Metagenomic sequences were trimmed using the CLC Genomic Work
Bench 3.0. The minimum allowable sequences length was 100 bp, quality
score limit was 0.05, only two ambiguous nucleotides were permitted
per sequence, and a hit limit of moderate was used to identify and remove
vector sequences. The 454 replicate filter software (38) was used to remove
sequences that were artificially replicated during the sequencing protocol.
Filtered nucleotide metagenomic sequences were compared with the Sep-
tember 27th, 2009 version of the National Center for Biotechnology In-
formation nonredundant database (nr) using BLASTX (11), and results were
visualized in MEGAN (39) to determine the taxonomic distribution of genes
in each library (i.e., the best BLASTX result using a maximum e-score of 107>
was used as an approximation for the taxonomic origin of a given sequence).
Metagenomic sequences were functionally annotated using MG-RAST (http:/
metagenomics.nmpdr.org), built as a modified version of the RAST server (12).
Normalized heat maps were also generated using MG-RAST, and the different
gene pool arrays were hierarchically using Cluster 3.0. An RCCA was performed
to highlight correlations between the phylum abundance matrix (X of order
n x p) and the gene functions matrix (Y of order n x q) retrieved from met-
agenomics as well as bacterial phyla and SCFAs using the R software CCA
package (40). Regularization parameters L, and A, were chosen to maximize
the leave-one-out cross-validation score (41).

Quantitative PCR Analysis. Real-time PCR amplification and detection were
performed using an ABI 7300 Real Time PCR System (Applied Biosystems). We
used the Power Sybr Green PCR Master Mix (Applied Biosystems), including
0.2 uM of 16S rRNA primers 8F (5 AGAGTTTGATCCTGGCTCAG) and 338R (5’
CTGCTGCCTCCCGTAGGAGT). Cycling conditions included an initial incuba-
tion of 50 °C for 2 min, denaturing at 95 °C for 10 min, then 40 cycles of 95 °C
for 155, 60 °C for 1 min, and a dissociation curve step of 95 °C for 15s, 60 °C
for 30 s, and 95 °C for 15 s.

SCFA Analysis. For each sample, 200 mg of frozen feces was vortexed for 1 min
in 1% HCl. Isotope-labeled SCFAs were added in a final concentration of 5 mM
[1-'3C] acetate, 1 mM [?Hs] propionate (Cambridge Isotopes), and 1 mM [?Hs]
propionate (Sigma Aldrich). Homogenized samples were centrifuged at
2,350 x g for 30 s. Supernatant was acidified to pH 0 with HCl. Each sample
was partitioned into four aliquots and extracted at 4 °C with an equal vol-
ume of diethyl ether. Samples were incubated with 1-tertbutyl-dimethyl-
silyl-imidazole (Sigma Aldrich) at 60 °C for 30 min before GC-MS analysis
(Agilent 5975C Series; Agilent Technologies).
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