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ABSTRACT

Phenotypic switching has been observed in laboratory studies of yeast and bacteria, in which the rate of
such switching appears to adjust to match the frequency of environmental changes. Among possible
mechanisms of switching are epigenetic influences on gene expression and variation in levels of meth-
ylation; thus environmental and/or genetic factors may contribute to the rate of switching. Most previous
analyses of the evolution of phenotypic switching have compared exponential growth rates of non-
interacting populations, and recombination has been ignored. Our genetic model of the evolution of
switching rates is framed in terms of a mutation-modifying gene, environments that cause periodic
changes in fitness, and recombination between the mutation modifier and the gene under selection.
Exact results are obtained for all recombination rates and symmetric fitnesses that strongly generalize
earlier results obtained under complete linkage and strong constraints on the relation between fitness and
period of switching. Our analytical and numerical results suggest a general principle that recombination
reduces the stable rate of switching in symmetric and asymmetric fitness regimes and when the period of
switching is random. As the recombination rate increases, it becomes less likely that there is a stable
nonzero rate of switching.

IN large populations subject to mutation between
alleles under selection that is constant over time,

mutation–selection equilibria can be stable. In the
neighborhood of such a stable equilibrium, if an allele
at a locus that controls the rate of mutation is intro-
duced, this allele will invade if it reduces the mutation
rate (Liberman and Feldman 1986). This is one ex-
ample of the reduction principle for constant selection
regimes (Feldman and Liberman 1986). This ap-
proach, using the selectively neutral genetic modifiers
of parameters such as mutation, recombination, and
migration that are important features of the evolu-
tionary process, can be viewed as an alternative to an
approach using evolutionary stable strategies (ESS)
(Maynard Smith 1978) or to finding critical points
of the mean fitness (Karlin and McGregor 1972,
1974).

It has become usual to denote the gene on which
selection occurs directly as the major gene (or in the
case of recombination modification, genes) and the
locus that controls the parameter of interest as the mod-
ifier gene (e.g., Feldman et al. 1997). If a new mutation
at the modifier gene is introduced during a transient

phase of evolution, rather than near an equilibrium, the
fate of the modifier mutant may be quite different: for
example, an allele that causes reduction of recombina-
tion will succeed if it is introduced near stable linkage
disequilibrium, but if it arises at a phase of the dynamics
where the major loci are proceeding toward fixation,
increase of recombination may occur and the reduction
principle does not necessarily hold (Maynard Smith

1980, 1988; Bergman and Feldman 1990). The evolu-
tion of modifiers of mutation, recombination, or migration
rates when the regime of selection on the major gene(s)
is not constant over time has seen far less mathematical
or even numerical analysis than the case of constant
selection. Early numerical work by Charlesworth

(1976) showed the failure of the reduction principle
for recombination under some patterns of cyclically
fluctuating abiotic selection.

Host–parasite systems may produce cyclical dynamics
that have features similar to those of cyclically fluctu-
ating abiotic selection. The evolution of host recom-
bination in a host–parasite cyclical system has been
addressed by Hamilton (1980) and most recently by
Gandon and Otto (2007). Hamilton used a mean fit-
ness argument to demonstrate an advantage to hosts
with higher recombination, and Nee (1989) used a sim-
ilar approach in finding that mutation rates should in-
crease in both host and parasite. Gandon and Otto

(2007) showed that alleles at a recombination-modifying
locus that increased recombination could succeed
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in such host–parasite models. Mutation-increasing al-
leles may be favored in similar models, as shown by
Haraguchi and Sasaki (1996) and M’Gonigle et al.
(2009). The latter authors also showed that under host–
parasite cycling, increasing recombination between the
mutation modifier and the gene under selection in the
host decreased the stable mutation rate.

With increasing empirical interest in epigenetics,
there has been a flurry of activity surrounding ‘‘stochas-
tic switching,’’ a phenomenon observed in some studies
of Saccharomyces cerevisiae, Escherichia coli, or Bacillus
subtilis, where individual cells switch cyclically between
different inheritable phenotypes (Thattai and van

Oudenaarden 2004; Kussell and Leibler 2005; Acar

et al. 2008). For example, experiments by Balaban et al.
(2004) show that switching between phenotypes may
differ between different genetic strains of E. coli. The
same group analyzed a mathematical model of this
system and showed that the optimal rate of phenotypic
switching was strongly dependent on the frequency of
environmental changes but only weakly dependent on
the strength of selection in any single environment
(Kussell et al. 2005). Earlier theoretical treatments by
Ishii et al. (1989) and Lachmann and Jablonka (1996)
also found that optimal switching rates depended on
the distribution of environmental periodicities.

Phenotypic switching may be an example of an epi-
genetic effect, for example based on methylation (Lim

and van Oudenaarden 2007). There is some discussion
as to the fraction of such epigenetic effects that
are transgenerational (e.g., Youngson and Whitelaw

2008) and, to the extent that they are, what their evo-
lutionary effects might be (Bonduriansky and Day

2009). Most theoretical treatments of phenotypic
switching have assumed that the organism is asexual
and that the numbers of individuals grow exponen-
tially (e.g., Kussell et al. 2005, p. 1809; Gaál et al.
2010). These studies usually do not specifically include
genetic contributions to the rate of switching; excep-
tions are the analyses by Ishii et al. (1989) and Salathé

et al. (2009), both of which took fitness to be the
phenotype that switches and allowed the rate of
switching to be under the genetic control of a muta-
tion-modifying locus. If switching is epigenetic and
heritable, it is reasonable to propose that it is at least
partially under genetic control. Further, if phenotypic
switching involves epigenetic regulation of gene ex-
pression, and if this epigenetic phenomenon occurs in
sexual species (e.g., Rakyan et al. 2003; Henderson

and Jacobsen 2007), it is also reasonable to investigate
the importance of recombination between genes
contributing to the phenotype and those contributing
to the rate of switching. As pointed out by Lynch

(2007, p. 89, Table 4.1) the importance of recombina-
tion in the evolution of prokaryotes has been sub-
stantially underestimated. Inclusion of the mutation
modifier and recombination carries the evolution of

phenotypic switching into the corpus of evolutionary
population genetics.

One of the earliest studies of this problem in the
framework of theoretical population genetics was by
Ishii et al. (1989), who studied a haploid locus with two
alleles A and a, whose fitnesses were 1 1 s(t) and 1� s(t),
respectively, at generation t with s(t) allowed to fluctuate
through time with average zero. A second locus with
alleles B and b controlled the (bidirectional) mutation
rate between A and a, and the recombination rate
between the two genes was r. Selection changed cycli-
cally. In the case of complete linkage (r¼ 0), they found
that the ESS mutation rate maximized the long-term
geometric mean population fitness. For r . 0 their
analysis depended on the symmetric selection coeffi-
cient, s, being >1/n, where 2n is the period of the
selection cycle. The recombination r also appeared
through the size of the product rn. Their numerical
analysis suggested that in this symmetric case, no matter
what the value of r, if selection was strong enough
(s large enough), the value 1/n for the mutation rate
could not be invaded. The analysis by Lachmann and
Jablonka (1996) did not involve a modifier (and hence
recombination was irrelevant) but found, similarly to
Ishii et al. (1989), that in the symmetric selection case
the (fitness) optimum mutation rate was �1/n. They
also claimed that this result held in asymmetric fitness
regimes. An important qualitative interpretation of this
result is that if the mutation rate is initially low enough,
a modifier allele that increases the mutation rate can
invade. Thus, violations of the Feldman–Liberman re-
duction principle (Feldman and Liberman 1986) for
constant environments are to be expected in cyclically
varying environments.

A numerical treatment by Salathé et al. (2009) of the
symmetric case confirmed the evolutionary stability of a
mutation rate of �1/n in a deterministically cycling
environment of period n generations. However, if the
time in each environment is random, then even in the
symmetric case the stable mutation rate can be vastly
different from 1/n (Salathé et al. 2009, Figure 1). Fur-
ther, if the fitnesses of A relative to a in environment 1
and a relative to A in environment 2 are not exactly the
same, i.e., there is no symmetry, then for a wide range
of selection coefficients and initial mutation rates, a
mutation-reducing modifier allele will succeed, poten-
tially taking the switching rate to zero. Gaál et al. (2010)
proved a parallel set of results in the asexual exponen-
tial growth framework.

Our goal in this article is to study mutation modifica-
tion as a mechanism for the control of phenotypic
switching where the phenotype is fitness. We obtain
complete analytic results for period 2n ¼ 2 or 2n ¼ 4
with symmetric fitnesses and recombination, where the
stable values of the mutation rate m are 1.0 and 0.5,
respectively. We also investigate an interesting property
of the period, namely that there is a mathematical
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difference between the cases in which the selection
regime changes after an odd or an even number of
generations. We find that in general the presence of
recombination makes it more unlikely that there is a
stable nonzero mutation rate, whether the cycle period
is fixed or random. As the rate of recombination in-
creases, the extent of departure from symmetric fit-
nesses that permits a stable nonzero mutation rate
becomes smaller.

REFERENCE MODEL: CONSTANT ENVIRONMENT

Consider a population of haploids large enough that
genetic drift can be ignored. Fitness is determined by
the alleles A and a at the major locus, and linked to this
locus, with recombination fraction r, is a modifier locus
with alleles M and m that produce mutation rates mM

and mm, respectively. The mutation rates from A to a
and a to A are the same. The four genotypes AM, Am,
aM, and am have frequencies x1, x2, x3, and x4, respec-
tively, and fitnesses w1, w2, w3, and w4, where, because
the modifier locus is selectively neutral, we have w1¼ w2

and w3 ¼ w4. Then the frequencies x91; x92; x93; and x94
in the next generation are

wx91 ¼ ð1� mM Þw1ðx1 � rDÞ1 mM w3ðx3 1 rDÞ
wx92 ¼ ð1� mmÞw2ðx2 1 rDÞ1 mmw4ðx4 � rDÞ
wx93 ¼ ð1� mM Þw3ðx3 1 rDÞ1 mM w1ðx1 � rDÞ
wx94 ¼ ð1� mmÞw4ðx4 � rDÞ1 mmw2ðx2 1 rDÞ; ð1Þ

where D¼ x1x4� x2x3 is the linkage disequilibrium, and
the normalizing factor w is

w ¼
X4

i¼1

wixi � rDðw1 � w2 � w3 1 w4Þ ¼
X4

i¼1

wixi ; ð2Þ

because of our fitness assumptions. We have assumed
that the life cycle begins with a diploid phase during
which there is Mendelian segregation with recombina-
tion followed by selection on the haploid phase after
which there is mutation. Recombination, or homolo-
gous exchange, is an important step in this life cycle for
a vast array of organisms, including microbes (Lynch

2007, pp. 88–95).
In the absence of the modifier allele m (in which case

recombination has no effect), the transformation (1) is
linear fractional; that is, the transformation is of the
form x91 ¼ a 1 bx1ð Þ= g 1 dx1ð Þ, where a, b, g, and d are
constants, and we have used x3 ¼ (1 � x1). This allows
complete determination of the global dynamics of (x1,
0, x3, 0). We can summarize these dynamics as follows.
When allele M is fixed, there is a unique globally stable
equilibrium x* ¼ x1*; 0; x3*; 0ð Þ, where x1* ¼ 1� x3* ¼
u*= 1 1 u*ð Þ and u* is the unique positive root of

Q ðuÞ ¼ mM w1u2 1 ð1� mM Þðw1 � w3Þu � mM w3 ¼ 0:

ð3Þ

We have x1* . x3* if (1 � 2mM)(w1 � w3) . 0 and x1* , x3*
if (1 � 2mM)(w1 � w3) , 0.

The evolution of mutation is determined by the
stability of x1*; 0; x3*; 0ð Þ to the introduction of allele m,
that is, whether m will increase in frequency when
introduced close to this equilibrium. The local stability
of this equilibrium to invasion by Am and am is de-
termined by the linear transformation

w*x92 ¼ ð1� mmÞw2ðx2 1 rD*Þ1 mmw4ðx4 � rD*Þ
w*x94 ¼ ð1� mmÞw4ðx4 � rD*Þ1 mmw2ðx2 1 rD*Þ; ð4Þ

where

w* ¼ w1x1* 1 w3x3*; D* ¼ x1*x4 � x3*x2: ð5Þ

From (4), the matrix L associated with this linear
transformation is

1

w*
ð1� mmÞw2 � r ð1� mmÞw2 � mm w4½ �x3* mmw4 1 r ð1� mmÞw2 � mm w4½ �x1*

mmw2 1 r ð1� mmÞw4 � mmw2½ �x3* ð1� mmÞw4 � r ð1� mm Þw4 � mmw2½ �x1*

� �
:

ð6Þ
The stability of this point is determined by the eigenvalues
ofL, which satisfy the equation M zð Þ ¼ det L� zIð Þ ¼ 0,

Figure 1.—Comparison of @l1=@mm evaluated at mm ¼
mM ¼ m (solid curves) and @w*=@mM (shaded curves) for
n ¼ 3. In all plots, s1 ¼ 10�1 whereas s3 ¼ 10�1, 10�0.8, and
10�0.6, in the top, middle, and bottom plots, respectively.
The vertical line is located at m ¼ 1/n ¼ 1

3 .
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where I is the 2 3 2 identity matrix. The positive
eigenvalue of L is ,1 if M(1) . 0 and M9(1) . 0 and is
.1 if M(1) , 0. In the former case, m cannot invade, while
in the latter case x1*; 0; x3*; 0ð Þ is unstable and m invades.
After a considerable amount of algebra we find the
following.

Result 1. The equilibrium x* ¼ x1*; 0; x3*; 0
� �

is stable
if mm . mM and unstable if mm , mM. For all recombination
rates, a modifier allele that reduces the mutation rate will
invade.

We can also show that the mean fitness w* at
x1*; 0; x3*; 0
� �

is a decreasing function of mM.
This reduction principle in constant environments

was proved for selection on diploids and any number of
alleles at the mutation-controlling gene by Liberman

and Feldman (1986).

CHANGING ENVIRONMENTS:
INITIAL EQUILIBRIUM

Assume that in each generation the genotypic fit-
nesses change. At generation i, for i ¼ 1, 2, . . . , k, the
fitness parameters are

gamete : AM Am aM am
fitness : wi

1 wi
1 wi

3 wi
3;

ð7Þ

where again we assume M and m do not affect fitness.
At the beginning of generation i, for i¼ 1, 2, . . . , k, the

population state is given by the frequency vector
x ¼ x1; x2; x3; x4ð Þ, and at the beginning of generation
i 1 1 it is given by x9 ¼ x91; x92; x93; x94

� �
, where x9 ¼ T i xð Þ

and Ti is given by the system (1) with fitnesses (7):

wix91 ¼ ð1� mM Þwi
1ðx1 � rDÞ1 mM wi

3ðx3 1 rDÞ
wix92 ¼ ð1� mmÞwi

1ðx2 1 rDÞ1 mmwi
3ðx4 � rDÞ

wix93 ¼ ð1� mM Þwi
3ðx3 1 rDÞ1 mM wi

1ðx1 � rDÞ
wix94 ¼ ð1� mmÞwi

3ðx4 � rDÞ1 mmwi
1ðx2 1 rDÞ: ð8Þ

The normalizing factor is wi ¼ x1 1 x2ð Þwi
1 1 x3 1 x4ð Þwi

3

and the linkage disequilibrium is D ¼ x1x4 � x2x3.
If the population state at the beginning of the k-

generation process is xo ¼ xo
1; x

o
2; x

o
3; x

o
4

� �
, then after

generation k it is xk ¼ xk
1; x

k
2; x

k
3; x

k
4

� �
where xk ¼ T xoð Þ

and the transformation T is given by the composition
of the k transformations:

T ¼ T k+T k�1+ � � �+T 1: ð9Þ
The combined mean fitness associated with the trans-
formation T from xo to xk is

w ¼ wðxkÞ ¼
Yk

i¼1

wiðxiÞ: ð10Þ

To study the evolution of mutation, we first consider a
population where only the M allele is present at the
modifier locus. Let Si be the transformation associated

with Ti restricted to the two gametes AM and aM only.
Then Si, for i ¼ 1, 2, . . . , k, is given by

wixi11
1 ¼ ð1� mM Þwi

1xi
1 1 mM wi

3xi
3

wixi11
3 ¼ ð1� mM Þwi

3xi
3 1 mM wi

1xi
1; ð11Þ

with wi given by

wi ¼ wi
1xi

1 1 wi
3xi

3; i ¼ 1; 2; . . . ; k: ð12Þ

The ‘‘total’’ k-generation transformation restricted to
AM and aM is S ¼ Sk+Sk�1+ � � �+S1.

In (11) we can use the ratio ui ¼ xi
1=xi

3 instead of xi
1

and xi
3, and similarly ui11 ¼ xi11

1 =xi11
3 . Then the trans-

formation Si is

ui11 ¼ f iðuiÞ ¼ ð1� mM Þwi
1ui 1 mM wi

3

mM wi
1ui 1 ð1� mM Þwi

3

; i ¼ 1; 2; . . . ; k:

ð13Þ
Thus, the total k-generation transformation on the
boundary where only M is present is the composition
f ¼ f k+f k�1+ � � �+f 1.

Note that f ið�Þ is a linear fractional transformation.
One of the properties of such a transformation is that its
composition over k generations is also a linear fractional
transformation. Hence the total k-generation transfor-
mation f can be written as

uk ¼ f ðuÞ ¼ auo 1 b

cuo 1 d
; ð14Þ

where, since the coefficients in (13) are positive for 0 ,

mM , 1, the coefficients a, b, c, and d are also positive.
Now we can analyze the evolutionary process in terms of
this k-generation transformation (14), and since it is
linear fractional it converges to a unique stable equilib-
rium. Thus, ultimately the population converges to a
k-step trajectory loop determined by the stable state of
this k-step compound linear fractional transformation.
In fact, u*, the stable state of the k-step process, is the
unique positive root of

Q ðuÞ ¼ cu2 1 ðd � aÞu � b ¼ 0: ð15Þ

Using the same notation as in Result 1, this equilibrium
can be expressed as x* ¼ x1*; 0; x3*; 0ð Þ, and it can be
shown to be globally stable.

CHANGING ENVIRONMENTS: EXTERNAL STABILITY

To explore the dynamics of switching, and in particular
to find an evolutionarily stable switching rate (if it exists),
we study the external stability of the unique internally stable
equilibrium x* to invasion by the new mutation modifying
allele m. The mutation rate mM produced by allele M
will be evolutionarily stable if allele m cannot invade
when mm . mM or mm , mM. Therefore we analyze the
external stability of x* as a function of the difference
between the new mutation rate mm and the resident
rate mM. This will give us the direction of evolution of
the switching.
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A population starting from the equilibrium x* sat-
isfies x* ¼ T x*ð Þ ¼ T k+T k�1+ � � �+T 1 x*ð Þ; that is,
after k generations of change it will end up again at x*.
Take x ¼ x* 1 e as a ‘‘starting’’ population state near
x*, where e ¼ e1; e2; e3; e4ð Þ with ei ‘‘small’’ and
e1 1 e2 1 e3 1 e4 ¼ 0 so that x9 ¼ T x ¼ x* 1 e9. We work
with the linear transformation ‘‘near’’ x*; that is, up to
nonlinear terms,

x9 ¼ x* 1 e9 ¼ x* 1L*eT ; ð16Þ

where L* is a matrix that depends on x* and may be
obtained as a combination of the matrices of similar
linear approximations across the k generations. The
stability of equilibrium x* to the introduction of allele m
is determined by the eigenvalues of the matrix L*.

This scenario is well known from modifier theory
(Feldman 1972; Feldman et al. 1980; Feldman and
Liberman 1986), and the matrix L* is also known to
have the structure

1 3 2 4

L* ¼
Lin

* *

* *

0 0

0 0
Lex

2
6664

3
7775

1

3

2

4

;
ð17Þ

where we have swapped columns 2 and 3 and rows 2 and
3 to show the structure. The entries marked * do not
affect the eigenvalues of L*.

The eigenvalues of L are therefore those of the
submatrices Lin and Lex, where Lin determines the
internal stability of x*, confined to the boundary with
only M present. As x* is assumed to be stable there, these
eigenvalues are less than one in magnitude. Lex is the
linear approximation of evolution near x*, which
involves only the gametes Am and am and is a combina-
tion of the matricesLex

i , for i¼ 1, 2, . . . , k, that describe
the changes in generation i when allele m is rare.

In fact, from (8) we have

wiLex
i

¼
ð1� mmÞwi

1 � r ð1� mmÞwi
1 � mmwi

3

� �
xi

3 mmwi
3 1 r ð1� mmÞwi

1 � mmwi
3

� �
xi

1

mmwi
1 1 r ð1� mmÞwi

3 � mmwi
1

� �
xi

3 ð1� mmÞwi
3 � r ð1� mmÞwi

3 � mmwi
1

� �
xi

1

" #
:

ð18Þ
We set x* ¼ x1 and describe the following generations
by x2; . . . ; xk. The normalizer in generation i is

wi ¼ wiðxiÞ ¼ wi
1xi

1 1 wi
3xi

3: ð19Þ

As each of the matricesLex
1 ;Lex

2 ; . . . ; Lex
k is positive,Lex is

also positive, and, by the Perron–Frobenius theory, the
largest eigenvalue ofLex is positive. Some properties ofL
are documented in supporting information, File S1, Part I.

The external stability of x* depends on the magni-
tude of the positive, and largest, so-called Perron–
Frobenius eigenvalue of Lex. If this eigenvalue is ,1,
x* is externally stable and allele m cannot invade near

x*, and if it is .1, x* is externally unstable, and m enters
the population and increases in frequency.

The characteristic polynomial of Lex, namely C(z) ¼
det(Lex � zI), is quadratic in z with a positive z2

coefficient. Therefore the largest positive eigenvalue
of Lex is ,1 when C(1) . 0 and C9(1) . 0, and it is .1
when C(1) , 0. It seems impossible to compute C(1)
and C9(1) in general. We are, however, able to derive
analytical results in some special cases that are discussed
in the following sections.

CYCLICALLY FLUCTUATING ENVIRONMENTS: PERIOD 2

Suppose that the selection regime alternates between
two states as specified in (20) below.

genotype AM Am aM am
fitness regime 1 w1 w1 w3 w3

fitness regime 2 ŵ1 ŵ1 ŵ3 ŵ3:
ð20Þ

Environments alternate, producing a cycle with period 2.
We first characterize the unique stable equilibrium

x* ¼ x1*; 0; x3*; 0ð Þ on the boundary where only M is
present. On this boundary the two transformations S1

and S2 of (11) are

S1/
w1y1 ¼ ð1� mM Þw1x1 1 mM w3x3

w1y3 ¼ ð1� mM Þw3x3 1 mM w1x1
ð21Þ

and

S2/
w2x19 ¼ ð1� mM Þŵ1y1 1 mM ŵ3y3

w2x39 ¼ ð1� mM Þŵ3y3 1 mM ŵ1y1
; ð22Þ

where x1 and x3 are the frequencies of AM and aM,
respectively, at the beginning of generation 1, y1 and y3

at the end of generation 1, and x91 and x93 at the end of
generation 2. The mean fitnesses are

w1 ¼ w1x1 1 w3x3; w2 ¼ ŵ1y1 1 ŵ3y3: ð23Þ

This cycle repeats with period 2, and the combined one-
cycle transformation S ¼ S2+S1, on the boundary where
M is fixed, is

S/

w1w2x91 ¼ ð1� mM Þ2w1ŵ1 1 m2
M w1ŵ3

� �
x1

1 mM ð1� mM Þw3ðŵ1 1 ŵ3Þx3

w1w2x93 ¼ ð1� mM Þ2w3ŵ3 1 m2
M w3ŵ1

� �
x3

1 mM ð1� mM Þw1ðŵ1 1 ŵ3Þx1:

ð24Þ

The normalizing factor w ¼ w1w2 is the cycle mean fitness
and can be expanded as

w ¼ ½ð1� mM Þ2w1ŵ1 1 m2
M w1ŵ3 1 mM ð1� mM Þw1ðŵ1 1 ŵ3Þ�x1

1 ½ð1� mM Þ2w3ŵ3 1 m2
M w3ŵ1 1 mM ð1� mM Þw3ðŵ1 1 ŵ3Þ�x3

ð25Þ

¼ ŵ1w1x1 1 ŵ3w3x3 1 mM ðŵ3 � ŵ1Þðw1x1 � w3x3Þ: ð26Þ

The linear fractional transformation during the two
generations, S, described in (14), is
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u9 ¼ f ðuÞ

¼ ð1� mM Þ2w1ŵ1 1 m2
M w1ŵ3

� �
u 1 mM ð1� mM Þw3ðŵ1 1 ŵ3Þ

mM ð1� mM Þw1ðŵ1 1 ŵ3Þu 1 ð1� mM Þ2w3ŵ3 1 m2
M w3ŵ1

� � ;
ð27Þ

where u ¼ x1=x3 and u9 ¼ x91=x93.
The stable equilibrium x* ¼ x1*; 0; x3*; 0ð Þ with x1* ¼

u*=ð1 1 u*Þ and x3* ¼ 1=ð1 1 u*Þ satisfies u* ¼ u9 ¼
f(u*) and is the unique positive root of the quadratic
equation Q(u) ¼ 0, where

Q ðuÞ ¼ mM ð1� mM Þw1ðŵ1 1 ŵ3Þu2

1 ð1� mM Þ2ðw3ŵ3 � w1ŵ1Þ1 m2
M ðw3ŵ1 � w1ŵ3Þ

� �
u

� mM ð1� mM Þw3ðŵ1 1 ŵ3Þ: ð28Þ

We now check the external stability properties of x*,
that is, its stability to invasion by m when m is introduced
near x*. Evolution of the mutation rate is determined by
the external stability properties of x*, that is, its stability to
invasion by m when m is introduced near x*. In File S1 we
show that m will invade (i.e., mm invades mM) if M(1) , 0,
where

M ð1Þ ¼ ðmm � mM Þð1� r ÞD
x1*

; ð29Þ

and D ¼ D(r, mm) is shown in File S2 to be a bilinear
function of r and mm in 0 # r # 1 and 0 # mm # 1.

In general it is very complicated to compute M(1),
unless we assume that the fitnesses are symmetric; that is,
ŵ1 ¼ w3 and ŵ3 ¼ w1, which allows a complete analysis
of M(1) and the external stability of x*. For general r,
mm, and mM, we refer to Numerical Analysis, below. We
are able to obtain complete results when there is absolute
linkage between the two loci (r¼ 0) and mm¼ 0 or mm¼ 1.
When r ¼ 0, the matrix Lex ¼ L̂L, with w* the product
of w1 and w2 at equilibrium, is given in File S1, Part II by

w*Lex ¼
ð1� mmÞ2w1ŵ1 1 m2

mw1ŵ3 mmð1� mmÞw3ðŵ1 1 ŵ3Þ
mmð1� mmÞw1ðŵ1 1 ŵ3Þ ð1� mmÞ2w3ŵ3 1 m2

mw3ŵ1

� �
:

ð30Þ

When either mm¼ 0 or mm¼ 1,Lex is a diagonal matrix,
and its eigenvalues are

l0
1 ¼

w1ŵ1

w*
; l0

2 ¼
w3ŵ3

w*
for mm ¼ 0;

l1
1 ¼

w1ŵ3

w*
; l1

2 ¼
w3ŵ1

w*
for mm ¼ 1: ð31Þ

The magnitude of the leading eigenvalue depends
on the asymmetry of the parameters ŵ1 and ŵ3, with
respect to w1 and w3. This asymmetry may be represen-
ted by the parameter

d ¼ w3ŵ3 � w1ŵ1: ð32Þ

As the fitnesses are relative, and hence determined up to
a multiplicative positive constant in each generation,

d ¼ 0 implies that ŵ3 ¼ w1 and ŵ1 ¼ w3, namely com-
plete symmetry between the two alleles A and a, whereas
d 6¼ 0 implies asymmetry.

When d ¼ 0 (i.e., the symmetric case ŵ3 ¼ w1; ŵ1 ¼
w3 discussed in the next section), it turns out that l0

1

and l0
2 are ,1, whereas at least one of the eigenvalues

l1
1 and l1

2 is .1. Therefore when mm¼ 0, x* is externally
stable for all 0 , mM # 1, and when mm ¼ 1, x* is never
stable when 0 # mM , 1. Thus when r ¼ 0, a mutation-
reducing allele cannot invade. The results are sensitive
to the asymmetry measure d, as is discussed in greater
detail later.

THE SYMMETRIC CASE WITH PERIOD 2

In the symmetric case where the selection regime
alternates each generation, we have ŵ1 ¼ w3; ŵ3 ¼
w1 ðd ¼ w3ŵ3 � w1ŵ1 ¼ 0Þ, and we can present a com-
plete external stability analysis of the equilibrium x*. In
the symmetric case, the fitness parameters fluctuate
between generations such that

genotype AM Am aM am
odd generation fitness w1 w1 w3 w3

even generation fitness w3 w3 w1 w1

; ð33Þ

where, of course, we assume w1 6¼ w3. The unique
internally stable equilibrium x* ¼ x1*; 0; x3*; 0ð Þ on
the boundary where only allele M is present can be
represented as x1* ¼ u*=ð1 1 u*Þ, x*

3 ¼ 1=ð1 1 u*Þ,
where u* is the unique positive root of the quadratic
Equation 15, which becomes

Q ðuÞ ¼ ð1� mM Þw1u2 1 mM ðw3 � w1Þu � ð1� mM Þw3 ¼ 0: ð34Þ

In File S3 we use (34) to analyze the factors in (29).
From (29), M(1)¼ 0 when r¼ 1, in which case the larger
eigenvalue is 1. When 0 # r , 1, the sign of M (1)
depends on the signs of (mm � mM) and the sign of D ¼
D (r, mm). In fact we show in File S3 that the bilinear
function D(r, mm) is always negative in the symmetric
case. As an immediate consequence of this, together
with the representation of M(1) given in (29), we secure
the following result.

Result 2. The internally stable equilibrium is externally
stable when mM . mm and is unstable when mM , mm for all
0 # r , 1. Thus with symmetric changing environments,
higher mutation rates are favored.

As in the case of constant environments, Result 2
accords with the behavior of the mean fitness at
equilibrium as a function of the resident mutation rate.
With symmetric changing environments we can show
the following.

Result 3. The mean fitness w*¼w*(mM) at equilibrium is
a monotone increasing function of the mutation rate mM.
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The proof of this result can be found in File S4.

THE SYMMETRIC CASE WITH PERIOD 4

The fitnesses of the genotypes can be represented as
follows:

genotype AM Am aM am
generation 1 w1 w1 w3 w3

generation 2 w1 w1 w3 w3

generation 3 w3 w3 w1 w1

generation 4 w3 w3 w1 w1:

ð35Þ

In this case, on the boundary where M is fixed, the
four-generation recursion is

wx9 ¼ T 2+T 2+T 1+T 1ðxÞ; ð36Þ

where, as in (21) and (22),

T 1 ¼
ð1� mM Þw1 mM w3

mM w1 ð1� mM Þw3

� �
;

T 2 ¼
ð1� mM Þw3 mM w1

mM w3 ð1� mM Þw1

� �
; ð37Þ

and the four-generation normalization factor is then

w ¼ w2
1w2

3 1 mM ð1� mM Þw1w3ðw1 � w3Þ2

1 mM ð1� mM Þðw1 1 w3Þ2ðw1 � w3Þðw1x1 � w3x3Þ:
ð38Þ

Our argument proceeds in much the same way as for the
symmetric model with period 2. First we show in File S5,
Part I that when r ¼ 0,

ðw1 � w3Þðw1x1*� w3x3*Þ. 0; ð39Þ

where x1*; x3*
� �

denotes the equilibrium of the four-
generation transformation. Hence, from (38)

w $ w2
1w2

3: ð40Þ

We now turn to the external stability of x1*; 0; x3*; 0
� �

,
which is determined by the eigenvalues of Lex. When
mM ¼ 0, we can write

w*Lex ¼
w3 0
0 w1

� �2 w1 0
0 w3

� �2

¼ w2
1w2

3 0
0 w2

1w2
3

� �
;

ð41Þ

and when mM ¼ 1,

w*Lex ¼
0 w1

w3 0

� �2 0 w3

w1 0

� �2

¼ w2
1w2

3 0
0 w2

1w2
3

� �
:

ð42Þ

But by (40), w* . w2
1w2

3, and therefore x* is externally
stable when either mM ¼ 0 or mM ¼ 1. In other words, if

0 , mM , 1, then a new mutation-modifying allele
cannot invade x* if it produces mutation rates that are
too high or too low. This leaves open the possibility that
there might be an intermediate value of the mutation
rate mM that gives rise to an equilibrium x* on the M-
fixed boundary that cannot be invaded. The first
indication that mM ¼ 1

2 is this value is suggested by the
following.

Result 4. In the period 4 symmetric case, if r¼ 0, the mean
fitness w* ¼ w*(mM) achieves a maximum at mM ¼ 1

2 .

The proof is in File S5, Part II.
If mM ¼ 1

2 , then the single-generation transforma-
tions are very symmetric, and the equilibrium on the
M-fixed boundary has x1* ¼ 1

2 ¼ x3*. To examine the
invasion by mm 6¼ 1

2 we evaluate the external stability of
x* ¼ 1

2 ; 0; 1
2 ; 0

� �
. The eigenvalues of the linear ap-

proximation Lex near x* are the roots of M (z) ¼ 0,
where M (z) can be expressed as

M ðzÞ ¼ ðw*zÞ2 � ðw*zÞðA 1 DÞ1 AD � BC ; ð43Þ

where the entries of Lex, A, B, C, D are all positive. As
before, one eigenvalue is positive, and it can be shown
that detLex ¼ AD � BC ¼ 1� 2mmð Þ4w4

1w4
3 . 0. Hence

both eigenvalues are positive. The larger one is ,1 if
M(1) . 0, which is shown to be the case in File S5, Parts
III and IV. This allows us to claim the following.

Result 5. In the period 4 symmetric case with 0 # r # 1, the
mutation rate mM ¼ 1

2 cannot be invaded by mutation rates
either . or ,1

2.

For cycles of period m ¼ 2n, when r ¼ 0, we can show
that if 0 , mM # 1, a modifier allele m that produces
mm ¼ 0 cannot invade. If n is even we are also able to
prove that allele m with mm¼ 1 cannot invade. It remains
to prove the latter result for odd values of n, and we see
in numerical analysis that this could be difficult.

THE MEAN FITNESS AND EIGENVALUE CRITERIA

The analyses by Ishii et al. (1989) and Gaál et al.
(2010) formulated the dynamics of M and m, the
mutation-controlling alleles, in terms of the numbers
of each genotype. In particular, when r ¼ 0, Ishii et al.
concluded that the criterion for invasion and long-term
increase of m in a population monomorphic for M
could be obtained from the limiting geometric mean of
the mean fitnesses at each generation. This allowed
them to state that when r¼ 0, the uninvadable mutation
rate ‘‘maximizes the long-term geometric average of
population fitness’’ (Ishii et al. 1989, p. 165). This harks
back to early analyses on neutral modifiers of recombi-
nation and the mean fitness principle of Karlin and
McGregor (1972, 1974), who hypothesized that unin-
vadable values of neutral modifiers of recombination,
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mutation, and migration also maximized the mean
fitness.

Our criterion for initial increase is in terms of the
local stability of the equilibrium x1*; 0; x3*; 0

� �
, where x1*

and x3* are functions of mM, to invasion by m. This
invasion is determined by the leading eigenvalue l of
the local stability matrix that gives the frequencies of Am
and am near x1*; 0; x3*; 0

� �
, and l must be a function of

both mm and mM. As pointed out above, the relevant
properties of l are expressible in terms of properties
of M(l), the characteristic polynomial of the local
stability matrix Lex. The value of mm that makes
@l=@mm jmm¼mM

¼ 0 will be the stable value of the muta-
tion rate.

We write the local stability matrix for local dynamics of
Am, am near x1*; 0; x3*; 0

� �
as

Ã
w*

B̃
w*

C̃
w*

D̃
w*

" #
; ð44Þ

where the entries Ã; B̃; C̃; D̃ are defined by the contin-
ued operation of the linear fractional transformation
corresponding to Lex, w* is a function of mM, and the
tilde indicates that the numerators of all entries are
functions of mm. We can write the characteristic poly-
nomial M(l) of matrix (44) as

M ðlÞ ¼ ðlw*Þ2 � ðlw*ÞðÃ 1 D̃Þ1 ÃD̃� B̃C̃: ð45Þ

From (45) we can calculate @l/@mm.
For the initial equilibrium x1*; 0; x3*; 0

� �
, where allele

m is absent, we have 
x1*
x3*

!
¼

Â
w*

B̂
w*

Ĉ
w*

D̂
w*

" # 
x1*
x3*

!
; ð46Þ

where the circumflex indicates that the numerators are
functions of mM. From (46), the matrix has an eigen-
value of 1, and we have

ðw*Þ2 � w*ðÂ 1 D̂Þ1 ðÂD̂� B̂ĈÞ ¼ 0: ð47Þ

The stationary values of w* with respect to mM can be
obtained by differentiating Equation 47 with respect to
mM and finding values of mM such that @w*/@mM ¼ 0.
The relationship between mutation values, which max-
imize the mean fitness, and the uninvadable value of m

that sets @l=@mm jmm¼mM
¼ 0 is given by the following.

Result 6. Mutation rates mM that are critical points of the
mean fitness w* in the case r ¼ 0 also entail that at mm¼ mM,
@l/@mm ¼ 0.

The proof is in the appendix. Figure 1 plots @w*/@mM

and @l/@mm for n ¼ 3, and the two derivatives are seen
to vanish at the same value of the mutation rate. The
proof of Result 6 actually makes no use of the symmetry

of the fitnesses, so Result 6 is also true for asymmetric
fitnesses.

NUMERICAL ANALYSIS

Result 2 entails that in the symmetric case d ¼
w3ŵ3 � w1ŵ1 ¼ 0, for period 2 (n ¼ 1) for all values of
the recombination rate, nonzero values of the resident
mutation rate mM will be invaded by allele m that gives
rise to a higher mutation rate; i.e., mm . mM. The
mutation rate will therefore go on increasing to its
maximum of 1. A similar result for period 4 (n ¼ 2),
namely Result 5, tells us that for all r, values of mM , 1

2
will be invaded by higher values mm . mM, but values of
mM . 1

2 will be invaded by lower values of mm. There are
no constraints on the strength of the symmetric selec-
tion as were required in the analysis by Ishii et al. (1989).
There have been suggestions in the literature that the
stability of the mutation rate m ¼ 1/n for the symmetric
model cycles with period 2n holds for larger values
of n (Ishii et al. 1989; Lachmann and Jablonka 1996).
For the asymmetric model, with d 6¼ 0, however,
Salathé et al. (2009) showed that the situation was
much more complicated and that if the asymmetry
was large enough, zero was the stable mutation rate;
mutation provided no advantage with fixed or random
period cycles. Further, with stochastic environments and
a rate of environmental change of 1/n every generation,
the stable switching rate can be up to two orders of
magnitude lower than 1/n (Salathé et al. 2009, Figure
1). In addition, we noted after Result 5 above that even in
the case r ¼ 0, if n is odd there may be some anomalies.

We have therefore explored three effects numerically:
the role of n and in particular whether it is odd or even,
the role of asymmetry in the cycling fitness values
(extending Salathé et al. 2009), and the effect of
recombination between the major locus and the muta-
tion modifier. The equilibrium x1*; 0; x3*; 0ð Þ is found
numerically and for given parameter values, the matrix
Lex is determined numerically together with its eigen-
values. The leading eigenvalue l1 is numerically differ-
entiated with respect to mm and the derivative evaluated
at mM¼mm, where as we showed in (29) the eigenvalue is
1. The sign of @l1=@mm jmM¼mm

then tells us whether a
larger or smaller value of mm will produce l1 . 1 and
hence cause m to invade. Thus, points where @l1/@m

crosses zero with a negative slope indicate values of mM

that cannot be invaded by any nearby value of mm. These
values of mM can be regarded as evolutionarily stable.
These results are summarized in Figure 2.

Figure 2 extends Figure 2 of Salathé et al. (2009) by
exhibiting the roles of recombination and asymmetry
on the stable mutation rate. We point out first that the
first row of graphs in Figure 2 represents results for n¼ 2
(i.e., period 4 case) and we see that with perfect sym-
metry in the cycling fitnesses, the mutation rate 1

2 is
stable for all recombination rates, verifying Result 5 for
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all r. In what follows, we use the notation w ið Þ
1 ¼ 1� s1;

w ið Þ
3 ¼ 1 for n generations with w ið Þ

1 ¼ 1; w ið Þ
3 ¼ 1� s3 for

the next n generations. Thus, s1 ¼ s3 corresponds to
perfect symmetry in selection regimes (Salathé et al.
2009). Note that in all graphs with r ¼ 0 and in many of
the others, there is an interval of asymmetry in the
selection coefficients s1 ¼ 1 � w1 and s3 ¼ 1 � w3 in
which there is a stable nonzero mutation rate. As n and r
increase, the stable nonzero mutation rate with s1 ¼ s3

decreases. For r ¼ 0 and small s1 and s3, the extent of
asymmetry that allows a stable nonzero mutation rate
does not change much with n, whereas for the r . 0
values shown in Figure 2 it is very sensitive to n.

To ascertain that the existence of a range of asymme-
try permitting a stable nonzero mutation rate was not an
artifact of the numerical procedure, for r ¼ 0 the n ¼ 2
and n ¼ 3 cases were repeated using a very accurate nu-
merical derivative [complex step derivative (Squire and
Trapp 1998)] and a finer array of s3 values for s1 ¼ 0.01
and s1 ¼ 0.1. The n ¼ 2 results are in Figure 3 where
there can be no doubt that this band of asymmetric
fitnesses allowing a stable mutation rate at or very close
to 1

2 really exists. We see that in Figure 3, A and B, @l1/

@m is positive for m , 1
2 and negative for m . 1

2 when s1¼ s3

and that m-values near 1
2 are stable for a range of m-values

that decreases as the asymmetry increases, with m ¼ 0
becoming stable when the asymmetry is too great. The
width of the band of stability is a little ,1 log10 fitness
unit in both Figures 3 and 4. Figure 4 shows the same
effect for n¼ 3. In Figure 4, A and B, @l1/@mm¼ 0 occurs
close to mm ¼ 1

3 , but not exactly at 1
3 , which would be the

case if 1/n were the evolutionarily stable mutation rate.
Figures 5 and 6 offer another view of the stability/

invasibility parameter ranges. Figure 5 sets r ¼ 0 while
r ¼ 0.3 in Figure 6. In these figures, the solid areas have
the leading eigenvalue ,1, while it is .1 in the open
regions. In the first row of both figures we see first the
stability of m ¼ 1

2 , and as s3 increases the black area
under the separating diagonal reflects the range of
stable mutation rates near 1

2, which disappears when s1¼
0.01 and s1 ¼ 0.03, leaving zero as the stable mutation
rate. In general, we see that when s3 is different from s1,
an unstable equilibrium in m appears below the stable
equilibrium. If the mutation changes in sufficiently small
steps, then m can be trapped below the unstable equilib-
rium and evolve to 0. As long as the rate may take larger

Figure 2.—Evolutionarily stable mu-
tation rates as a function of the selec-
tion coefficients for the disfavored
allele in each environment, s1 ¼ 1 �
w1 and s3 ¼ 1 � w3, which are plotted
logarithmically. The number of genera-
tions in each environment, n, is given at
the left. The recombination rate be-
tween the major locus under selection
and the modifier locus is given at the
top. The colors denote the stable muta-
tion rate and are given in units of the
canonical predicted rate of 1/n in the
colorbar at the bottom; white is a rate
of 1/n, shades of red are rates .1/n,
and blues are rates ,1/n. Black denotes
evolution to zero mutation rate.
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steps, and if the rate remains below 1
2 , it will eventually

converge to the stable equilibrium. As s3 increases further,
the stable and unstable equilibria annihilate one another
and m goes to 0, if it remains below 1

2 .
With n odd, the complication alluded to after Result 5

becomes visible: the first columns of Figures 5 and 6
show the symmetric model, and the second and fourth
rows are examples with n odd. With n¼ 3 we see a stable
value of the mutation rate ,1

2 and near 1
3. In general,

when n is odd, and r ¼ 0, an unstable equilibrium value
of m appears with m . 1

2 . Thus, larger values of m may
also be invadable by even larger values, depending on
the difference between the resident mM and the in-
vading mm. The domains of attraction in the asymmetric
cases can become very complicated; compare s3¼ 0.015,
n ¼ 3, and r ¼ 0 with r ¼ 0.3. Note that with n ¼ 20 and
21, r ¼ 0.3 forces stability of m ¼ 0 for most cases, while
with r¼ 0, s3¼ 0.015, and n¼ 21, there is a range of high
mutation rates that will be invaded by even higher
(although unrealistic) mutation rates. Examination of
Figures 5 and 6 suggests that if both mutation rates mM

and mm are very small, odd and even values of n give
qualitatively similar results. For values of mM and mm ,
1
2 , the patterns for n ¼ 2 and n ¼ 3 are similar for both
r ¼ 0 and r ¼ 0.3. In the unrealistic range of mutation
rates .0.5, n ¼ 2 and n ¼ 3 show different patterns

of invasibility with m ¼ 1 stable for n ¼ 3 but not for
n ¼ 2.

For large values of s1 and s3 the range of asymmetry
that allows a stable nonzero mutation rate increases as n
increases, but for given n, it decreases as r increases.
Note that for larger recombination rates and larger n,
the stable mutation rates, if different from 0, are >1/n.
Comparing the effect of recombination when n is small
with that when n is large, we have an indication from
Figure 5 (r ¼ 0) and Figure 6 (r ¼ 0.3) that increasing
recombination makes it more likely that the mutation
rate will decrease.

Salathé et al. (2009) showed for the symmetric
selection case that if the period of the cycle was a
gamma-distributed random variable, the stable switch-
ing rate dropped precipitously as the variance in the
cycle period increased, compared to the case where the
period was fixed at the mean of the gamma distribution.
Figure 7 illustrates the interaction between recombina-
tion and variance in the cycle period. The effect of
recombination on the evolutionarily stable mutation
rate is striking: with r ¼ 0.2, for example (second panel
from the right in Figure 7), none of the mutation rates
near 1/n that are stable when the period is fixed at 2n
(red–pink in the leftmost panel) are stable. Moving
from left to right in Figure 7, recombination is seen to
strengthen the effect of randomness in the period seen
by Salathé et al. (2009, Figure 1) in shifting the stable
mutation rate to substantially ,1/n. It is reasonable to
expect that with asymmetries in fitness, recombination
would also enhance the tendency of variance in the

Figure 3.—Plot of the derivative of the leading eigenvalue,
l1, with respect to mm evaluated at mM ¼ mm ¼ m when n ¼ 2
and r ¼ 0. (A) s1 ¼ 1 � w1 ¼ 10�1 and the lines from shortest
dashes to longest dashes are s3 ¼ 1 � w3 ¼ 10�1, 10�0.9, 10�0.8,
10�0.7, 10�0.6, and 10�0.5. (B) s1¼ 0.01 and the lines from short-
est dashes to longest dashes are s3 ¼ 10�2, 10�1.9, 10�1.8, 10�1.7,
10�1.6, and 10�1.5. The vertical line is located at m ¼ 1/n ¼ 1

2 .

Figure 4.—(A and B) The same as Figure 3, except n ¼ 3.
The vertical line is located at m ¼ 1/n ¼ 1

3 .

846 U. Liberman, J. Van Cleve and M. W. Feldman



cycle period to decrease the evolutionarily stable rate of
phenotypic switching.

DISCUSSION

The contribution of epigenetic phenomena to both
statistical and dynamic properties of phenotypic varia-
tion has received much recent attention. In general, the
two aspects, statistical and dynamic, have been well
separated. The statistical treatment by Slatkin (2009)
quantifies the contribution of epigenetic change to
disease risk, where the epigenetic effect could be
mutational and act on gene expression. Another recent
analysis by Danchin and Wagner (2010) introduces
transmitted epigenetic variance as well as ‘‘culture’’
through transmitted social variance into calculations
of heritability; addition of these effect leads them to
‘‘inclusive heritability,’’ which they define as all in-
herited components of phenotypic variance. Their
framework is a special case of early work on the
contributions of cultural inheritance to estimated her-
itability by Cavalli-Sforza and Feldman (1978) and
Feldman and Cavalli-Sforza (1979) that predates the
current interest in cultural inheritance as a possible
cause of transgenerational epigenetics.

Such statistical treatments usually do not include
recombination as a force that affects the genetic or epi-
genetic contributions to phenotypic variance. For ex-

ample, multilocus evolutionary simulation studies by
Feinberg and Irizarry (2010) of epigenetic variation
were stimulated by findings of dietary modification of
DNA methylation of the Agouti gene in mice and meth-
ylation of the Axin-fused allele in kinked-tail mice
(Cooney et al. 2002; Rakyan et al. 2003; Waterland

and Jirtle 2003). Recombination was not included in
the simulations by Feinberg and Irizarry.

Studies motivated by the adjustment by microorgan-
isms of their gene regulation to environmental change,
such as those mentioned in the Introduction, ignore
recombination because it is assumed to be rare in the
bacteria, yeast, or cellular populations on which the
models are based. As a general rule, these models take
populations of cells that do not compete and compare
their exponential growth dynamics under different
conditions. Thus, the recent study by Leibler and
Kussell (2010) focused on the historical phenotypic
states of a population of nonrecombining cells, and
fitness in different populations was measured as a
property of these histories. Recombination would be
difficult to include in such a treatment for the same
reason that coalescent analysis in genetics is compli-
cated by recombination and selection. Similarly Gerland

and Hwa (2009) measure the success in populations of
cells subject to mutation by the genetic load, namely the
reduction below the maximum fitness possible caused
by deleterious mutations in a single population. Here

Figure 5.—Pairwise invasibility plots
for mutation rate modifier. Combina-
tions of resident mutation rate mM

and invading mutation rate mm in the
open regions yield a leading eigenvalue
.1 in absolute magnitude; the leading
eigenvalue is ,1 in the solid regions.
We assume that w1 ¼ 1 � s1 and w3 ¼
1� s3 and set s1¼ 0.01. Each row denotes
a different value for n, the number of
generations in each environment. The
recombination rate is set to r ¼ 0. Note
that the x- and y-axes are logarithmically
scaled from 10�2 to 0.5 and from 1 �
10�2 to 1 � 0.5.
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again the analysis is in terms of a single gene, and re-
combination does not enter into the dynamics of the
different mutational states. However, Lynch (2007,
p. 89) points out that ‘‘recombination at the nucleotide
level does not appear to be exceptionally low in pro-
karyotes when compared to that in multicellular species.’’

Inclusion of recombination between the locus under
selection and the locus that controls the mutation rate is
important but greatly increases the difficulty of exact
analysis when the selection fluctuates over time. For-
mally the reason for this is that at r ¼ 0 the recursion
system is linear fractional, and iterates of linear frac-
tional transformations remain linear fractional, even if
the parameters are not constant over time. In particular,
this guarantees that we can model the starting point of
the modification process as the unique stable trajectory
of the compound linear fractional system. The initial
dynamics of the rare mutation-modifying allele can then
be analyzed as in Liberman and Feldman (1986). The
argument makes use of the positivity of the initial
increase matrix specified by Lex (Equations 17–19).
When r . 0, the linear fractional structure is replaced by
a much more complicated dynamical iteration whose
properties are difficult to discern in general. With suf-
ficiently weak selection and small values of jmM � mm j,
however, M’Gonigle et al. (2009) made considerable
progress in the case where cycling was due to host–
parasite interactions.

Our analysis of the symmetric cases with n ¼ 1 and 2,
corresponding to periods 2 and 4, respectively, for the
fitness cycle, confirms results found numerically by Ishii

et al. (1989). They were able to study the system an-
alytically in these cases under one of two restrictive
conditions: the weak selection limit s>1=n (where, in
our terminology, s1¼ 1� w1, for example, as in Figures 1
through 7) or s1 close to 1 (which entails in our
terminology that 1 � w1 � 0). Our Results 3 and 5 and
the proofs in File S1, File S2, File S3, File S4, and File S5
show analytically that m ¼ 1 and m ¼ 1

2 are the uninvad-
able mutation rates for n ¼ 1 and n ¼ 2, respectively,
with no restrictions on the recombination rate or
fitnesses w1 and w3.

As pointed out by Ishii et al. (1989), odd values of n
produce two equilibria for the mutation rate, a stable
value ,0.5 and an unstable one .0.5. As n becomes
larger, however, our Figures 5 and 6, with n ¼ 21 and
symmetric fitnesses show that increasing r can eliminate
the large unstable value of m; with r ¼ 0.3, in the first
column of Figure 6, the value of m , 1

2 is stable from
above m, while in Figure 5, where r ¼ 0, m ¼ 1 has a
domain of stability above the unstable equilibrium.

In both symmetric cases n ¼ 1 and n ¼ 2, we proved
that the mutation rates that cannot be invaded by any
other (m ¼ 1 for n ¼ 1 and m ¼ 1

2 for n ¼ 2) are also the
mutation rates that maximize the mean fitness w*.
Those studies (e.g., Ishii et al. 1989; Gaál et al. 2010)

Figure 6.—The same as Figure 5
except the recombination rate is set to
r ¼ 0.3.
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that argue in terms of long-term growth rates in
exponentially growing populations find that this is true
for any n. Our Result 5 provides an elegant resolution of
the difference, with symmetric or asymmetric fitnesses
and r ¼ 0: the value of m where @l/@m vanishes, namely
the value that gives ‘‘eigenvalue stability,’’ is the same
value that maximizes the logarithm of the long-term
mean fitness, namely w*ð Þ�1� @w*=@mMð Þ. Numerical
analysis confirms that w*ð Þ�1 is indeed the factor that
relates these derivatives, and the proof is given in the
appendix.

Our analysis of symmetric selection shows some
degree of robustness. From Figure 2 (and also Figures
3 and 4), there is a band of mildly asymmetric fitnesses
surrounding the symmetric selection values s1¼ 1� w1¼
s3¼ 1� w3 in which the stable mutation rate is very close
indeed to that obtained under symmetric fitnesses. For
large values of both s1 and s3 this band becomes wider as
n increases for all recombination values (top right of
each panel in Figure 2). For weaker asymmetric selec-
tion this band narrows substantially, and the stable
mutation rate becomes smaller as the recombination
rate increases. Thus, as r increases, a greater range of

fitness asymmetries leads to a stable mutation rate of
zero, except for n ¼ 2. Even for n ¼ 3 in the symmetric
case, however, Figure 4 shows clear distance between the
stable values of m and the value 1

3 predicted, e.g., by Ishii

et al. (1989) and Lachmann and Jablonka (1996). At
n¼ 100, in Figure 2, the stable m in the symmetric case is
much closer to 2

100 than to 1
100 . As r increases, the stable

value of m in the symmetric case rapidly decreases below
1/n, and the band of stable nonzero mutation rates
disappears. These results suggest that the optimal rate of
phenotypic switching depends as much on the strength
of selection in each environment as it does on the
frequency of environmental changes, represented here
by n; Kussell et al. (2005) claimed that n was much more
important than the magnitudes of s1 and s3 in deter-
mining the uninvadable m. At least for the values of n we
tried, Figures 2, 5, and 6 show that s1 and s3 are indeed
important.

Our earlier numerical study (Salathé et al. 2009)
showed that in asymmetric fitness landscapes (w1 6¼ w3),
stable nonzero mutation rates required very strong
selection in both environments (i.e., large s1 and s3).
Our Figures 5 and 6 show an interesting feature of the
dynamical system that distinguishes odd and even values
of n. The numerical analysis illustrates that there may be
more than one solution to @l=@mm jmm¼mM

¼ 0 and that
the direction of selection on mm might depend deli-
cately on the sign and magnitude of (mM�mm). Why this
is more likely to happen when n is odd than when n is
even remains an interesting mathematical question. In
both Figures 5 and 6, i.e., recombination r¼ 0.0 and 0.3,
for n ¼ 3, there are three critical values of m when s1 ¼
0.01 and s3 ¼ 0.015 and 0.02; one value is .0.5 and
unstable, and two values are ,0.5, with the greater of
these locally stable, while the smaller one is locally
unstable. The same pattern is exhibited for n ¼ 21 with
r¼ 0 (Figure 5), but not for r¼ 0.3 (Figure 6). Figures 2
and 7 suggest that increasing recombination makes it
less likely that a stable nonzero mutation rate will exist
with either a fixed or a random switching period (see
also M’Gonigle et al. 2009). This suggests that switching
in sexual organisms is less likely than in asexuals, and
that if it occurs by genetic regulation of gene expression,
the regulators should be linked to the genes they
regulate. The role of recombination becomes more
important as the period becomes longer, especially in
symmetric or weakly asymmetric selection regimes.

The authors thank Freddy Christiansen for his careful reading of an
earlier draft and two anonymous referees for incisive and useful
comments. This research was supported in part by National Institutes
of Health grant GM 28016.
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APPENDIX

Proof that @w*=@mM ¼ 0 if and only if @l=@mm jmm¼mM
¼ 0.

From (45) we have at l ¼ 1,

2
@l

@mm
ðw*Þ2 � @l

@mm
w*ðÃ 1 D̃Þ � w*

@ðÃ 1 D̃Þ
@mm

1
@ðÃD̃� B̃C̃Þ

@mm
¼ 0; ðA1Þ

which we can reorganize at mm ¼ mM as

w* 2
@l

@mm
w*� @l

@mm
ðÃ 1 D̃Þ

� �
mm¼mM

¼ w*
@ðÃ 1 D̃Þ
@mm

����
mm¼mM

� @ðÃD̃� B̃C̃Þ
@mm

����
mm¼mM

; ðA2Þ

or

@l

@mm

����
mm¼mM

¼ w*ð@ðÃ 1 D̃Þ=@mmÞ � @ðÃD̃� B̃C̃Þ=@mm

w* 2w*� ðÃ 1 D̃Þ½ �

����
mm¼mM

: ðA3Þ

But, from Equation 47,

@w*

@mM
¼ w*ð@ðÂ 1 D̂Þ=@mM Þ � @ðÂD̂� B̂ĈÞ=@mM

2w*� ðÂ 1 D̂Þ
: ðA4Þ

Since Ã; B̃; C̃; D̃ are exactly the same as Â; B̂; Ĉ; D̂ with mm replacing mM, we conclude that

@l

@mm

����
mm¼mM

¼ @w*=@mM

w*
¼ @logw*

@mM
: ðA5Þ

That is, @l=@mm jmm¼mM
and @w*=@mM vanish together.
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FILE S1

Part I: Some general properties of the transformation LLL

We can gain some insight into the eigenvalues of LLL by the following observations.

Observation I

(i) det(LLLex
i ) =

(1− 2µm)(1− r)wi1wi3
(wi)2

(A1)

(ii) det(LLLex) =
(1− 2µm)k(1− r)k

∏k
i=1 w

i
1w

i
3

w2
. (A2)

The computation of det(LLLex
i ) is straightforward and follows from the fact that LLLex = LLLk ·LLLk−1 ·

· · · · LLL1.

Clearly when µm = 1
2 , one of the eigenvalues of LLLex is zero. Also, if 0 ≤ r < 1 and

0 ≤ µm < 1
2 , the two eigenvalues are positive for all k, whereas when 1

2 < µm ≤ 1 the two
eigenvalues are positive for k even and when k is odd, one eigenvalue is positive, and the other
negative.

Observation II.

When r = 1, the eigenvalues of each of the matrices LLLex
i and LLLex are zero and one.

In fact, when r = 1 the matrix LLLex
i has the form

LLLex
i =

1
ai + bi

[
ai ai

bi bi

]
, (A3)

with
ai = (1− µm)wi1y

i
1 + µmw

i
3y
i
3

bi = µmw
i
1y
i
1 + (1− µm)wi3y

i
3

ai + bi = wi1y
i
1 + wi3y

i
3 = wi .

(A4)

Thus the two eigenvalues of LLLex
i are zero and one. Moreover it is easily seen that

LLLex
i · LLL

ex
j =

1
ai + bi

[
ai ai

bi bi

]
= LLLex

i . (A5)

Hence LLLex = LLLex
k · LLL

ex
k−1 · · · ·LLL

ex
1 also has the form (A3), and so its eigenvalues are zero and

one when r = 1.

1
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Part II: Proof of Equation (29)

Let x̂ = (x̂1, 0, x̂3, 0) be such that x̂ = T1(x∗), namely

wx̂1 = (1− µM )w1x
∗
1 + µMw3x

∗
3

wx̂3 = (1− µM )w3x
∗
3 + µMw1x

∗
1

, (A6)

with
w = w1x

∗
1 + w3x

∗
3 . (A7)

Also let
ŵ = ŵ1x̂1 + ŵ3x̂3 . (A8)

Then the external stability of x∗ is determined by the largest positive eigenvalue of the matrix
product LLLex =L̂LL · LLL where

wLLL =

[
(1− µm)w1 − r[(1− µm)w1 − µmw3]x∗3 µmw3 + r[(1− µm)w1 − µmw3]x∗1

µmw1 + r[(1− µm)w3 − µmw1]x∗3 (1− µm)w3 − r[(1− µm)w3 − µmw1]x∗1

]
,

(A9)
and

ŵL̂LL =

[
(1− µm)ŵ1 − r[(1− µm)ŵ1 − µmŵ3]x̂3 µmŵ3 + r[(1− µm)ŵ1 − µmŵ3]x̂1

µmŵ1 + r[(1− µm)ŵ3 − µmŵ1]x̂3 (1− µm)ŵ3 − r[(1− µm)ŵ3 − µmŵ1]x̂1

]
.

(A10)

At equilibrium, we write wŵ = w∗, and following (26) we have

w∗ = ŵ1w1x
∗
1 + ŵ3w3x

∗
3 + µM (ŵ3 − ŵ1)(w1x

∗
1 − w3x

∗
3) . (A11)

We can verify that

det(LLLex) =
(1− 2µm)2(1− r)2w1ŵ1w3ŵ3

(w∗)2
. (A12)

Since LLLex is a positive matrix, it has a positive eigenvalue, and (A12) ensures that det(LLLex) is
positive when µm 6= 1

2 and 0 ≤ r < 1. If µm = 1
2 or r = 1, LLLex has a zero eigenvalue. Thus for

all µm 6= 1
2 , LLLex has one positive eigenvalue (the larger in magnitude) and another eigenvalue

which is non-negative. The two eigenvalues are the roots of the characteristic polynomial
C(z) = det(LLLex − zIII), or equivalently the roots of M(z) = det(w∗LLLex − w∗zIII).

The larger eigenvalue of LLLex is less than one if M(1) > 0 and M ′(1) > 0, and greater than
one when M(1) < 0. M(1) has the useful representation

M(1) =
(µm − µM )(1− r)

x∗1
·∆ , (A13)
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where ∆ = ∆(r, µm) = d11d22 − d12d21 and ∆(r, µm) is a bilinear function of r and µm in
0 ≤ r ≤ 1, 0 ≤ µm ≤ 1.

We begin by representing wLLL and ŵL̂LL as follows:

wLLL =

[
(1− µm)w1 µmw3

µmw1 (1− µm)w3

]
− r

[
αx∗3 −αx∗1
−βx∗3 βx∗1

]
(A14)

ŵL̂LL =

[
(1− µm)ŵ1 µmŵ3

µmŵ1 (1− µm)ŵ3

]
− r

[
α̂x̂3 −α̂x̂1

−β̂x̂3 β̂x̂1

]
, (A15)

where
α = w1 − µm(w1 + w3) β = w3 − µm(w1 + w3)

α̂ = ŵ1 − µm(ŵ1 + ŵ3) β̂ = ŵ3 − µm(ŵ1 + ŵ3) .
(A16)

We can now compute w∗LLLLLLLLLex = ŵL̂LLLLLLLL · wLLLLLLLLL (using w∗ = wŵ) as follows:

w∗LLLLLLLLLex =

[
(1− µm)2w1ŵ1 + µ2

mw1ŵ3 µm(1− µm)w3(ŵ1 + ŵ3)

µm(1− µm)w1(ŵ1 + ŵ3) (1− µm)2w3ŵ3 + µ2
mw3ŵ1

]

− r

[
x∗3
[
(1− µm)ŵ1α− µmŵ3β

]
−x∗1

[
(1− µm)ŵ1α− µmŵ3β

]
−x∗3

[
(1− µm)ŵ3β − µmŵ1α

]
x∗1
[
(1− µm)ŵ3β − µmŵ1α

] ]

− r

[
α̂w1(x̂3 − µm) −α̂w3(x̂1 − µm)

−β̂w1(x̂3 − µm) β̂w3(x̂1 − µm)

]

+ r2(αx̂3 + βx̂1)

[
α̂x∗3 −α̂x∗1
−β̂x∗3 β̂x∗1

]
.

(A17)

Let M(1) = det(w∗LLLLLLLLLex −w∗III). Then in order to compute M(1) we multiply the first column
of M(1) by x∗1, the second column by x∗3 to get M(1) = 1

x∗1x
∗
3

det(B) where B is the following
matrix:

B =

[ [
(1− µm)2w1ŵ1 + µ2

mw1ŵ3

]
x∗1 − w∗x∗1 µm(1− µm)w3(ŵ1 + ŵ3)x∗3

µm(1− µm)w1(ŵ1 + ŵ3)x∗1
[
(1− µm)2w3ŵ3 + µ2

mw3ŵ1

]
x∗3 − w∗x∗3

]

− r

[
x∗1x

∗
3

[
(1− µm)ŵ1α− µmŵ3β

]
−x∗1x∗3

[
(1− µm)ŵ1α− µmŵ3β

]
−x∗1x∗3

[
(1− µm)ŵ3β − µmŵ1α

]
x∗1x

∗
3

[
(1− µm)ŵ3β − µmŵ1α

] ]

− r

[
α̂w1x

∗
1(x̂3 − µm) −α̂w3x

∗
3(x̂1 − µm)

−β̂w1x
∗
1(x̂3 − µm) β̂w3x

∗
3(x̂1 − µm)

]

+ r2(αx̂3 + βx̂1)

[
α̂x∗3x

∗
1 −α̂x∗3x∗1

−β̂x∗3x∗1 β̂x∗3x
∗
1

]
.

(A18)
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We add the second column to the first and use the equilibrium equations for w∗x∗1 and w∗x∗3

from (25). The first column has a “constant” term, an “r” term and an “r2” term. As we
are adding the second column to the first, it is clear that the “r2” term vanishes and the “r”
term comes only from the second “r” matrix in (A18). Using the expression (A11) for w∗, the
“constant” term in the first column, first row position is[

(1− µm)2w1ŵ1+µ2
mw1ŵ3

]
x∗1 + µm(1− µm)w3(ŵ1 + ŵ3)x∗3

−
[
(1− µM )2w1ŵ1 + µ2

Mw1ŵ3

]
x∗1 + µM (1− µM )w3(ŵ1 + ŵ3)x∗3 .

(A19)

Noting that
(1− µm)2 − (1− µM )2 = (µM − µm)(2− µM − µm) ,

µ2
m − µ2

M = (µm − µM )(µM + µm) ,

µm(1− µm)− µM (1− µM ) = (µm − µM )(1− µM − µm) ,

(A20)

(A19) becomes

(µm−µM )
[
−(2−µM−µm)w1ŵ1x

∗
1+(µM+µm)w1ŵ3x

∗
1+(1−µM−µm)w3(ŵ1+ŵ3)x∗3

]
. (A21)

Similarly the “constant” term in the first column and second row is

(µm−µM )
[
−(2−µM−µm)w3ŵ3x

∗
3+(µM+µm)w3ŵ1x

∗
3+(1−µM−µm)w1(ŵ1+ŵ3)x∗1

]
. (A22)

The “r” terms are multiplied by (−r) and in the first row are

α̂x1x
∗
1(x̂3 − µm)− α̂w3x

∗
3(x̂1 − µm) , (A23)

and in the second row
−β̂w1x

∗
1(x̂3 − µm) + β̂w3x

∗
3(x̂1 − µm) . (A24)

Now using equations (A6) for x̂1 and x̂3, we obtain

w1x
∗
1(x̂3 − µm)− w3x

∗
3(x̂1 − µm) = w1x

∗
1

(1− µM )w3x
∗
3 + µMw1x

∗
1

w1x∗1 + w3x∗3

− w3x
∗
3

(1− µM )w1x
∗
1 + µMw3x

∗
3

w1x∗1 + w3x∗3
− µm(w1x

∗
1 − w3x

∗
3)

= µM
(w1x

∗
1)2 − (w3x

∗
3)2

w1x∗1 + w3x∗3
− µm(w1x

∗
1 − w3x

∗
3).

(A25)
We conclude that

w1x
∗
1(x̂3 − µm)− w3x

∗
3(x̂1 − µm) = (µM − µm)(w1x

∗
1 − w3x

∗
3) , (A26)
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so (A23) becomes
α̂(µM − µm)(w1x

∗
1 − w3x

∗
3) . (A27)

Similarly (A24) reduces to
−β̂(µM − µm)(w1x

∗
1 − w3x

∗
3) . (A28)

Hence we have a common factor of (µm − µM ) in the first column, and we can write

M(1) =
(µm − µM )

x∗1x
∗
3

det(A) , (A29)

where det(A) = a11a22 − a12a21, with

a11 = −(2− µM − µm)w1ŵ1x
∗
1 + (µM + µm)w1ŵ3x

∗
1

+ (1− µM − µm)w3(ŵ1 + ŵ3)x∗3 − rα̂(w3x
∗
3 − w1x

∗
1)

a12 = µm(1− µm)w3(ŵ1 + ŵ3)x∗3 + rx∗1x
∗
3

[
(1− µm)ŵ1α− µmŵ3β

]
+ rα̂w3x

∗
3(x̂1 − µm)− r2(αx̂3 + βx̂1)α̂x∗1x

∗
3

a21 = −(2− µM − µm)w3ŵ3x
∗
3 + (µM + µm)w3ŵ1x

∗
3

+ (1− µM − µm)w1(ŵ1 + ŵ3)x∗1 + rβ̂(w3x
∗
3 − w1x

∗
1)

a22 =
[
(1− µm)2w3ŵ3 + µ2

mw3ŵ1

]
x∗3 − w∗x∗3 − rx∗1x∗3

[
(1− µm)ŵ3β − µmŵ1α

]
− rβ̂w3x

∗
3(x̂1 − µm) + r2(αx̂3 + βx̂1)β̂x∗1x

∗
3 .

(A30)

In det(A) we add the second row to the first using (A30) to obtain

a11 + a21 = −(2− µM − µm)(w1ŵ1x
∗
1 + w3ŵ3x

∗
3) + (µM + µm)(w1ŵ3x

∗
1 + w3ŵ1x

∗
3)

+ (1− µM − µm)(ŵ1 + ŵ3)(w1x
∗
1 + w3x

∗
3) + r(β̂ − α̂)(w3x

∗
3 − w1x

∗
1) .

(A31)

The (µM + µm) term vanishes, the constant term is (ŵ1 − ŵ3)(w3x
∗
3 − w1x

∗
1), and since

(β̂ − α̂) = (ŵ3 − ŵ1) we have

a11 + a21 = (1− r)(ŵ1 − ŵ3)(w3x
∗
3 − w1x

∗
1) . (A32)

Observe that both a12 and a22 have a common factor of x∗3. Thus

a12 + a22

x∗3
= (1− µm)2w3ŵ3 + µ2

mw3ŵ1 + µm(1− µm)w3(ŵ1 + ŵ3)− w∗

+ rx∗1(ŵ1α− ŵ3β) + rw3(α̂− β̂)(x̂1 − µm)− r2(αx̂3 + βx̂1)(α̂− β̂)x∗1,
(A33)

which we rewrite as

a12 + a22

x∗3
= T + (r − 1)x∗1(ŵ1α− ŵ3β) + (r − 1)w3(α̂− β̂)(x̂1 − µm)

− (r2 − 1)(αx̂3 + βx̂1)(α̂− β̂)x∗1,
(A34)

5
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where T is independent of r.

Observe that when r = 1, from (A14) and (A15), wLLL and ŵL̂LL and their product w∗LLLex

have the same structure, namely

wLLL =

[
ρ ρ

σ σ

]
, ŵL̂LL =

[
ρ̂ ρ̂

σ̂ σ̂

]
, w∗LLLex =

[
Ω∗ Ω∗

ν∗ ν∗

]
(A35)

with

w = ρ+ σ, ŵ = ρ̂+ σ̂, w∗ = Ω∗ + ν∗ .

Hence, when r = 1, M(1) = det(w∗LLLex − w∗III) is in fact

M(1) =

∣∣∣∣∣Ω
∗ − w∗ Ω

ν∗ ν∗ − w∗

∣∣∣∣∣ . (A36)

Therefore, repeating the steps we used above to compute M(1), we have

M(1) =
1

x∗1x
∗
3

∣∣∣∣∣ (Ω
∗ − w∗)x∗1 Ω∗x∗3

ν∗x∗1 (ν∗ − w∗)x∗3

∣∣∣∣∣ . (A37)

Since x∗1 + x∗3 = 1, adding the second column to the first gives

M(1) =
1

x∗1x
∗
3

∣∣∣∣∣Ω
∗ − w∗x∗1 Ω∗x∗3

ν∗ − w∗x∗3 (ν∗ − w∗)x∗3

∣∣∣∣∣ . (A38)

Adding the second row to the first gives

M(1) =
1

x∗1x
∗
3

∣∣∣∣∣Ω
∗ + ν∗ − w∗ (Ω∗ + ν∗ − w∗)x∗3
ν∗ − w∗x∗3 (ν∗ − w∗)x∗3

∣∣∣∣∣ . (A39)

But w∗ = Ω∗ + ν∗, so when r = 1 we should have a11 + a21 = 0 = a12 + a22. Therefore in
(A34) T = 0, and we conclude that

a12 + a22 = (1− r)x∗3
[
(r + 1)(αx̂3 + βx̂1)x∗1(α̂− β̂)− x∗1(ŵ1α− ŵ3β)− w3(x̂1 − µm)(α̂− β̂)

]
.

(A40)
Thus (a12 + a22) has also a factor of (1 − r). In addition, both (a12 + a22) and a22 have a
common factor of x∗3, so in fact

M(1) =
(µm − µM )(1− r)

x∗1
·∆ , (A41)

6
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where ∆ = d11d22 − d12d21 and

d11 = (ŵ1 − ŵ3)(w3x
∗
3 − w1x

∗
1)

d12 = (r + 1)(αx̂3 + βx̂1)x∗1(α̂− β̂)− x∗1(ŵ1α− ŵ3β)− w3(x̂1 − µm)(α̂− β̂)

d21 = −(2− µM − µm)w3ŵ3x
∗
3 + (µM + µm)w3ŵ1x

∗
3 + (1− µM − µm)w1(ŵ1 + ŵ3)x∗1

+ rβ̂(w3x
∗
3 − w1x

∗
1)

d22 =
[
(1− µm)2w3ŵ3 + µ2

mw3ŵ1

]
− w∗ − rx∗1

[
(1− µm)ŵ3β − µmŵ1α

]
− rβ̂w3(x̂1 − µm) + r2(αx̂3 + βx̂1)β̂x∗1 .

(A42)
This proves equation (29). Thus the larger eigenvalue of LLLex is less than one if

M(1) > 0 and M ′(1) > 0, (A43)

and greater than one if
M(1) < 0. (A44)

7
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FILE S2: Proof that ∆ = ∆(r, µm) in (29) (and A41) is a bilinear function of r and

µm

∆ = d11d22 − d12d21. We will show that the coefficients of r2 and of µ2
m in the expansion

of ∆ are zero.

The coefficient of r2 in d11d22 is

(ŵ1 − ŵ3)(w3x
∗
3 − w1x

∗
1)(αx̂3 + βx̂1)β̂x∗1 , (B1)

and since α̂− β̂ = ŵ1 − ŵ3 the coefficient of r2 in d12d21 is

x∗1(αx̂3 + βx̂1)(ŵ1 − ŵ3)β̂(w3x
∗
3 − w1x

∗
1) . (B2)

Hence the coefficient of r2 in ∆ is zero.

Similarly, since α = w1−µm(w1 +w3), β = w3−µm(w1 +w3), and β̂ = ŵ3−µm(ŵ1 +ŵ3),
the coefficient of (µm)2 in d11d22 is

(ŵ1 − ŵ3)(w3x
∗
3 − w1x

∗
1)×{

w3(ŵ3 + ŵ1)− rx∗1(ŵ1 + ŵ3)(w1 + w3)− rw3(ŵ1 + ŵ3) + r2x∗1(ŵ1 + ŵ3)(w1 + w3)
}
.

(B3)
(B3) reduces to

(ŵ1 − ŵ3)(ŵ1 + ŵ3)(w3x
∗
3 − w1x

∗
1)(1− r)

[
w3 − rx∗1(w1 + w3)

]
. (B4)

The coefficient of (µm)2 in d12d21 is[
−(1 + r)x∗1(w1 + w3)(ŵ1 − ŵ3) + x∗1(ŵ1 − ŵ3)(w1 + w3) + w3(ŵ1 − ŵ3)

]
×[

(w3x
∗
3 − w1x

∗
1)(ŵ1 + ŵ3)− r(ŵ1 + ŵ3)(w3x

∗
3 − w1x

∗
1)
]
,

(B5)

which simplifies to

(ŵ1 − ŵ3)(ŵ1 + ŵ3)(1− r)(w3x
∗
3 − w1x

∗
1)
[
w3 − rx∗1(w1 + w3)

]
.

As (B4) and (B5) are equal, the coefficient of (µm)2 in ∆ is indeed zero.

8
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FILE S3: Proof that with period 2 and symmetric fitnesses, ∆(r, µm) < 0, which

gives Result 2

We first show, using (33), that at x∗ we have

(w1 − w3)(w1x
∗
1 − w3x

∗
3) > 0 , (C1)

and from (26) the mean fitness w∗ at x∗ is

w∗ = w1w3 + µM (w1 − w3)(w1x
∗
1 − w3x

∗
3) , (C2)

and is, therefore, an increasing function of µM .

To show (C1), we computeQ(w3
w1

):

Q

(
w3

w1

)
= (1− µM )

w2
3

w2
1

w1 + µM (w3 − w1)
w3

w1
− (1− µM )w3 (C3)

=
w3

w1
(w3 − w1) . (C4)

As Q(0) < 0 and Q(±∞) > 0, when w3 > w1, we have Q(w3
w1

) > 0 and u∗ = x∗1
x∗3

< w3
w1

or

w3x
∗
3 > w1x

∗
1. If w3 < w1, then Q(w3

w1
) < 0 and u∗ = x∗1

x∗3
> w3

w1
or w3x

∗
3 < w1x

∗
1. Hence

(w1 − w3) and (w1x
∗
1 − w3x

∗
3) have the same signs and (C1) follows. An alternative way to

write the left side of (C1) is

(w1 − w3)(w1x
∗
1 − w3x

∗
3) = (w2

1x
∗
1 + w2

3x
∗
3 − w1w3) , (C5)

and w2
1x
∗
1 + w2

3x
∗
3 > w1w3. Again, using (C5) we get from (C2) that

w∗ = (1− µM )w1w3 + µM (w2
1x
∗
1 + w2

3x
∗
3) . (C6)

As w2
1x
∗
1 + w2

3x
∗
3 > w1w3, for all 0 ≤ µM ≤ 1

w1w3 ≤ w∗ ≤ w2
1x
∗
1 + w2

3x
∗
3 . (C7)

Also, w∗ > w1w3 when µM 6= 0, and when µM 6= 1, w∗ < w2
1x
∗
1 + w2

3x
∗
3.

We now look for the conditions under which x∗ is externally stable. These depend on
the magnitude of the larger positive eigenvalue of LLLex, the product of (A9) and (A10). The
determinant (A12) of this matrix in the symmetric case is given by

det(LLLex) =
(1− 2µm)2(1− r)2w2

1w
2
3

(w∗)2
. (C8)

9
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As w∗ ≥ w1w3, we conclude from (C8) that 0 ≤ det(LLLex) ≤ 1 for all possible values of r, µm,
µM . But LLLex is a positive matrix and therefore has a positive eigenvalue. Hence the other
eigenvalue of LLLex is positive, except when µm = 1

2 when it is zero. Their product is less than
or equal to one, and also at most one eigenvalue is larger than one. In this case it is clear that
the larger eigenvalue of LLLex is greater than one if M(1) of (A13) is negative, and it is smaller
than one if M(1) is positive.

Since ∆(r, µm) is a bilinear function of r and µm, the value of ∆(r, µm) is negative for
0 ≤ r ≤ 1, 0 ≤ µm ≤ 1 if and only if the four “corner values”

∆(0, 0), ∆(0, 1), ∆(1, 0), ∆(1, 1)

are all negative.

In the case r = 0 we know, from (30), that the eigenvalues of LLLex, in the symmetric case,
with µm = 0 or µm = 1 are

λ0
1 = λ0

2 =
w1w3

w∗
when µm = 0 ,

λ1
1 =

w2
1

w∗
, λ1

2 =
w2

3

w∗
when µm = 1 .

When µM > 0, (C6) and (C7) imply that w∗ > w1w3 and the two eigenvalues λ0
1 and λ0

2

are less than 1. Therefore when µm = 0, µM > 0, and r = 0, the equilibrium x∗ is stable.
From (29),

M(1) =
(µm − µM )(1− r)

x∗1
∆(r, µm) .

Hence M(1) should be positive when µm = 0, µM > 0, and r = 0. Thus ∆(0, 0) is indeed
negative.

Similarly, when µM 6= 1, w2
1x
∗
1 + w2

3x
∗
3 > w∗ by (C6) and (C7). Therefore when r = 0,

µm = 1, and 0 ≤ µM < 1 at least one of the eigenvalues λ1
1 or λ1

2 is larger than 1, and x∗

is unstable. In this case M(1) should be negative when r = 0, µm = 1, 0 ≤ µM < 1, which
implies by (29) that ∆(0, 1) is negative. The proof that ∆(1, 0) and ∆(1, 1) are negative is
more complex.

We prove next that ∆(1, 0) and ∆(1, 1) are negative for all 0 < µM < 1.

In the symmetric case where ŵ1 = w3, ŵ3 = w1 we have α̂ = β, β̂ = α, where α =

10
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w1 − µm(w1 + w3) and β = w3 − µm(w1 + w3). Thus ∆(r, µm) = d11d22 − d12d21, where

d11 = (w1 − w3)(w1x
∗
1 − w3x

∗
3)

d12 = (1 + r)x∗1(αx̂3 + βx̂1)(β − α)− x∗1(w3α− w1β)− w3(x̂1 − µm)(β − α)

d21 = −(2− µM − µm)w1w3x
∗
3 + (µM + µm)w2

3x
∗
3 + (1− µM − µm)w1(w1 + w3)x∗1

+ rα(w3x
∗
3 − w1x

∗
1)

d22 = (1− µm)2w1w3 + µ2
mw

2
3 − w∗ − rx∗1

[
(1− µm)w1β − µmw3α

]
− rαw3(x̂1 − µm)

+ r2(αx̂3 + βx̂1)αx∗1 .

(C9)

We compute the dij ’s of (C9) when r = 1 and µm = 0, using the fact that in this case
α = w1, β = w3, and β − α = w3 − w1, so that

d11 = (w1 − w3)(w1x
∗
1 − w3x

∗
3)

d12 = (w1 − w3)
[
−x∗1(w1x̂3 + w3x̂1)− µM (w1x

∗
1 − w3x

∗
3)
]

d21 = −w1(w1x
∗
1 + w3x

∗
3)− µM (w1 + w3)(w1x

∗
1 − w3x

∗
3)

d22 = −w3

[
w1x

∗
1(1− µM ) + µMw3x

∗
3

]
.

(C10)

When w1 > w3 we know that (w1x
∗
1 − w3x

∗
3) > 0 by (C1); hence if w1 > w3 we have that

d11 > 0, d12 < 0, d21 < 0, d22 < 0. Therefore clearly ∆(1, 0) = d11d22 − d12d21 is negative.
Observe that in the symmetric case we can reorder the gametes from AM Am aM am to
aM am AM Am without changing the results, as the mutation rates from A to a and from a

to A are the same. This means that our results should be the same if we interchange w1 ↔ w3,
x∗1 ↔ x∗3, and x̂1 ↔ x̂3, in which case (C8) gives

M(1) =
(µm − µM )(1− r)

x∗3
∆(r, µm) , (C11)

where ∆(r, µm) = d11d22−d12d21 with the dij ’s obtained from the dij ’s of (C9) by interchanging
x∗1 ↔ x∗3, x̂1 ↔ x̂3, and w1 ↔ w3.

From (C8) and (C11) we have

1
x∗1

∆(r, µm) =
1
x∗3

∆(r, µm) , (C12)

and ∆(r, µm) and ∆(r, µm) have the same signs. Thus ∆(1, 0) = d11d22 − d12d21, where from
(C10),

d11 = (w3 − w1)(w3x
∗
3 − w1x

∗
1)

d12 = (w3 − w1)
[
−x∗3(w3x̂1 + w1x̂3)− µM (w3x

∗
3 − w1x

∗
1)
]

d21 = −w3(w3x
∗
3 + w1x

∗
1)− µM (w3 + w1)(w3x

∗
3 − w1x

∗
1)

d22 = −w1

[
(1− µM )w3x

∗
3 + µMw1x

∗
1

]
.

(C13)

11
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But if w3 > w1 then (w3x
∗
3 − w1x

∗
1) > 0, and consequently d11 > 0, whereas d12 < 0, d21 < 0,

and d22 < 0. So ∆(1, 0) = d11d22 − d12d21 is negative.

We thus proved that ∆(1, 0) is negative for all 0 ≤ µM ≤ 1 when w1 6= w3.

When r = 1 and µm = 1, we have α = −w3, β = −w1, and β −α = w3−w1. In this case
the dij ’s of (C9) reduce to

d11 = (w3 − w1)(w3x
∗
3 − w1x

∗
1)

d12 = (w3 − w1)
[
−2x∗1(w3x̂3 + w1x̂1) + x∗1(w1 + w3) + w3x̂3

]
d21 = w1w3(x∗1 − x∗3) + µM (w1 + w3)(w3x

∗
3 − w1x

∗
1)

w d22 = −w1w
2
3x
∗
3 − µM (w3x

∗
3 − w1x

∗
1)
[
2w2

3 − w1(w1x
∗
1 + w3x

∗
3)
]
,

(C14)

where w = w1x
∗
1 + w3x

∗
3.

When w3 > w1 we have (w3x
∗
3 − w1x

∗
1) > 0 and also 2w3 > w1(w1x

∗
1 + w3x

∗
3). Therefore

in this case d11 > 0 and d22 < 0. We will show that in this case d12 and d21 are both positive.

As w3 > w1, d12 is positive if T is positive where

T = −2x∗1(w1x̂1 + w3x̂3) + x∗1(w1 + w3) + w3x̂3 . (C15)

We use the equations for x̂1 and x̂3, namely,

wx̂1 = (1− µM )w1x
∗
1 + µMw3x

∗
3

wx̂3 = (1− µM )w3x
∗
3 + µMw1x

∗
1 ,

(C16)

with w = w1x
∗
1 + w3x

∗
3. Using these equations and the fact that x∗1 + x∗3 = 1, we get

wT = (w3x
∗
3 − w1x

∗
1)
[
w3x

∗
3 + w1x

∗
1(1− 2µM ) + w3µM (2x∗1 − 1)

]
. (C17)

As (w3x
∗
3 − w1x

∗
1) is positive, T is positive if

w3x
∗
3 + w1x

∗
1(1− 2µM ) + w3µM (2x∗1 − 1) > 0 . (C18)

(C18) is equivalent to

w3x
∗
3 + w1x

∗
1 − w3µM + 2µM (w3 − w1)x∗1 > 0 . (C19)

As w3 > w1, in order that (C19) holds it is sufficient that

w3x
∗
3 + w1x

∗
1 > w3µM . (C20)

12
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Write x∗1 = u∗

1+u∗ , x∗3 = 1
1+u∗ where Q(u∗) = 0 and Q(u) is given in (34). (C20) is thus

equivalent to

w3 + w1u
∗ > w3µM (1 + u∗) (C21)

or

u∗(w3µM − w1) < w3(1− µM ) . (C22)

When w3µM < w1, (C22) clearly holds. When w3µM > w1, then (C22) is true if and only if
u∗ satisfies

u∗ <
w3(1− µM )
w3µM − w1

= t , (C23)

say. Because of the properties of the quadratic equation Q(u) = 0, u∗ < t if and only if
Q(t) > 0. But from (34),

Q(t) = (1− µM )w1
w2

3(1− µM )2

(w3µM − w1)2
+ µM (w3 − w1)

w3(1− µM )
w3µM − w1

− (1− µM )w3 . (C24)

As µM < 1, the sign of Q(t) coincides with the sign of

(1− µM )2w1w3 + µM (w3 − w1)(w3µM − w1)− (w3µM − w1)2 . (C25)

But (C25) is equal to

(1− µM )w1(w3 − w1) , (C26)

which is positive since w3 > w1 and 0 < µM < 1. So indeed d12 > 0 when w3 > w1.

We now show that d21 is also positive when w3 > w1. Observe from (34) that Q(1) =
(1 − 2µM )(w1 − w3). Therefore when w3 > w1 and 0 < µM < 1

2 , Q(1) is negative, and so,
based on the properties of Q(u) = 0, we have u∗ = x∗1

x∗3
> 1 or x∗1 > x∗3. Hence, if w3 > w1 and

also 0 < µM < 1
2 then w3x

∗
3 > w1x

∗
1 and x∗1 > x∗3 implying that d21 is positive. We check the

case when 1
2 < µM < 1 and compute d21 using the representation x∗1 = u∗

1+u∗ , x∗3 = 1
1+u∗ with

Q(u∗) = 0. Indeed

(1 + u∗)d21 = w1w3(u∗ − 1) + µM (w1 + w3)(w3 − w1u
∗) . (C27)

Equivalently

(1 + u∗)d21 = w1u
∗[w3 − µM (w1 + w3)

]
+ w3

[
µM (w1 + w3)− w1

]
. (C28)

When 1
2 ≤ µM < 1,

[
µM (w1 + w3) − w1

]
> 0 as w3 > w1. If

[
w3 − µM (w1 + w3)

]
≥ 0 then

clearly d21 is positive, and if
[
w3 − µM (w1 + w3)

]
< 0, d21 is positive provided

13
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u∗ <
w3

w1
· µM (w1 + w3)− w1

µM (w1 + w3)− w3
= s , (C29)

say. (C29) is equivalent to Q(s) > 0. Now

Q(s) = (1− µM )w1
w2

3

w2
1

· [µM (w1 + w3)− w1]2

[µM (w1 + w3)− w3]2

+ µM (w3 − w1)
w3

w1
· µM (w1 + w3)− w1

µM (w1 + w3)− w3
− (1− µM )w3 .

(C30)

The sign of Q(s) coincides with the sign of

(1− µM )w3

[
µM (w1 + w3)− w1

]2 + µM (w3 − w1)
[
µM (w1 + w3)− w1

][
µM (w1 + w3)− w3

]
− (1− µM )w1

[
µM (w1 + w3)− w3

]2
.

(C31)
(C31) is equal to

(1− µM )
{
w3

[
µM (w1 + w3)− w1

]2 − w1

[
µM (w1 + w3)− w3

]2}
+ µM (w3 − w1)

[
µM (w1 + w3)− w1

][
µM (w1 + w3)− w3

]
.

(C32)

(C32) is equal to

(1− µM )
[
(w3 − w1)µ2

M (w1 + w3)2 − w1w3(w3 − w1)
]

+ µM (w3 − w1)
[
µ2
M (w1 + w3)2 − µM (w1 + w3)2 + w1w3

]
.

(C33)

As w3 > w1, (C33) is positive if

(1− µM )
[
µ2
M (w1 + w3)2 − w1w3

]
+ µM

[
−µM (1− µM )(w1 + w3)2 + w1w3

]
(C34)

is positive. Finally, (C34) equals
w1w3(2µM − 1) , (C35)

which is positive if 1
2 < µM < 1. If µM = 1

2 then
[
w3−µM (w1 +w3)

]
=
[
µM (w1 +w3)−w1

]
=

w3−w1
2 , which is positive, and in view of (C28) d21 is positive. It follows that d21 is always

positive when w3 > w1.

We conclude that when w3 > w1, d11 > 0, d12 > 0, d21 > 0, and d22 < 0, and in this case
∆(1, 1) is negative.

Using the same symmetry argument we used for the case r = 1 and µm = 0, we can show
in the same way that ∆(1, 1) is also negative when w1 > w3, making it negative whenever
w1 6= w3 for all 0 < µM < 1.

We conclude that ∆(r, µm) < 0 for 0 ≤ r ≤ 1, 0 ≤ µm ≤ 1.

14
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FILE S4: Proof of Result 3

Recall from (26) that w∗(µM ) is given by

w∗(µM ) = w1w3 + µM (w1 − w3)(w1x
∗
1 − w3x

∗
3) ,

and as (w1 − w3)(w1x
∗
1 − w3x

∗
3) is always positive, w∗(µM ) is an increasing function of µM if

a∗(µM ) where
a∗ = a∗(µM ) = (w1 − w3)(w1x

∗
1 − w3x

∗
3) (D1)

is an increasing function of µM .

The equilibrium frequencies x∗1 and x∗3 can be represented as x∗1 = u∗

1+u∗ , x∗3 = 1
1+u∗ where

u∗ is the unique positive solution ofQ(u) = 0 and

Q(u) = (1− µM )w1u
2 + µM (w3 − w1)u− (1− µM )w3 , (D2)

or equivalently ifQ(u) = 0, where

Q(u) = w1u
2 +

µM
1− µM

(w3 − w1)u− w3 . (D3)

Now a∗, as a function of u∗, is

a∗ = (w1 − w3)
[
w1

u∗

1 + u∗
− w3

1
1 + u∗

]
(D4)

= (w1 − w3)
w1u

∗ − w3

1 + u∗
. (D5)

The derivative of a∗, with respect to µM , is

da∗

dµM
=
da∗

du∗
· du

∗

dµM
, (D6)

and from (D5) we have
da∗

du∗
=

(w1 − w3)(w1 + w3)
(1 + u∗)2

. (D7)

The derivative (u∗)′ = du∗

dµM
can be computed by implicit differentiation of the equilibrium

equationQ(u∗) = 0 giving

2w1u
∗(u∗)′ +

µM
1− µM

(w3 − w1)(u∗)′ +
(w3 − w1)u∗

(1− µM )2
= 0 . (D8)

Hence [
2w1u

∗ − µM
1− µM

(w1 − w3)
]

(u∗)′ =
(w1 − w3)u∗

(1− µM )2
. (D9)

15
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We will show that
[
2w1u

∗ − µM

1−µM
(w1 − w3)

]
is always positive. It is clearly positive when

w1 < w3. In the case w1 > w3, it is positive if u∗ > µM

1−µM
· w1−w3

2w1
. Observe that

Q

(
µM

1− µM
· w1 − w3

2w1

)
= w1

(
µM

1− µM

)2 (w1 − w3)2

4w2
1

−
(

µM
1− µM

)2 (w1 − w3)2

2w1
− w3(D10)

= − 1
4

(
µM

1− µM

)2 (w1 − w3)2

w1
− w3 < 0 . (D11)

AsQ(0) < 0 andQ(±∞) > 0, the unique positive root u∗ of Q(u) = 0 should satisfy

u∗ >
µM

1− µM
· w1 − w3

2w1
. (D12)

Thus
[
2w1u

∗ − µM

1−µM
(w1 − w3)

]
is positive, and in view of (D9) and (D7) both da∗

du∗ and du∗

dµM

have the sign of (w1 − w3), and consequently da∗

dµM
is positive. Thus we have proved w∗(µM )

is an increasing function of µM .

16
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FILE S5: Proofs for Symmetric Case, n = 2; Result 4

Part I: Proof of (39); if r = 0, (w1 − w3)(w1x
∗
1 − w3x

∗
3) > 0

With M fixed and x̃ = (x1, x3)T we have

x̃′ = T2 ◦ T2 ◦ T1 ◦ T1x̃ . (E1)

The total matrix TTT = T2 ◦ T2 ◦ T1 ◦ T1 is written

TTT =

(
A B

C D

)
, (E2)

where T1 and T2 are given in (37) and

A = w1w3

[
(1− µM )2w3 + µ2

Mw1

] [
(1− µM )2w1 + µ2

Mw3

]
+ µ2

M (1− µM )2w2
1(w1 + w3)2

B = µM (1− µM )w3(w1 + w3)2
[
(1− µM )2w3 + µ2

Mw1

]
C = µM (1− µM )w1(w1 + w3)2

[
(1− µM )2w1 + µ2

Mw3

]
D = w1w3

[
(1− µM )2w3 + µ2

Mw1

] [
(1− µM )2w1 + µ2

Mw3

]
+ µ2

M (1− µM )2w2
3(w1 + w3)2 .

(E3)

The mean fitness w = (A+ C)x1 + (B +D)x3 is

w = w1w3

[
(1− µM )2w3 + µ2

Mw1

] [
(1− µM )2w1 + µ2

Mw3

]
+

+ µ2
M (1− µM )2(w1 + w3)2(w2

1x1 + w2
3x3) +

+ µM (1− µM )(w1 + w3)2
{
w1x1

[
(1− µM )2w1 + µ2

Mw3

]
+ w3x3

[
(1− µM )2w3 + µ2

Mw1

]}
.

(E4)

We can simplify w to

w = w2
1w

2
3(1− 2µM )2 + µM (1− µM )(w1 +w3)2

[
µMw1w3 + (1− µM )(w2

1x1 + w2
3x3)

]
. (E5)

Also

w = w2
1w

2
3 − 4µM (1− µM )w2

1w
2
3 + µM (1− µM )(w1 + w3)2w1w3

+ µM (1− µM )(w2
1x1 + w2

3x3 − w1w3)(w1 + w3)2 (E6)

= w2
1w

2
3 + µM (1− µM )w1w3(w1 − w3)2

+ µM (1− µM )(w2
1x1 + w2

3x3 − w1w3)(w1 + w3)2. (E7)

As w2
1x1 + w2

3x3 − w1w3 = (w1 − w3)(w1x1 − w3x3) we can write

w = w2
1w

2
3+µM (1−µM )(w1−w3)w2

1w3+µM (1−µM )(w1−w3)(w1x1−w3x3)(w1+w3)2 . (E8)

17
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We will show that at equilibrium where x = x∗, (w1 −w3)(w1x
∗
1 −w3x

∗
3) is always positive so

that w ≥ w2
1w

3
3. In the equilibrium equation Q(u) = 0, where x1 = u

1+u , x3 = 1
1+u , we have

Q(u) = µM (1− µM )w1(w1 + w3)2
[
(1− µM )2w1 + µ2

Mw3

]
u2

+ µ2
M (1− µM )2(w3 − w1)(w1 + w3)3u

− µM (1− µM )w3(w1 + w3)2
[
(1− µM )2w3 + µ2

Mw1

]
.

(E9)

Since 0 < µM < 1, Q(u) = 0 is equivalent to Q(u) = 0 where

Q(u) = w1

[
(1− µM )2w1 + µ2

Mw3

]
u2 + µM (1− µM )(w3 − w1)(w3 + w1)u

− w3

[
(1− µM )2w3 + µ2

Mw1

]
.

(E10)

But Q(0) < 0 and Q(±∞) > 0; hence Q(u) = 0 has one solution u∗ > 0 and the other solution
is negative. We compute

Q

(
w3

w1

)
=
[
(1− µM )2w1 + µ2

Mw3

] w2
3

w1
+ µM (1− µM )(w2

3 − w2
1)
w3

w1

− w3

[
(1− µM )2w3 + µ2

Mw1

]
,

(E11)

or

w1Q

(
w3

w1

)
= w2

3

[
(1− µM )2w1 + µ2

Mw3

]
+ µM (1− µM )(w2

3 − w2
1)w3

− w1w3

[
(1− µM )2w3 + µ2

Mw1

]
.

(E12)

In fact
w1Q

(
w3

w1

)
= w3(w3 − w1)µM . (E13)

Thus the sign of Q
(
w3
w1

)
coincides with the sign of (w3 − w1). Hence, if w3 > w1, Q

(
w3
w1

)
is

positive and since Q(0) < 0, Q(∞) > 0, we have u∗ = x∗1
x∗3
< w3

w1
or wxx∗3 > w1x

∗
1. If w3 < w1

then Q
(
w3
w1

)
< 0 and u∗ = x∗1

x∗3
> w3

w1
so that w3x

∗
3 < w1x

∗
1. Therefore at equilibrium

(w1 − w3)(w1x
∗
1 − w3x

∗
3) > 0 . (E14)

Part II: Proof of Result 4

The mean fitness on the boundary where M is fixed is w∗(µM ) with

w∗(µM ) = w2
1w

2
3+µM (1−µM )w1w3(w1−w3)2+µM (1−µM )(w1+w3)2(w1−w3)(w1x

∗
1−w3x

∗
3) .

(E15)

18
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Observe that µM (1 − µM ) is maximized when µM = 1
2 and also (1 − µM )(w1 − w3)(w1x

∗
1 −

w3x
∗
3) = a(µM ) is positive. Therefore w∗(µM ) is maximized at µM = 1

2 if and only if a(µM ) is
maximized at µM = 1

2 . When µM = 1
2 , x∗1 = x∗3 = 1

2 and a
(

1
2

)
= 1

4 (w1 − w3)2. We will show
that for any 0 ≤ µM ≤ 1, a(µM ) ≤ a

(
1
2

)
. Recall that x∗1 = u

1+u , x∗3 = 1
1+u , where Q(u) = 0.

Hence

a(µM ) = (1− µM )(w1 − w3)
(
w1

u

1 + u
− w3

1
1 + u

)
. (E16)

Thus a(µM ) ≤ a
(

1
2

)
if and only if

(1− µM )(w1 − w3)(w1u− w3) ≤ 1
4 (w1 − w3)2(1 + u) , (E17)

or if and only if

u
[
(1− µM )(w1 − w3)w1 − 1

4 (w1 − w3)2
]
≤ (1− µM )(w1 − w3)w3 + 1

4 (w1 − w3)2 . (E18)

We consider two cases.

Case 1: w1 > w3

In this case (1−µM )(w1−w3)w3+ 1
4 (w1−w3)2 > 0. If (1−µM )(w1−w3)w1− 1

4 (w1−w3)2 ≤
0 then (E18) clearly holds. If (1− µM (w1 − w3)w1 − 1

4 (w1 − w3)2 > 0 then (E18) holds if

u ≤
(1− µM )(w1 − w3)w3 + 1

4 (w1 − w3)2

(1− µM )(w1 − w3)w1 − 1
4 (w1 − w3)2

= t , (E19)

which is equivalent to Q(t) > 0 as Q(0) < 0 and Q(∞) > 0.

Case 2: w1 < w3

In this case (1− µM )(w1 − w3)w1 − 1
4 (w1 − w3)2 < 0, and (E18) holds if

u ≥
(1− µM )(w1 − w3)w3 + 1

4 (w1 − w3)2

(1− µM )(w1 − w3)w1 − 1
4 (w1 − w3)2

= t , (E20)

which is equivalent to Q(t) < 0.

We will therefore show that

w1 > w3 → Q(t) > 0 (E21)

w1 < w3 → Q(t) < 0. (E22)

19
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This will prove that if w1 6= w3 then a(µM ) ≤ a( 1
2 ). If w1 6= w3

t =
(1− µM )w3 + 1

4 (w1 − w3)
(1− µM )w1 − 1

4 (w1 − w3)
. (E23)

Therefore Q(t) equals

w1

[
(1− µM )2 + µ2

Mw3

] [ (1− µM )w3 + 1
4 (w1 − w3)

(1− µM )w1 − 1
4 (w1 − w3)

]2
+ µM (1− µM )(w2

3 − w2
1)

(1− µM )w3 + 1
4 (w1 − w3)

(1− µM )w1 − 1
4 (w1 − w3)

− w3

[
(1− µM )2w3 + µ2

Mw1

]
.

(E24)

Hence the sign of Q(t) coincides with the sign of

H = w1

[
(1− µM )2w1 + µ2

Mw3

] [
(1− µM )w3 + 1

4 (w1 − w3)
]2

+ µM (1− µM )(w2
3 − w2

1)
[
(1− µM )w3 + 1

4 (w1 − w3)
] [

(1− µM )w1 − 1
4 (w1 − w3)

]
− w3

[
(1− µM )2w3 + µ2

Mw1

] [
(1− µM )w1 − 1

4 (w1 − w3)2
]
.

(E25)

We compute H.

H = w1

[
(1− µM )2w1 + µ2

Mw3

] [
(1− µM )2w2

3 + 1
2 (1− µM )w3(w1 − w3) + 1

16 (w1 − w3)2
]

− w3

[
(1− µM )2w3 + µ2

Mw1

] [
(1− µM )2w2

1 − 1
2 (1− µM )w1(w1 − w3) + 1

16 (w1 − w3)2
]

+ µM (1− µM )(w2
3 − w2

1)
[
(1− µM )2w1w3 + 1

4 (1− µM )(w1 − w3)2 − 1
16 (w1 − w3)2

]
.

(E26)
H equals

(1− µM )4w2
1w

2
3 + 1

2 (1− µM )3w2
1w3(w1 − w3) + 1

16 (1− µM )2w2
1(w1 − w3)2

− (1− µM )4w2
1w

2
3 + 1

2 (1− µM )3w2
3w1(w1 − w3)− 1

16 (1− µM )2w2
3(w1 − w3)2

+ µ2
M (1− µM )2w1w

3
3 + 1

2µ
2
M (1− µM )w1w

2
3(w1 − w3) + 1

16w1w3(w1 − w3)2

− µ2
M (1− µM )2w3w

3
1 + 1

2µ
2
M (1− µM )w2

1w3(w1 − w3)− 1
16w1w3(w1 − w3)2

+ µM (1− µM )3w1w3(w2
3 − w2

1) + 1
4µM (1− µM )2(w2

3 − w2
1)(w1 − w3)2

− 1
16µM (1− µM )(w2

3 − w2
1)(w1 − w3)2 .

(E27)

In fact H equals

1− µM
16

(1− 2µM )2(w2
1 − w2

3)(w1 − w3)2 +
1− µM

2
(1− 2µM )2w1w3(w2

1 − w2
3) . (E28)

Thus
H =

1− µM
16

(1− 2µM )2(w1 − w3)(w1 + w3)
[
(w1 − w3)2 + 8w1w3

]
. (E29)
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If µM = 1
2 then H = 0; otherwise for all 0 < µM < 1 the sign of H coincides with the sign of

(w1−w3). Hence when w1 6= w3, the sign of Q(T ) coincides with the sign of (w1−w3), which
proves that a(µM ) ≤ a( 1

2 ) and w∗(µM ) has its maximum value when µM = 1
2 .

Part III: Proof of Result 5

We check the external stability of x∗ =
(

1
2 , 0,

1
2 , 0
)

when r = 0 µM = 1
2 with w∗ =(

w1+w3
2

)4. The eigenvalues of the linear approximation LLLex solve the equation

M(z̃) =

∣∣∣∣∣ Ã− w∗z B̃

C̃ D̃ − w∗z

∣∣∣∣∣ = (w∗z)2 − (w∗z)
(
Ã+ D̃

)
+ ÃD̃ − B̃C̃ , (E30)

where Ã, B̃, C̃, D̃ are the values A,B,C,D with µm instead of µM .

As one of the eigenvalues is positive, by Perron-Frobenius and as detLLLex = ÃD̃ − B̃C̃ =
(1− 2µm)4 w4

1w
4
3, the two eigenvalues are positive and the larger is less than one if and only

if M(1) > 0.

M(1) = M(1;µm) = (w∗)2 − w∗
(
Ã+ D̃

)
+
(
ÃD̃ − B̃C̃

)
(E31)

As x∗ is the equilibrium with µM = 1
2 , one of the eigenvalues is 1 when µm = µM = 1

2 .
Therefore

M
(
1; 1

2

)
= (w∗)2 − w∗

(
Â+ D̂

)
+
(
ÂD̂ − B̂Ĉ

)
= 0 , (E32)

where Â, B̂, Ĉ, D̂ are the values of Ã, B̃, C̃, D̃ when µm = 1
2 . As ÂD̂ − B̂Ĉ = 0, we have

M (1;µm) = M (1;µm)−M
(
1; 1

2

)
= w∗

[(
Â+ D̂

)
−
(
Ã+ D̃

)]
+
(
ÃD̃ − B̃C̃

)
. (E33)

But as M
(
1; 1

2

)
= 0, w∗ =

(
Â+ D̂

)
and

M (1;µm) = w∗
[
w∗ −

(
Ã+ D̃

)]
+
(
ÃD̃ − B̃C̃

)
. (E34)

Now
(
ÃD̃ − B̃C̃

)
= (1− 2µm)4 w4

1w
4
3.

Ã+ D̃ = 2w2
1w

2
3

[
(1− µm)4 + (µm)4

]
+ 2µ2

m (1− µm)2 w1w3

(
w2

1 + w2
3

)
+ µ2

m (1− µm)2
(
w2

1 + w2
3

)
(w1 + w3)2

(E35)

Ã+ D̃ = 2w1w3

{
w1w3

[
(1− µm)4 + (µm)4

]
+ µ2

m (1− µm)2
(
w2

1 + w2
3

)}
+ µ2

m (1− µm)2
(
w2

1 + w2
3

)
(w1 + w3)2

(E36)
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Ã+D̃ = 2w1w3 ×

×
{
w1w3

[
(1− µm)4 − 2µ2

m (1− µm)2 + (µm)4
]

+ µ2
m (1− µm)2

(
w2

1 + 2w1w3 + w3

)2}
+ µ2

m (1− µm)2
(
w2

1 + w2
3

)
(w1 + w3)2

(E37)

Ã+ D̃ = 2w2
1w

2
3

[
(1− µm)2 − (µm)2

]2
+ 2µ2

m (1− µm)2 (w1 + w3)2 w1w3

+ µ2
m (1− µm)2

(
w2

1 + w2
3

)
(w1 + w3)2

(E38)

Ã+ D̃ = 2w2
1w

2
3 (1− 2µm)2 + µ2

m (1− µm)2 (w1 + w3)2
(
w2

1 + 2w1w3 + w3

)2
. (E39)

Thus
Ã+ D̃ = 2w2

1w
2
3 (1− 2µm)2 + µ2

m (1− µm)2 (w1 + w4)4 . (E40)

Therefore M(1;µm) = w∗
[
w∗ −

(
Ã+ D̃

)]
+
(
ÃD̃ − B̃C̃

)
is equal to

M(1;µm) = (w∗)2 − w∗µ2
m (1− µm)2 (w1 + w4)4 − 2w∗w2

1w
2
3 (1− 2µm)2 + (1− 2µm)4 w2

1w
2
3 .

(E41)
Hence

M(1;µm) =
[
w∗ − w2

1w
2
3 (1− 2µm)2

]2
− w∗µ2

m (1− µm)2 (w1 + w3)4 . (E42)

Equivalently, as w∗ = (w1+w3)
4

16 we get

M(1;µm) = (w∗)2
{[

1− w2
1w

2
3

w∗
(1− 2µm)2

]2
− 16µ2

m (1− µm)2
}

(E43)

using the mean inequality
√
w1w3 < w1+w3

2 , with equality if and only if w1 = w3. So as
w1 6= w3, w2

1w
2
3 <

(
w1+w3

2

)4 = w∗. Therefore

1− w2
1w

2
3

w∗
(1− 2µm)2 > 1− (1− 2µm)2 = 4µm(1− µm) . (E44)

Hence for all 0 ≤ µm ≤ 1 we get that M(1;µm) > 0. We thus conclude that x∗ based on
µM = 1

2 is always externally stable when r = 0.

Part IV: Proof of Result 5

For general r, we can reorganize M(1) to have the sign of the product K · L where

K = (1− r)2 (1− 2µ)2 (w1 − w3)2
[
(w1 + w3)2 + 16w1w3

]
(E45)

and
L = 2 (w1 + w3)4 −

{
(1− r)2 (1− 2µ)2

[
(w1 + w3)4 + 16w2

1w
2
3

]}
. (E46)
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Now
L > 2 (w1 + w3)4 −

{
(w1 + w3)4 + 16w2

1w
2
3

}
= (w1 + w3)4 − 16w2

1w
2
3

=
[
(w1 + w3)2 − 4w1w3

] [
(w1 + w3)2 + 4w1w3

]
= (w1 − w3)2

[
(w1 + w3)2 + 4w1w3

]
> 0 .

(E47)

Since K is obviously positive, we conclude that M(1) > 0 for all r ∈ (0, 1) when µM = 1
2 .

Thus µM = 1
2 is not invadable for all r.
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