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ABSTRACT

Knowledge of the genetic relatedness between individuals is important in many research areas in
quantitative genetics, conservation genetics, forensics, evolution, and ecology. In the absence of pedigree
records, relatedness can be estimated from genetic marker data using a number of estimators. These
estimators, however, make the critical assumption of a large random mating population without genetic
structures. The assumption is frequently violated in the real world where geographic/social structures or
nonrandom mating usually lead to genetic structures. In this study, I investigated two approaches to the
estimation of relatedness between a pair of individuals from a subpopulation due to recent common
ancestors (i.e., relatedness is defined and measured with the current focal subpopulation as reference).
The indirect approach uses the allele frequencies of the entire population with and without accounting
for the population structure, and the direct approach uses the allele frequencies of the current focal
subpopulation. I found by simulations that currently widely applied relatedness estimators are upwardly
biased under the indirect approach, but can be modified to become unbiased and more accurate by using
Wright’s Fst to account for population structures. However, the modified unbiased estimators under the
indirect approach are clearly inferior to the unmodified original estimators under the direct approach,
even when small samples are used in estimating both allele frequencies and relatedness.

KNOWING the degree of relatedness between
individuals is essential in many research areas in

quantitative genetics, conservation genetics, forensics,
evolution, and ecology (Ritland 1996; Lynch and
Ritland 1999; Weir et al. 2006). The expected value of
relatedness between two individuals (e.g., 0.5 for
parent–offspring in a large random mating population)
can be easily calculated from their pedigree records.
When pedigree is unavailable, incomplete, or unreli-
able, genetic marker information can be used instead
to obtain an estimate of the realized value of relatedness,
using a number of estimators developed for this
purpose (e.g., Lynch 1988; Queller and Goodnight

1989; Li et al. 1993; Ritland 1996; Lynch and Ritland

1999; Wang 2002; Milligan 2003). When the assump-
tions are met, these estimators yield unbiased estimates
of the expected relatedness calculated from pedigrees.
Recently, these estimators were compared for accuracy
extensively, using both simulated and empirical data
sets (e.g., Lynch and Ritland 1999; Van de Casteele

et al. 2001; Wang 2002; Milligan 2003; Csilléry et al.
2006; Anderson and Weir 2007).

The current marker-based methods make the critical
assumption of a large random mating population,
which implies the absence of close inbreeding (due to
mating between closely related individuals, such as

siblings) and pervasive inbreeding (due to genetic drift
from the finite size or structure of a population).
Unfortunately, most real populations are small and
genetically structured, and matings are usually confined
to individuals in a small area or a social group. Thus
both forms of inbreeding may exist, leading to a
background level of relatedness that can be quantified
by Wright’s Fst. For human populations, Fst values �0.1
have been reported in some cases (e.g., Hinds et al. 2005;
Weir et al. 2005), although typical values for within-
continent populations are much smaller. Furthermore,
consanguineous marriages are found commonly in
some countries or communities (e.g., Bittles et al.
1991; Khoury and Massad 2005). For plant and animal
populations, Fst values are often higher (e.g., Marshall

and Ritland 2002) and more extreme forms of close
inbreeding, such as selfing, could be present.

In a subdivided population, relatedness can be defined
and measured with respect to either the entire popula-
tion or just the focal subpopulation from which individ-
uals are drawn for relatedness estimation (see below). For
the same pair of individuals, relatedness is always higher
when the reference is the entire population than that
when the reference is the focal subpopulation. Which
reference is more appropriate depends on the particular
applications of relatedness estimates.

In some contexts, a researcher may be interested in the
total relatedness due to coalescences in both the recent
and the remote past. An example in conservation is to
find the set of individuals as breeders that have the
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minimum average relatedness among them (Ballou

and Lacy 1995) and to determine the best mating
pairs that are the least related and thus result in the
highest average heterozygosity of the next generation
(Caballero and Toro 2000). For a given relationship
defined within a certain number of generations in the
past, pervasive or close inbreeding that occurred in the
more remote past will lead to an increased relatedness
beyond that expected without inbreeding. Ignoring
inbreeding effectively moves the reference point forward
in time, resulting in an underestimation of relatedness. In
practice, inbreeding is ignored when relatedness is
estimated using the current allele frequencies of a sub-
population and assuming the absence of identity-by-
descent (IBD) between genes at a locus within individuals.
At present, there are no moment estimators of related-
ness that can account for inbreeding, but a likelihood
method based on the estimation of the nine condensed
IBD coefficients ( Jacquard 1972) was proposed (Wang

2007) to infer relatedness in populations with inbreeding.
In some other contexts, a researcher may be interested

in the relatedness due to coalescences in the immediate
past few generations, and that due to coalescences in the
remote past is irrelevant. This is true when one wants to
sort the pairs of individuals into a few simple relationship
categories (such as full-sibs, half-sibs, parent–offspring,
and unrelated) from the relatedness estimates. An ex-
ample is the study of extrapair paternity, where one is
interested in knowing whether a social father of an
offspring is in fact the biological father (Anderson and
Weir 2007). Similarly, in inferring the female mating
system, one is interested in knowing whether the off-
spring from a mother are full-sibs and if not, how many
half-sibships (fathers) the offspring fall into. In such
cases, background relatedness acts as a noise and needs
to be filtered out.

In a structured population, two approaches can be
adopted to estimate the relatedness due to recent coa-
lescences (i.e., using the focal subpopulation as reference
for IBD). The direct approach is to take the focal
subpopulation as reference by using its allele frequencies
in relatedness inference. The indirect approach is to take
the entire population as reference by using the popula-
tion allele frequencies in relatedness inference and
correct for the population structure statistically using
Fst. The latter approach, adopted by Anderson and Weir

(2007), is deemed essential when the allele frequencies
of the subpopulation from which the focal sample of
individuals is taken are unavailable or cannot be accu-
rately estimated due to small sample sizes.

In this investigation, I focus on the estimation of
relatedness due to recent coalescences in a structured
population, using both approaches. Under a genetic
model in the indirect approach, Anderson and Weir

(2007) developed and implemented a reduced-likelihood
method that accounts for pervasive inbreeding (popula-
tion structure) but not close inbreeding. They also derived

the expectations of several moment estimators in the sim-
ple cases of a locus with two alleles or with multiple
equifrequency alleles. In this study, I extend Anderson
and Weir’s work to develop and implement a likelihood
method that estimates all of the nine condensed IBD
coefficients between two individuals in a genetically
structured population. The method can therefore pro-
vide unbiased estimates of relatedness in the presence of
both pervasive and close inbreeding, and it reduces to
that of Anderson and Weir when close inbreeding is
absent by assuming a large subpopulation with random
mating. I also derive the expectations of several moment
estimators in the general case of an arbitrary allele-
frequency distribution, which lead to unbiased moment
estimators in the presence of pervasive inbreeding. I
compared the direct and indirect approaches for differ-
ent estimators by simulations and found that in realistic
situations the direct approach is not only simpler but also
more accurate than the indirect approach.

THEORY AND METHODS

In this section, I outline Jacquard’s (1972) nine
condensed IBD coefficients that fully describe the
relationship among the four genes possessed by two
diploid individuals at a locus. I then describe briefly
Anderson and Weir’s model of relatedness in a struc-
tured population. On the basis of this model, I show that
a full-likelihood method can be developed and imple-
mented to estimate all of the nine condensed IBD
coefficients in a population with pervasive and close
inbreeding. I also show that, strictly under Anderson
and Weir’s model, unbiased moment estimators can be
derived to account for pervasive inbreeding. Finally, I
describe the simulations that are used to compare the
performances of different estimators in both the direct
and the indirect approaches.

Identity-by-descent between alleles and relatedness
between individuals: A set of two or more alleles at a
locus are IBD if they are identical copies of the same
ancestral allele. IBD (and IBD-based parameters such as
relatedness, inbreeding, and coancestry coefficients) is
defined and measured implicitly relative to a particular
reference population in which all alleles are designated
as nonidentical by descent. Therefore, the IBD status of
a set of alleles changes with an alteration of the ref-
erence. Alleles non-identical-by-descent may become
IBD when the reference moves backward in time or
shifts to a larger geographic range and vice versa. The
relative nature of IBD (and its derived parameters) is
irrelevant for some applications (such as correlation
analyses in which IBD is correlated with other quanti-
ties) but is important for other applications (such as
distinguishing genealogical relationships).

Traditionally in a pedigree analysis, IBD is defined
with respect to a specific focal pedigree. Alleles are
either IBD from a common ancestor within the pedi-
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gree or non-IBD if they trace back to distinct founders of
the pedigree, where founders are typically assumed to
be random draws from a large gene pool and are thus
both noninbred and unrelated. In the absence of a
pedigree, IBD can be defined with respect to a reference
population x generations in the past, for some spec-
ified x. Alleles are either IBD if they are from a com-
mon ancestor found within the x generations or non-IBD
otherwise. In marker-based inferences of IBD, it is the
population whose allele frequencies are used in the
inference that acts as the reference (Ritland 1996). By
definition, two alleles taken at random from the refer-
ence population are non-IBD. When the reference is a
large random mating population, we arrive at the familiar
probabilities of IBD sharing patterns between family
members. For example, parent and offspring share one
allele IBD at a probability of 1, and full-sibs share one
allele and two alleles IBD at probabilities of 1

2 and 1
4 ,

respectively. In both cases, the coancestry coefficient is
1
4 . In practice, the allele frequencies in a population
are usually unknown but are estimated from a sample
of individuals taken from the population. In such a
case, more precisely it is this sample of individuals
that actually acts as the reference. When the sample is
sufficiently large and taken at random from the pop-
ulation, the population- and sample-based references
are similar, as the population is well represented by the
sample. Otherwise, they can be very different. Consider
a simple example. Suppose a sample of full siblings is
taken from a single family in a population and is used to
estimate allele frequencies that are then used for IBD
(relatedness) inferences. By definition, two alleles taken
at random (without replacement) from the sample are
non-IBD, and the average relatedness between individ-
uals within the sample should be zero. Indeed, when the
sample allele frequencies are used, different estimators
yield relatedness estimates between individuals in the
sample that are on average zero or very close to zero.
Different from the first two definitions of IBD based on
pedigrees or generations that both have a clear time
cutoff point beyond which all alleles are assumed non-
IBD, the population- or sample-based definition does
not specify explicitly this time horizon. By this defini-
tion, two individuals having many remote common
ancestors may be more related than two individuals
having few recent common ancestors. This is true with
the pedigree- or generation-based definitions only when
both remote and recent ancestors fall within the time
horizon. Removing the artificial time limit from the IBD
definition is an advantage of the population- or sample-
based definition as it avoids potential biases brought
about by the artificial cutoff point. In the present study,
the reference in the direct approach is either the current
focal subpopulation or a sample taken at random
from it, and the reference in the indirect approach is
either the current entire population or a sample taken
at random from it.

A set of two or more alleles at a locus is identical-in-state
(IIS) if they all have the same phenotype. For example,
they have the same base type for a SNP or the same
number of repeat units for a microsatellite. Barring the
rare events of mutations in the short timescale in the
definition of IBD above, alleles IBD are always IIS.
However, alleles IIS are not necessarily IBD, although
they are more likely to be IBD than alleles that are not IIS.
IBD is invisible, but can be inferred probabilistically from
IIS. For example, for a father–mother–offspring trio with
genotypes A1A2–A2A2–A1A2, the two A1 alleles are IBD
with probability 1, and the A2 allele in the child is IBD
with each A2 allele in the mother with a probability of 0.5.

Traditionally, relatedness is defined and estimated
for a large random mating population without close
and pervasive inbreeding (e.g., Lynch and Ritland

1999). In such a simplified situation, alleles within an
individual are always non-IBD while alleles between
individuals may or may not be IBD. To accommodate
inbreeding, however, the IBD status of alleles both
within and between individuals needs to be considered.
Among the two genes from individual X and two genes
from individual Y, 15 mutually exclusive and exhaustive
IBD modes exist ( Jacquard 1972). When paternal and
maternal genes are not distinguished, the 15 IBD modes
reduce to 9 condensed identity modes ( Jacquard 1972;
Lynch and Walsh 1998) as defined in Figure 1. The
relationships among the four alleles are determined by
the probabilities of the 9 IBD modes, D ¼ {D1, D2, . . . ,
D9}, where Di is the probability of IBD mode Di (i ¼ 1,
2, . . . , 9). The relationship between X and Y is also fully
described by D. X and Y are more related when they
share more alleles IBD (e.g., D7 vs. D8) and/or share
alleles IBD at a higher probability. A widely used
parameter that combines Di values to measure the total
degree of relatedness between X and Y is the coan-
cestry coefficient, uXY, which is the probability that two
alleles at a locus, one taken at random from X and
one from Y, are IBD. By definition,

uXY ¼ D1 1
1

2
ðD3 1 D5 1 D7Þ1

1

4
D8: ð1Þ

An equivalent parameter is the relatedness coefficient,
r XY ¼ 2uXY , as adopted in the literature (e.g., Lynch and
Ritland 1999). Note, however, rXY as defined above can
be .1 when there is inbreeding. The inbreeding co-
efficient of X (or Y ), which is the probability that the two
alleles of X (or Y ) are IBD, can also be calculated from D,

F X ¼ D1 1 D2 1 D3 1 D4;

F Y ¼ D1 1 D2 1 D5 1 D6: ð2Þ

When both X and Y are noninbred, an assumption
made by most moment and likelihood estimators of
relatedness, then only three IBD modes are possible,
D7, D8, and D9. In this simple case, D7 1 D8 1 D9 [ 1 and
Di ¼ 0 for i ¼ 1, 2, . . . , 6.
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Corresponding to each of the nine IBD modes Di (i¼
1, 2, . . . , 9) among the four alleles of X and Y, there is an
IIS mode Si. Si is defined similarly to Di in Figure 1,
except that the alleles connected by a line are IIS rather
than IBD. All relatedness estimators infer rXY directly
(likelihood methods) or indirectly (moment methods)
from Si together with other information such as allele
frequencies.

Relatedness in structured populations: Traditional
relatedness models assume that individuals are sampled
from a large random mating population. Recently,
Anderson and Weir (2007) proposed a model that
assumes that individuals come from one of the sub-
populations of a population whose allele frequencies
are known. Two individuals from a subpopulation are
related, relative to two individuals taken at random from
the entire population, because of the pervasive in-
breeding that leads to the differentiation of the sub-
population from other subpopulations (or from the
ancestral population) and because of any close in-
breeding or recent coalescences within the subpopula-
tion. Anderson and Weir are interested in estimating the
relatedness due to recent coalescences. The relatedness
due to pervasive inbreeding or population structure
can be filtered out by using the focal subpopulation as
reference, realized by estimating relatedness from the
allele frequencies of the focal subpopulation (direct
approach). Alternatively, this can also be achieved by
using the allele frequencies of the entire population
and accounting for pervasive inbreeding by Fst (in-
direct approach). The latter approach, adopted by
Anderson and Weir, is deemed desirable when the
allele frequencies of the subpopulation are unavailable
or cannot be estimated reliably because of small sample
sizes.

Let us consider a marker with n codominant alleles,
A ¼ {A1, A2, . . . , An}, whose frequencies in the entire
population are p¼ {p1, p2, . . . , pn}. The genotypes of two
individuals from a subpopulation must fall into one of
the nine IIS modes. The probability of each IIS mode,
given p, D, and the differentiation of the subpopulation
from the ancestral population (denoted by u from here

on for simplicity), was derived by Anderson and Weir as
listed in Table 1. When u ¼ 0, allele frequencies in the
subpopulation are equal to those in the ancestral pop-
ulation, and the genotype pair probabilities listed in
Table 1 reduce to those in a large random mating pop-
ulation as derived before (Milligan 2003).

Likelihood estimator: The probability of observing a
particular IIS mode, Si, for two individuals at a single
locus, given their IBD coefficients D and the allele
frequencies, is equal to the likelihood of D,

LðDÞ ¼ PrðSi jDÞ ¼
X9

j¼1

PrðSi jDjÞDj : ð3Þ

In (3), PrðSi jDjÞ is listed in Table 1, D ¼ {D1, D2, . . . , D9}
are the parameters being estimated, and u is treated as
a known constant. In practice, u can be estimated from
allele-frequency data using methods, such as that of
Weir and Cockerham (1984), that assume unrelated
and noninbred individuals. More desirably, a likelihood
method that jointly estimates u and pairwise relatedness
could be more accurate for both. Such a method is not
available yet and is out of the scope of this study. For
multiple loci in linkage equilibrium, the likelihood is
simply the product of the single-locus likelihoods.

Given a set of markers with known allele frequencies
in the entire population and the value of parameter u,
the maximum-likelihood estimates of D for two individ-
uals conditional on their observed IIS modes can be
obtained by maximizing function (3) over the legiti-
mate parameter space (i.e., Dj $ 0 for j ¼ 1, 2, . . . , 9,
subject to constraint

P
9
j¼1 Dj ¼ 1). Relatedness between

the two individuals is then calculated by (1) using the
estimated D-values. It is impossible to solve (3) analyt-
ically. I use Powell’s quadratically convergent method
(Press et al. 1996) with slight modifications to solve this
nine-dimentional constrained maximization problem.
This method is chosen because it is derivative free
and simple to implement. Yet, tests using numerous
simulated and empirical data sets indicate that the
method converges reliably, with different initial values
and different initial searching directions of D leading to
the same maximum-likelihood estimates. Hereafter, this
estimator is referred as the full-likelihood estimator as it
estimates the full set of nine IBD coefficients between
two individuals. It is denoted as r fL and r fLðsÞ when
population structure is ignored (assuming u ¼ 0) and
taken into account (assuming u . 0), respectively.

When the subpopulation from which individuals are
sampled is large and at random mating, then Dj ¼ 0 for
j ¼ 1, 2, . . . , 6. In such a case, as was considered by
Anderson and Weir, only three IBD coefficients, D7, D8,
and D9, need to be obtained from (3) while the rest are
constrained to be zero. Hereafter, this is referred as the
reduced-likelihood estimator, denoted as r rL and r rLðsÞ
when population structure is ignored (assuming u ¼ 0)
and taken into account (assuming u . 0), respectively.

Figure 1.—Identity-by-descent modes of the four genes at a
locus of two diploid individuals. Each group of four dots repre-
sents an IBD mode, with the top pair of dots representing the two
genes in individual X and the bottom pair of dots representing
the two genes in individual Y. Genes connected by lines are IBD.
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Moment estimators: Current moment estimators
are biased when applied to individuals sampled from
a subpopulation and when the allele frequencies of
the entire population are used in the estimation, as
shown by Anderson and Weir (2007). They derived
analytical functions of the biases of several moment
estimators in the special cases of a biallelic locus and a
locus with equi-frequency alleles. Below I study the
biases of these moment estimators in the general case
of a locus with an arbitrary number and frequency
distribution of alleles. This allows me to derive un-
biased moment estimators of relatedness in a struc-
tured population.

Estimator by QUELLER and GOODNIGHT (1989): One of
the earliest and most commonly used moment estima-
tor is that published by Queller and Goodnight

(1989). There are a number of variants to this estimator,
and I choose to use the symmetric one obtained by
averaging the estimates using each of the two individ-
uals as reference. For individuals X and Y with
genotypes {a, b} and {c, d}, respectively, at a locus, the
estimator is

r̂ ¼ dac 1 dad 1 dbc 1 dbd � 2ðpa 1 pbÞ
4ð1 1 dab � pa � pbÞ

1
dac 1 dad 1 dbc 1 dbd � 2ðpc 1 pdÞ

4ð1 1 dcd � pc � pdÞ
; ð4Þ

where alleles A1, A2, . . . , An are denoted by a, b, c, d to
avoid subscripts, and dij is the Kronecker delta variable
(dij ¼1 if i ¼ j and dij ¼ 0 otherwise).

In the appendix, I show that the expectation of (4) is

E ½r̂ � ¼ 1� u

1 1 u

� �
r 1

2u

1 1 u
; ð5Þ

where E is the expectation operator and r is the true
relatedness between X and Y. As can be seen, (4) is
unbiased only when u ¼ 0, which is true if the
individuals come from a large random mating popula-
tion (or subpopulation) and the allele frequencies of
the population (subpopulation) are used in the esti-
mation. Otherwise, (4) is upwardly biased. The more
differentiated the subpopulations are, the larger the
biases.

Replacing the left side of (5) by the original estimator
(4) and solving for r, I obtain an unbiased estimator in
the presence of population structure,

r̂s ¼
1 1 u

1� u

� �
r̂� 2u

1� u
; ð6Þ

where r̂ is given by (4). The unbiased estimator can
be regarded as the original estimator corrected for the
population structure or the misspecification of allele
frequencies, using the differentiation parameter u. It is
unbiased regardless of the value of u. When u ¼ 0, it
reduces to the original estimator.

For multiple loci, the Queller and Goodnight estima-
tors, (4) and (6), are calculated by averaging the single-
locus estimates, following the literature (e.g., Milligan

2003; Anderson and Weir 2007). For simplicity, here-
after estimators (4) and (6) are denoted as r QG and

TABLE 1

Probability of identity-in-state modes Si given identity-by-descent modes Di

IBD modes

IIS mode Allelic state D1 D2 D3 D4 D5 D6 D7 D8 D9

S1 AiAi,AiAi
mi0

f 0

mi0mi1

f 1

mi0mi1

f 1

mi0mi1mi2

f 2

mi0mi1

f 1

mi0mi1mi2

f 2

mi0mi1

f 1

mi0mi1mi2

f 2

mi0mi1mi2mi3

f 3

S2 AiAi,AjAj 0
mi0mj0

f 1

0
mi0mj0mj1

f 2

0
mi0mi1mj0

f 2

0 0
mi0mi1mj0mj1

f 3

S3 AiAi,AiAj 0 0
mi0mj0

f 1

2mi0mi1mj0

f 2

0 0 0
mi0mi1mj0

f 2

2mi0mi1mi2mj0

f 3

S4 AiAi,AjAk 0 0 0
2mi0mj0mk0

f 2

0 0 0 0
2mi0mi1mj0mk0

f 3

S5 AiAj,AiAi 0 0 0 0
mi0mj0

f 1

2mi0mi1mj0

f 2

0
mi0mi1mj0

f 2

2mi0mi1mi2mj0

f 3

S6 AjAk,AiAi 0 0 0 0 0
2mi0mj0mk0

f 2

0 0
2mi0mi1mj0mk0

f 3

S7 AiAj,AiAj 0 0 0 0 0 0
2mi0mj0

f 1

mi0mj0ðmi1 1 mj1Þ
f 2

4mi0mi1mj0mj1

f 3

S8 AiAj,AiAk 0 0 0 0 0 0 0
mi0mj0mk0

f 2

4mi0mi1mj0mk0

f 3

S9 AiAj,AkAl 0 0 0 0 0 0 0 0
4mi0mj0mk0ml0

f 3

Alleles with different subscripts are distinct. Parameters fi ¼
Q

i
j¼0ð1 1 ð j � 1ÞuÞ and mij ¼ ð1 1 uÞpi 1 ju.
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r QGðsÞ, respectively, where subscript ‘‘s’’ indicates struc-
tured populations.

Estimator by LYNCH (1988) and LI et al. (1993): Another
widely applied moment estimator is based on a similarity
index SXY, defined as the arithmetic average fraction of
alleles at a locus in a reference individual (either X or Y ) for
which there is another allele in the other individual (either
Yor X) that is identical in state (Lynch 1988; Li et al. 1993).
Thus, SXY ¼ 1 for genotype pairs { AiAi, AiAi } or {AiAj, AiAj },
SXY ¼ 0:75 for genotype pairs { AiAi, AiAj }, SXY ¼ 0:5 for
genotype pairs { AiAj, AiAk }, and SXY ¼ 0 for genotype pairs
{ AiAj, AkAl }. For a single locus, the estimator is

r̂ ¼ SXY � S0

1� S0
; ð7Þ

where S0 ¼ 2a2 � a3 (with am ¼
P

n
i¼1 pm

i for m ¼ 2, 3)
is the expected similarity index for unrelated individ-
uals in a large random mating population. In a struc-
tured population, the average similarity index for
individuals X and Y with relatedness r can be derived
(see appendix) as

E ½SXY �

¼ S0 1 uð2� S0Þ1 ð1� uÞð1� S0Þr
1 1 u

� uð1� uÞða2 � a3Þð1� rÞ
1 1 u

;

ð8Þ

where S0 is as defined in (7). When u¼ 0, (8) reduces to
E ½SXY � ¼ rð1� S0Þ1 S0 as derived before (e.g., Li et al.
1993). Equation 8 indicates that two individuals taken
from a subpopulation are similar in genotypes because
of u (common ancestry) as well as r (relatedness) and S0

(chances). Inserting (8) into (7) yields the expected
value of (7):

E ½r̂ � ¼ 2u 1 ð1� uÞr
1 1 u

� uð1� uÞða2 � a3Þð1� r Þ
ð1 1 uÞð1� S0Þ

: ð9Þ

Equation 9 shows that (7) is unbiased only when u ¼ 0.
Otherwise, it is upwardly biased, giving relatedness estimates
larger than the true value. Unlike the Queller and Good-
night estimator, however, the extent of the bias depends not
only on parameters of u and r, but also on the marker allele-
frequency distributions that determine a2 and a3. For the
special case of equi-frequency alleles, (9) reduces to

E ½r̂ � ¼ 2u 1 ð1� uÞr
1 1 u

� uð1� uÞð1� rÞ
ð1 1 uÞðn � 1Þ ;

which is identical to Equation A16 of Anderson and
Weir (2007), noting that r XY ¼ 2uXY .

An unbiased estimator can be derived from (9), which is

r̂s ¼ 1� ð1 1 uÞð1� SXY Þ
ð1� uÞð1� ð2� uÞa2 1 ð1� uÞa3Þ

: ð10Þ

For simplicity, hereafter estimators (7) and (10) are
denoted as r LL and r LLðsÞ, respectively.

Estimator by RITLAND (1996): An estimator derived in
Ritland (1996) and Li and Horvitz (1953) is

r̂ ¼ 2

n � 1

Xn

i¼1

Si

pi

 !
� 1

" #
; ð11Þ

where Si, the similarity for allele i between individuals
X and Y, takes a value of 0 (if X and Y do not share any
i allele), 0.25 (if both X and Y have a single i allele), 0.5 (if
one individual has two and the other individual has one i
allele), and 1 (if both X and Y have two i alleles).

As shown in the appendix, the expected value of (11) is

E ½r̂ � ¼ 2u 1 ð1� uÞr : ð12Þ

Like other moment estimators shown above, therefore,
estimator (11) is unbiased only when u¼ 0. Otherwise, it is
upwardly biased. An unbiased estimator accounting for
the population structure can be obtained from (12) as

r̂s ¼
r̂� 2u

1� u
; ð13Þ

where r̂ is the original estimator given by (11). For
simplicity hereafter, estimators (11) and (13) are
denoted as r R and r RðsÞ, respectively.

Estimator by LYNCH and RITLAND (1999): The estimator
of relatedness between individuals X and Y with geno-
types {a, b} and {c, d}, respectively, is

r̂ ¼ paðdbc 1 dbdÞ1 pbðdac 1 dadÞ � 4papb

2ð1 1 dabÞðpa 1 pbÞ � 8papb

1
pcðdda 1 ddbÞ1 pdðdca 1 dcbÞ � 4pcpd

2ð1 1 dcdÞðpc 1 pdÞ � 8pcpd
; ð14Þ

where the delta variables are defined as in (4). For mul-
tiple loci, the overall estimate is obtained by weighting
single-locus estimates, using the weights of Lynch and
Ritland (their Equation 7a).

In a structured population, it is shown in the
appendix that (14) has the same expectation as rQG.
Therefore, the bias is given by (5) and the unbiased
estimator is given by (6), where r̂ is calculated by (14)
instead of (4). From here on, the multilocus symmetri-
cal estimator of Lynch and Ritland (1999) is denoted
as r LR and r LRðsÞ for unstructured and structured
populations, respectively.

Estimator by WANG (2002): Wang (2002) proposed an
estimator that uses the similarity index of Lynch (1988)
and Li et al. (1993) to estimate both D7 and D8 and thus r.
He classified genotype pairs into four exclusive similar-
ity categories, with categories 1, 2, 3, and 4 containing
genotype pairs that have similarity index values [as
defined in (7) above] of 1, 0.75, 0.5, and 0, respectively.
The genotype data of individuals X and Y are summa-
rized into a set of four indicator variables, P i , for i¼ 1, 2,
3, and 4. If the genotype pair of X and Y falls into
category i, then Pi ¼ 1 and Pj ¼ 0 for j¼ 1, 2, 3, 4 and j 6¼
i. The relatedness estimator turns out to be the same as
that of Lynch (1988) and Li et al. (1993) for the case of
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biallelic loci (Wang 2002). For loci with three or more
alleles, the estimator is

r̂ ¼ 1� c1 � c1P 1 � c2P 2 � c3P 3

c1 � c1e1 � c2e2 � c3e3
; ð15Þ

where constants c1 ¼ 2b2e4 1 2b3e6 1 e2e3ððe2 1 e3Þe5 1

4e4e6 1 ð1� e1 1 2e5Þðe4 1 e6ÞÞ, c2 ¼ b1ðb2 1 e2e3ðe5 1

e6ÞÞ, c3 ¼ b1ðb3 1 e2e3ðe4 1 e5ÞÞ, e1 ¼ 2a2
2 � a4, e2 ¼

4ða3 � a4Þ, and e3 ¼ 4ða2 � a2
2 � 2a3 1 2a4Þ, in which

b1 ¼ 1� e1 � 2e5, b2 ¼ ð1� e1 � e3Þe3e4, b3 ¼ ð1� e1�
e2Þe2e6, e4 ¼ 2ða2 � 3a3 1 2a4Þ, e5 ¼ a2 � 2a2

2 1 a4, and
e6 ¼ 1� 7a2 1 4a2

2 1 10a3 � 8a4.
In a structured population, the expectation of (15) is

a complicated function of the moments of allele-
frequency distribution (am, m ¼ 2 � 4), r and D8, as
shown in the appendix. This relatedness estimator is
unbiased when u ¼ 0, but is upwardly biased when u .

0, like the other moment estimators. Furthermore, the
extent of bias depends not only on u, but also on D8

(appendix). However, the coefficient of D8 in the
expectation is always very small (,0.05). Therefore an
almost unbiased estimator when u . 0 can be derived by
ignoring the term of D8,

r̂s ¼ 1� ð1 1 uÞð1 1 2uÞðc1 � c1P 1 � c2P 2 � c3P 3Þ
ð1� uÞðc1 � c1d1 � c2d2 � c3d3Þ

;

ð16Þ

where three constants additional to those in (15) are
d1 ¼ e1ð1� uÞ2� 4uð1 1 uÞ1 uð4 1 5uÞa2 1 2uð1� uÞa3,
d2 ¼ e2ð1� uÞ2 1 8u2ð1� a2Þ 1 12uð1� uÞ ða2 � a3Þ,
and d3 ¼ ð1� uÞðe3 1 uð4� e3 � 12a2 1 8a3ÞÞ. Hereafter,
(15) and (16) are denoted as r W and r WðsÞ for unstructured
and structured populations, respectively.

For easy reference, the abbreviations, original sour-
ces, equations (in this article), some properties, and

plotting symbols of the estimators compared in the
present study are listed in Table 2.

Simulations: Simulations were conducted to check
and compare the accuracies of different estimators in
various circumstances. In the first set of simulations, I
assumed both the allele frequencies of the entire
population and the parameter u were known and were
used in estimating the relatedness between individuals
taken from within a subpopulation. The simulation
began with the generation of allele frequencies of the
entire population, assuming an equal allele frequency
(pi ¼ 1=n for i ¼ 1, 2, . . . , n), a uniform Dirichlet
frequency distribution, or a triangular frequency dis-
tribution [pi ¼ i=t for i ¼ 1, 2, . . . , n, where
t ¼ nðn 1 1Þ=2]. The allele frequencies of a subpopula-
tion were generated from the Dirichlet distribution
using the parameter u and the allele frequencies of the
entire population, as described in Weir (2003). The
genotypes of two individuals with a given relationship,
parent–offspring (PO), full-sib (FS), half-sib (HS), and
unrelated (UR), are then generated at each of a number
of marker loci using the allele frequencies of the sub-
population. The individual genotypes, together with the
allele frequencies of the entire population and the known
parameter u, were then used as data in estimating
relatedness by various estimators. The factors considered
in this set of simulations are the level of differentiation (u)
and the number of markers, each having either 10 or 2
alleles to mimic microsatellites and SNPs, respectively.

The second set of simulations was conducted simi-
larly, except for the relationships and the factors
considered. Instead of the four relationships (UR, PO,
FS, and HS) without close inbreeding, I considered full-
sibs from parents who are themselves full-sibs (FSFS).
The IBD coefficients for this relationship are
D ¼ f 2

32 ;
1

32 ;
4

32 ;
1

32 ;
4

32 ;
1

32 ;
6

32 ;
11
32 ;

2
32 g, and the true related-

TABLE 2

A list of the estimators compared in this study

Estimator
abbreviation Source Equation

Allowing for
population structure

Allowing for
close inbreeding

Plotting
symbol

r fL This study (3) No Yes ¤
r fLðsÞ This study (3) Yes Yes ¤
r rL Anderson and Weir (2007) (3) No No w

r rLðsÞ Anderson and Weir (2007) (3) Yes No w

r QG Queller and Goodnight (1989) (4) No No :
r QGðsÞ This study (6) Yes No :
r LL Lynch (1988); Li et al. (1993) (7) No No q

r LLðsÞ This study (10) Yes No q

r R Li and Horvitz (1953); Ritland (1996) (11) No Yes h

r RðsÞ This study (13) Yes Yes h

r LR Lynch and Ritland (1999) (14) No No )

r LRðsÞ This study (6) Yes No )

r W Wang (2002) (15) No No n

r WðsÞ This study (16) Yes No n

The original source and equation (in this article) are listed in columns 2 and 3, respectively.
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ness between and inbreeding coefficient of individuals
are 47

64 and 1
4 , respectively. The factor considered in this

set of simulations is the number of markers, each having
10 alleles with frequencies in a subpopulation drawn
from the Dirichlet distribution given u, which is fixed at
0.1. Relatedness was estimated by the moment estima-
tors and the likelihood estimator with and without close
inbreeding taken into account, using the allele frequen-
cies of the entire population and the known parameter u

to account for pervasive inbreeding.
The third set of simulations dealt with the more

realistic situation where allele frequencies are unknown.
What one has is a sample of individuals (i.e., multilocus
genotypes) from each of one or more subpopulations. In
such a situation, two approaches can be adopted in
estimating the relatedness between two (focal) individu-
als taken from within a (focal) subpopulation. The direct
approach is to estimate the allele frequencies of the focal
subpopulation, using the sample from it. The estimated
allele frequencies are then used in estimating the re-

latedness between the focal individuals. The indirect
approach is to use the samples from each subpopula-
tion to estimate the allele frequencies of the entire
population and parameter u, which are then used in
estimating relatedness as shown in simulation set 1. In
both approaches, allele frequencies can be estimated by
simple allele counting, assuming all sampled individuals
are unrelated. Parameter u in the indirect approach can
be estimated by several methods, such as that of Weir and
Cockerham (1984). In this set of simulations, however, I
use the simulated parameter value of u in relatedness
estimation to obtain the maximally achievable accuracy
for this approach. Simulations were conducted similarly
to those in the first set, except for allele-frequency
estimation (as briefed above) and the factors considered.
I considered UR and FS relationships and different
sample sizes and different numbers of subpopulations
that were sampled. A fixed value of u ¼ 0.1 was used in
simulations and was used in relatedness estimations in the
indirect approach.

Figure 2.—Bias and MSE of relatedness estimates for unrelated (UR), parent–offspring (PO), full-sib (FS), and half-sib (HS)
individuals drawn from a subpopulation, as a function of the differentiation (u) of the subpopulation from the ancestral popu-
lation. Relatedness was estimated assuming either a large random mating population (u ¼ 0, rows 1 and 3) or a structured pop-
ulation with known u-value (rows 2 and 4). In both cases, the allele frequencies in the entire population are assumed known and
used in the estimation. Ten markers, each having 10 alleles with frequencies in a uniform Dirichlet distribution, are used for
estimating relatedness. The symbols in the plot are listed in Table 2, which are as follows: n, r W and r WðsÞ; q, r LL and r LLðsÞ;
), r LR and r LRðsÞ; h, r R and r RðsÞ; :, r QG and r QGðsÞ; and w, r rL and r rLðsÞ.
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In each set of the simulations described above, k ¼
100,000 replicates were conducted for each set of pa-
rameters. The performance of an estimator was mea-
sured by the mean of the k replicate estimates, which
informs the bias when it was compared with the true
simulated value of relatedness. The overall perfor-
mance was measured by mean squared error (MSE),
calculated as ð1=kÞ

P
k
i¼1ðr̂i � r Þ2, where r̂i is the estimate

in replicate i (1 � k), and r is the simulated value of
relatedness. Likelihood estimates are constrained to the
legitimate range of [0, 1], while moment estimates are
not. For a fair comparison in MSE between moment
and likelihood estimators, moment estimates are trun-
cated to force into the range of [0, 1] before calculating
MSEs.

RESULTS

Consequences of ignoring population structure: The
bias and MSE of different estimators with and without
population structure taken into account are compared
in Figure 2. It is clear from Figure 2 that all estimators
are upwardly biased when they assume a large random
mating population (u ¼ 0) but are applied to a struc-
tured population (u . 0). The extent of bias increases
roughly linearly with an increasing value of u. The
highest bias occurs to estimator r R, while the other
estimators (including r rL) have a similar degree of bias.
When population structure is taken into account, all
moment estimators become unbiased irrespective of the
value of u. The likelihood estimator, r rLðSÞ, has a small
upward bias because it is constrained to be nonnegative.

The MSE of each estimator increases with an in-
creasing value of u, when a large random mating
population is assumed (u ¼ 0). This is true for all four
relationships considered. r R has the highest MSE while
the likelihood estimator (r rL) has usually the lowest or
close to the lowest MSE. When population structure is
taken into account, the MSE is reduced for all estima-
tors, except for r RðSÞ in the cases of PO and FS pairs. The
reduction in MSE is expected as the bias component
in MSE is removed when population structure is
accounted for. The reason that r RðSÞ has a larger MSE
than r R is that the former has an increased variance over
the latter. On the basis of MSE, r rLðSÞ, r WðSÞ, r LLðSÞ, and
r QGðSÞ have the best performance across the four
relationships and the range of u values considered.

Among the six estimators compared, r R and r RðSÞ are
the least accurate as measured by MSE when u is
substantial. This is because this estimator is sensitive to
rare alleles that could lead to extreme estimates. Under
the uniform Dirichlet distribution, some alleles at a
10-allele locus may have low frequencies. Both r R and
r RðSÞ become increasingly sensitive to rare alleles with an
increasing u. This is because, for a given allele with a
low frequency in the entire population, the probability
that it has a substantial frequency in the focal sub-
population and thus appears in the genotypes of the
focal individuals increases with u. The advantage of
this estimator over others in the case of unrelated or
loosely related individuals in a large random mating
population (u ¼ 0), as demonstrated before (e.g.,
Wang 2002), is lost when it is applied to a structured
population (u . 0).

Figure 3.—MSE of relatedness estimates for unrelated (UR) and full-sib (FS) individuals drawn from a subpopulation, as a
function of the number of markers used in the estimation. The subpopulations are differentiated with a parameter value of u ¼
0.1. Relatedness was estimated assuming either a large random mating population (u ¼ 0, columns 1 and 3) or a structured pop-
ulation with known u-value (columns 2 and 4). In both cases, the allele frequencies in the entire population are assumed known
and used in the estimation. For microsatellites and SNPs, each marker has 10 and 2 alleles, respectively, whose frequencies in the
entire population are drawn from a uniform Dirichlet distribution. The plotting symbols for the different estimators are listed in
Table 2. For SNPs, the estimator of Wang (2002) and that of Lynch (1988) and Li et al. (1993) are identical and thus only the
latter is shown.
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Similar results to those shown in Figure 2 are obtained
for an equal or a triangular allele-frequency distribu-
tion. The main difference is that r R and r RðSÞ do not
perform as poorly in comparison with the other es-
timators when u is substantial.

Effect of type and number of markers: Figure 3
compares the MSEs among estimators when a variable
number of microsatellites and SNPs are used in re-
latedness estimation. Confirming the results in Figure
2, accounting for population structure leads to a
decrease in MSE for both microsatellites and SNPs
and for all estimators except for that of Ritland

(1996). When population structure is ignored, MSE
tends to attenuate with an increasing number of
markers. This is because MSE is increasingly domi-
nated by the bias rather than sampling errors of the
estimators with an increasing number of markers.
Because of the misspecification of the relatedness
model, more markers lead to just a smaller sampling
variance but have no effect on the bias. Therefore,
using unbiased estimators is especially important now
that more and more markers are routinely genotyped
at ease and used in relatedness analyses.

Figure 3 also shows that a microsatellite gives much
more information than a SNP. However, given a sufficient
number of SNPs, they can still yield accurate relatedness
estimates. For SNPs that have two alleles per locus, several
moment estimators have peculiar and undesirable prop-
erties as discussed in the literature (e.g., Lynch and
Ritland 1999; Wang 2002). This is especially obvious for
r QG and r QGðSÞ, which become undefined if the reference
individual is a heterozygote. Although r QGðSÞ performs
well for microsatellites, it no longer falls into the top
performance group of estimators for SNPs.

When population structure is accounted for, the best
estimators are r rLðSÞ, r WðSÞ, and r LLðSÞ regardless of the
actual relatedness (UR or FS) and the marker types and
numbers. The likelihood estimator, r rLðSÞ, is not obvi-
ously more accurate than the best moment estimators,
even when hundreds of markers are used.

Close inbreeding: Figure 4 compares the bias and
accuracy of moment and likelihood estimators for

closely inbred individuals (FSFS) taken from a sub-
population, as obtained from the second set of simu-
lations. As can be seen, r RðSÞ is the only one of the
moment estimators that provides unbiased estimates of
relatedness for closely inbred individuals (Wang 2007).
The remaining four moment estimators are downward
biased, and the bias is constant irrespective of the
number of loci. When close inbreeding is unaccounted
for, the likelihood estimator, r rLðSÞ, is even more biased
than moment estimators. However, when close in-
breeding is taken into account, the likelihood estima-
tor, r fLðSÞ, quickly becomes unbiased with an increasing
number of markers. Although unbiased, r RðSÞ is the least
accurate estimator, except when the number of markers
is extremely large. This is because, as discussed before,
r RðSÞ is very sensitive to rare alleles and could yield
extreme estimates. Its high MSE is dominated by its high
sampling variance. The likelihood estimator is the most
inaccurate when close inbreeding is ignored [r rLðSÞ], but
becomes the most accurate when close inbreeding is
accounted for [r fLðSÞ] and the markers are numerous.
With just a few markers (say, #20), r fLðSÞ is outper-
formed by the best moment estimators [r WðSÞ, r LLðSÞ, and
r QGðSÞ]. This is because the full-likelihood model is
overparameterized and thus is data hungry. Only with
sufficient marker information does it give satisfactory
estimation of the full set of nine IBD coefficients and
thus accurate estimation of inbreeding and related-
ness coefficients. This implies that, in the absence of
sufficient marker information in practice, inbreeding
is better ignored in estimating relatedness. The esti-
mates thus obtained may be slightly biased, but are
more accurate than the unbiased estimates obtained by
using the full-likelihood method that takes inbreeding
into account.

Comparison of two approaches: Figure 5 compares
the bias and accuracy of different estimators when allele
frequencies are unknown but estimated from samples,
as obtained from the third set of simulations. As can
be seen, three moment estimators, r W, r LL, and r QG,
quickly become unbiased with an increasing sample size
for both FS and UR relationships when the direct

Figure 4.—Bias and MSE of relatedness esti-
mates for full-sibs whose parents are also full-sibs
(FSFS) drawn from a subpopulation, as a func-
tion of the number of markers. Each marker
has 10 alleles with frequencies in a uniform Di-
richlet distribution in the entire population,
and the frequencies together with the known pa-
rameter value of u ¼ 0.1 are used in estimating
relatedness. The symbols in the plot are listed
in Table 2.
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approach was adopted. In contrast, all estimators are
biased for both relationships when the indirect approach
was adopted. In general, the direct approach is less biased
than the indirect approach for each estimator, except
when Ritland’s (1996) estimator is used for FS. For the
overall accuracy measured by MSE, the direct approach
is always better than the indirect approach for all
estimators and relationships considered. For UR, MSE
increases with an increasing sample size for all estima-
tors in both approaches. This is counterintuitive and
occurs because MSE is calculated from relatedness
estimates that are truncated to the range of [0, 1]. The
proportion of negative estimates increases with a
decreasing sample size. The truncation in both likeli-
hood (automatic) and moment (artificial) estimators
leads to a decrease in sampling variance and thus a
reduction in MSE. Because truncation is more fre-
quent with a smaller sample size, MSE increases with an
increasing sample size.

Overall, the direct approach is clearly less biased and
more accurate than the indirect approach. This is true
even when the simulated parameter value of u is used in
the indirect approach. In reality, however, u is unknown
and has to be estimated from samples. Using estimated
rather than true values of u is expected to make the
indirect approach even worse. The main cause of the

inaccuracy of the indirect approach is that allele fre-
quencies of the entire population are difficult to es-
timate. The more differentiated a population is, the
more subpopulations need to be sampled to estimate its
allele frequencies accurately. Figure 6 illustrates the
effect of the number of subpopulations that are sam-
pled to estimate population allele frequencies in the
indirect approach. A sample of 80 individuals was taken
from each of a number of subpopulations in a popula-
tion with a differentiation parameter value of u ¼ 0.1
and was used to estimate the population allele frequen-
cies. The estimated population allele frequencies to-
gether with the parameter value of u¼ 0.1 are then used
to estimate relatedness by different estimators, using 10
markers each having 10 alleles with a uniform Dirichlet
frequency distribution. Figure 6 shows that all estima-
tors, except for r rLðSÞ in the case of UR, become less
biased with an increasing number of sampled subpopu-
lations. All estimators become more accurate for FS but
less accurate for UR with an increasing number of
sampled subpopulations. The counterintuitive result
with UR is again caused by truncation. MSE always
decreases with an increasing number of sampled sub-
populations for all five moment estimators, when it is
calculated from the original relatedness estimates with-
out truncation (data not shown).

Figure 5.—Bias and MSE of relatedness estimates for unrelated (UR) and full-sib (FS) individuals drawn from a subpopulation,
as a function of sample size (number of individuals) used in estimating allele frequencies. The subpopulations are differentiated
with a parameter value of u ¼ 0.1. Relatedness was estimated using the estimated allele frequencies of either the focal subpop-
ulation (the direct approach, first row) or the entire population together with the parameter value of u ¼ 0.1 (the indirect ap-
proach, second row). In the latter case, allele frequencies were estimated from samples from 10 subpopulations. Ten markers,
each having 10 alleles with frequencies in a uniform Dirichlet distribution, are used for estimating relatedness. The plotting sym-
bols for the different estimators are listed in Table 2.
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DISCUSSION

The coefficients of inbreeding of and relatedness
between individuals have an implicit reference popula-
tion in which they are defined as zero (Rousset 2002).
In other words, genes at a locus, whether they are found
within or between diploid individuals, are expected to
be nonidentical by descent in the reference population.
Without this initial condition as reference, it is impos-
sible to measure IBD between genes and thus related-
ness between individuals. Therefore, the magnitudes of
both inbreeding and relatedness coefficients change
with a shift in the reference. For a single isolated
population, the relatedness between two individuals
increases when the reference moves backward in gen-
erations (time). For a subdivided (or structured)
population, the relatedness between two individuals in
a subpopulation increases as the reference moves back-
ward in time and/or moves from the focal subpopula-
tion to a larger number of subpopulations. In practice, it
is the population whose allele frequencies are used in
estimating relatedness that acts as the reference. When
the same sample is used in estimating both allele
frequencies and relatedness, therefore, the average
relatedness across all possible pairs of individuals in
the sample is expected to be close to zero.

In the real world, the assumption of a large random
mating population made by most estimators is rarely
satisfied. In a structured population, the relatedness
between two individuals within a subpopulation can be

measured with respect to the focal subpopulation or the
entire population. The former gauges the relatedness due
to recent coalescences that occurred within the subpop-
ulation, while the latter gauges the total relatedness due to
both recent and ancient coalescences that occurred within
the entire population. In this investigation, I focused on
the former, since most applications of relatedness are
found in fine-scale genetic studies of populations in the
immediate or short timescale.

Following the model of Anderson and Weir (2007), I
studied the estimation of relatedness of two individuals
within a subpopulation and with respect to it. The
estimation was made using the allele frequencies of the
entire population and the differentiation among sub-
populations, u. Confirming the model of Anderson

and Weir (2007), I found that all current estimators
assuming a large random mating population are up-
wardly biased when applied to a structured population.
The extent of the bias depends on u and the estimator
(Figure 1). I derived the expectations of different
moment relatedness estimators for a marker with an
arbitrary allele-frequency distribution, which led to
modified moment estimators that are unbiased for a
structured population. Simulations confirm that these
modified moment estimators are not only unbiased
regardless of u, but also more accurate than the original
estimators for all pairwise relationships considered
(Figures 1 and 2). The likelihood estimator is upwardly
biased for unrelated or slightly related individuals even
when population structure is taken into account. This

Figure 6.—Bias and MSE of relatedness esti-
mates for unrelated (UR) and full-sib (FS) indi-
viduals drawn from a subpopulation, as a
function of the number of subpopulations sam-
pled in estimating population allele frequencies.
The subpopulations are differentiated with a pa-
rameter value of u ¼ 0.1. Relatedness was esti-
mated using the estimated allele frequencies of
the entire population together with the parame-
ter value of u ¼ 0.1. Ten markers, each having 10
alleles with frequencies in a uniform Dirichlet
distribution, are used for estimating relatedness.
The symbols in the plot are listed in Table 2.
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is because the estimator is constrained to the range of
[0, 1], and the true relatedness is at or close to the lower
bound of the range. Simulations indicate that its
accuracy is close to but never substantially higher than
that of the best moment estimator for all pairwise
relationships. This is true even when hundreds of SSRs
or SNPs are used, confirming previous studies (e.g.,
Lynch and Ritland 1999; Wang 2002). It could be-
come the most accurate estimator when many markers
of very different information content are used.

An advantage of the likelihood method is its flexibil-
ity. As shown in this study, the likelihood method can
be made to estimate the full set of nine IBD coefficients
(and thus the inbreeding coefficients of and relatedness
between individuals) by accounting for both population
structure (pervasive inbreeding) and close inbreeding.
In contrast, among the available moment estimators
only that of Ritland (1996) can accommodate both
types of inbreeding. Unfortunately, this estimator is very
sensitive to rare alleles. Although it is among the top
estimators for unrelated or slightly related individuals
when u is small, it performs poorly for close relation-
ships such as sibship and parentage or for highly
differentiated populations. My simulations in Figure 4
show that with close inbreeding, all estimators that
ignore inbreeding become downwardly biased, while
estimators that allow for inbreeding are either always
unbiased [moment estimator, r RðSÞ] or quickly becom-
ing unbiased with an increasing amount of marker
information [likelihood estimator, r fLðSÞ]. In terms of
accuracy, r fLðSÞ becomes the best only when a sufficient
number of markers are used in the analysis. Otherwise,
it is less accurate than estimators that ignore close
inbreeding. This is because the full-likelihood model
has to estimate six more parameters than the reduced
(noninbreeding) model. The results imply that, in
practical situations where ,15 SSRs are available, it is
better to ignore close inbreeding even if it is present.

An alternative and direct approach to estimating the
relatedness between individuals from a subpopulation
with respect to it is to use the allele frequencies of the
focal subpopulation. In the common case of unknown
allele frequencies, they can be estimated from the same
sample that is analyzed for relatedness. Indeed, simu-
lations show clearly that this direct approach is more
accurate than the indirect one that uses the entire
population as the reference and accounts for popula-
tion structure by using u. This is true even when the size
of the sample from the focal subpopulation is small
(�40 individuals) and the true value of u is used in the
indirect approach (Figure 5). Estimating the allele
frequencies of the entire population is much more
difficult than estimating that of a single subpopulation,
because sampling errors occur both between and within
subpopulations in the former but just within a subpopu-
lation in the latter. Therefore, a large number of individ-
uals from each of a large number of subpopulations must

be sampled to obtain accurate allele-frequency estimates
of the population (Figures 5 and 6). The sampling of
subpopulations is expected to have an especially large
impact when the population is highly differentiated. In
the real world, a population may have a cryptic structure,
may have a continuous geographic distribution, or may
have subpopulations with different sizes and extents of
differentiation. These complexities make the estimation
of allele frequencies of the entire population difficult in
practice. It is even more difficult to accurately estimate Fst,
because it depends also on factors other than population
structure. Highly polymorphic microsatellites usually lead
to a much lower estimate of Fst than the biallelic marker
SNPs, for example (Hedrick 1999).

LITERATURE CITED

Anderson, A. D., and B. S. Weir, 2007 A maximum likelihood
method for estimation of pairwise relatedness in structured pop-
ulations. Genetics 176: 421–440.

Ballou, J. D., and R. C. Lacy, 1995 Identifying genetically impor-
tant individuals for management of genetic variation in pedi-
greed populations, pp. 76–111 in Population Management for
Survival and Recovery. Analytical Methods and Strategies in Small Pop-
ulation Conservation, edited by J. D. Ballou, M. Gilpin and T. J.
Foose. Columbia University Press, New York.

Bittles, A. H., W. M. Mason, J. Greene and N. A. Rao, 1991 Repro-
ductive behavior and health in consanguineous marriages. Sci-
ence 252: 789–794.

Caballero, A., and M. A. Toro, 2000 Interrelations between effec-
tive population size and other pedigree tools for the manage-
ment of conserved populations. Genet. Res. 75: 331–343.

Csillery, K., T. Johnson, D. Beraldi, T. Clutton-Brock,
D. Coltman et al., 2006 Performance of marker-based related-
ness estimators in natural populations of outbred vertebrates.
Genetics 173: 2091–2101.

Hedrick, P. W., 1999 Perspective: highly variable loci and their inter-
pretation in evolution and conservation. Evolution 53: 313–318.

Hinds, D., L. Stuve, G. Nilsen, E. Halperin, E. Eskin et al.,
2005 Whole-genome patterns of common DNA variation in
three human populations. Science 307: 1072–1079.

Jacquard, A., 1972 Genetic information given by a relative. Biomet-
rics 28: 1101–1114.

Khoury, S. A., and D. Massad, 2005 Consanguineous marriage in
Jordan. Am. J. Med. Genet. 43: 769–775.

Li, C. C., and D. G. Horvitz, 1953 Some methods of estimating the
inbreeding coefficient. Am. J. Hum. Genet. 5: 107–117.

Li, C. C., D. E. Weeks and A. Chakravarti, 1993 Similarity of DNA
fingerprints due to chance and relatedness. Hum. Hered. 43:
45–52.

Lynch, M., 1988 Estimation of relatedness by DNA fingerprinting.
Mol. Biol. Evol. 5: 584–599.

Lynch, M., and K. Ritland, 1999 Estimation of pairwise relatedness
with molecular markers. Genetics 152: 1753–1766.

Lynch, M., and B. Walsh, 1998 Genetics and Analysis of Quantitative
Traits. Sinauer Associates, Sunderland, MA.

Marshall, H. D., and K. Ritland, 2002 Genetic diversity and
differentiation of Kermode bear populations. Mol. Ecol. 11:
685–697.

Milligan, B. G., 2003 Maximum-likelihood estimation of related-
ness. Genetics 163: 1153–1167.

Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
1996 Numerical Recipes in Fortran 77, Ed. 2. Cambridge Univer-
sity Press, Cambridge, UK.

Queller, D. C., and K. F. Goodnight, 1989 Estimating relatedness
using genetic markers. Evolution 43: 258–275.

Ritland, K., 1996 Estimators for pairwise relatedness and inbreed-
ing coefficients. Genet. Res. 67: 175–186.

Relatedness Estimation 899



Rousset, F., 2002 Inbreeding and relatedness coefficients: What do
they measure? Heredity 88: 371–380.

Van de Casteele, T., P. Galbusera and E. Matthysen, 2001 A
comparison of microsatellite-based pairwise relatedness estima-
tors. Mol. Ecol. 10: 1539–1549.

Wang, J., 2002 An estimator for pairwise relatedness using molecu-
lar markers. Genetics 160: 1203–1215.

Wang, J., 2007 Triadic IBD coefficients and applications to estimat-
ing pairwise relatedness. Genet. Res. 89: 135–153.

Weir, B. S., 2003 Forensics, pp. 830–852 in Handbook of Statistical
Genetics, edited by D. Balding, M. Bishop and C. Cannings.
John Wiley & Sons, Chichester, UK.

Weir, B. S., and C. C. Cockerham, 1984 Estimating F-statistics for
the analysis of population structure. Evolution 38: 1358–1370.

Weir, B. S., L. R. Cardon, A. D. Anderson, D. M. Nielsen and W. G.
Hill, 2005 Measures of human population structure show hetero-
geneity among genomic regions. Genome Res. 15: 1468–1476.

Weir, B. S., A. D. Anderson and A. B. Hepler, 2006 Genetic relat-
edness analysis: modern data and new challenges. Nat. Rev.
Genet. 7: 771–780.

Communicating editor: Y. S. Song

APPENDIX

Here I consider the biases of several moment estimators when they are applied to estimating the relatedness of two individuals
taken from a large random mating subpopulation of the population whose allele frequencies are used in the estimation. The
biases are caused by the population structure, or the background relatedness u, which is ignored by these estimators. Since the
subpopulation is assumed large and with random mating, only three IBD coefficients, u7; u8, and u9, are relevant.

Estimator by Quellerueller and Goodnightoodnight (1989): The expected value of estimator (4) can be derived by considering
all possible genotype combinations at a locus of two individuals from a subpopulation and averaging their relatedness
as calculated by (4). The genotype pairs are in nine IIS modes, as listed in the nine rows of Table 1. For each IIS mode,
only three IBD modes D7, D8, and D9, listed in the last three columns of Table 1, need to be considered. Denoting the
estimated relatedness between X and Y with genotypes {AiAj } and {AkAl } as r̂ ½ij ; kl �, its expected value is

E ½r̂ � ¼
Xn

i¼1

r̂ ½ii; ii� mi0mi1D7

f 1
1

mi0mi1mi2D8

f 2
1

mi0mi1mi2mi3D9

f 3

� �

1
Xn

i¼1

Xn

j¼1

eij r̂ ½ii; jj �
mi0mi1mj0mj1D9

f 3

� �

1
Xn

i¼1

Xn

j¼1

eij r̂ ½ii; ij �
mi0mi1mj0D8

f 2
1

2mi0mi1mi2mj0D9

f 3

� �

1
Xn

i¼1

Xn

j¼1

eij

Xn

k¼1

eikejk r̂ ½ii; jk� 2mi0mi1mj0mk0D9

f 3

� �

1
Xn

i¼1

Xn

j¼1

eij r̂ ½ij; ii�
mi0mi1mj0D8

f 2
1

2mi0mi1mi2mj0D9

f 3

� �

1
Xn

i¼1

Xn

j¼1

eij

Xn

k¼1

eikejk r̂ ½ jk; ii� 2mi0mi1mj0mk0D9

f 3

� �

1
Xn

i¼1

Xn

j¼1

eij r̂ ½ij; ij �
2mi0mj0D7

f 1
1

mi0mj0ðmi1 1 mj1ÞD8

f 2
1

4mi0mi1mj0mj1D9

f 3

� �

1
Xn

i¼1

Xn

j¼1

eij

Xn

k¼1

eikejk r̂ ½ij ; ik� mi0mj0mk0D8

f 2
1

4mi0mi1mj0mk0D9

f 3

� �

1
Xn

i¼1

Xn

j¼1

eij

Xn

k¼1

eikejk

Xn

l¼1

eilejlekl r̂ ½ij ; kl � 4mi0mj0mk0ml0D9

f 3

� �
; ðA1Þ

where eab [ 1� dab in which the Kronecker delta variable dab ¼ 1 if a ¼ b and dab ¼ 0 otherwise. Term i on the right
side of (A1) corresponds to IIS mode i (i¼ 1, 2, . . . , 9). Inserting f i ¼

Q
i
j¼0ð1 1 ð j � 1ÞuÞ, mij ¼ ð1 1 uÞpi 1 ju, and (4)

into (A1) and after some tedious algebra, I obtain (5), which is identical to that derived by Anderson and Weir

(2007) for the special case of equi-frequency alleles.
Estimator by Lynchynch (1988) and Lii et al. (1993): Using Table 1, the expected similarity index between individuals X

and Y taken from a subpopulation is derived as
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E ½SXY � ¼
Xn

i¼1

mi0mi1D7

f 1
1

mi0mi1mi2D8

f 2
1

mi0mi1mi2mi3D9

f 3

� �

1 2 3
3

4

� �Xn

i¼1

Xn

j¼1

eij
mi0mi1mj0D8

f 2
1

2mi0mi1mi2mj0D9

f 3

� �

1
Xn

i¼1

Xn

j¼1

eij
2mi0mj0D7

f 1
1

mi0mj0ðmi1 1 mj1ÞD8

f 2
1

4mi0mi1mj0mj1D9

f 3
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1
1
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i¼1

Xn

j¼1

eij

Xn

k¼1

eikejk
mi0mj0mk0D8

f 2
1

4mi0mi1mj0mk0D9

f 3

� �
: ðA2Þ

Terms 1, 2, 3, and 4 on the right side of (A2) correspond to IIS modes S1, S3 1 S5, S7, and S8, respectively. It leads to (8)
when fi ¼

Q
i
j¼0ð1 1 ð j � 1ÞuÞ and mij ¼ ð1 1 uÞpi 1 ju are inserted and is simplified after some tedious algebra.

Estimator by Ritlanditland (1996): This estimator was not considered by Anderson and Weir (2007). Similar to the
estimator by Queller and Goodnight (1989), the expected value of this estimator is given by (A1), where r̂ ½ij ; kl �
denotes the relatedness estimated by (11) [rather than by (4)] between X and Y with genotypes {AiAj} and {AkAl}.
With the same simplifying procedure, the expectation reduces to (12).

Estimator by Lynchynch and Ritlanditland (1999): The expected value of the Lynch and Ritland estimator is given by (A1),
where r̂ ½ij ; kl � denotes the relatedness estimated by (14) between X and Y with genotypes {AiAj} and {AkAl}. After some
tedious algebra, the expectation reduces to (5), the same as the Queller and Goodnight estimator.

Estimator by Wangang (2002): The similarity index between the genotypes of individuals X and Y falls into four
exclusive categories, with categories 1, 2, 3, and 4 containing genotype pairs that have similarity index values of 1, 0.75,
0.5, and 0, respectively. The expected frequency of category i (i ¼ 1, 2, 3), E ½Pi �, is derived from Table 1:

E ½P 1� ¼
Xn

i¼1

mi0mi1D7

f 1
1

mi0mi1mi2D8

f 2
1

mi0mi1mi2mi3D9

f 3

� �

1
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j¼1

eij
2mi0mj0D7
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1

mi0mj0ðmi1 1 mj1ÞD8

f 2
1

4mi0mi1mj0mj1D9

f 3

� �
;

E ½P 2� ¼ 2
Xn

i¼1

Xn

j¼1

eij
mi0mi1mj0D8

f 2
1

2mi0mi1mi2mj0D9

f 3

� �
;

E ½P 3� ¼
Xn

i¼1

Xn

j¼1

eij

Xn

k¼1

eikejk
mi0mj0mk0D8

f 2
1

4mi0mi1mj0mk0D9

f 3

� �
:

Replacing Pi in (15) by its expected value E ½P i � derived above for i ¼ 1, 2, and 3, I obtained (after some algebra) the
expected relatedness

E ½r̂ � ¼ 1� 1� u

2vð1 1 uÞð1 1 2uÞ ðe4e3ðe2ð1� e1Þ1 2e4ð1� e1 � e3ÞÞ1 e2e3e6ð1� e1 1 4e4Þ1 2e2e2
6ð1� e1 � e2Þ

1 e2e3e5ðe2 1 2e4 1 e3 1 2e6ÞÞ
3 ðð1 1 uÞð1 1 2uÞð1� a2ÞD8 � ð1 1 2uÞðua2 � 1� 2uÞD9 � ð3uð1 1 uÞa2 1 2uð1� uÞa3 1 ð1� uÞ2e1ÞD9Þ

1
ð1� uÞð1� e1 � 2e5Þ

2vð1 1 uÞð1 1 2uÞ ðe2ð1� uÞððe4 1 e5Þe3 1 ð1� e1 � e2Þe6Þðð1� 3a2 1 2a3Þð1 1 2uÞD8 1 e3D9

1 uð4� e3 � 12a2 1 8a3ÞD9Þ1 e3ðe4ð1� e1 � e3Þ1 e2ðe5 1 e6ÞÞ
3 ð2ð1 1 2uÞðð1� uÞða2 � a3Þ1 uð1� a2ÞÞD8

1 ðe2 1 12uða2 � a3Þ � 2e2u 1 u2ð8� 20a2 1 12a3 1 e2ÞÞD9ÞÞ;
ðA3Þ

where v ¼ ð1� e1Þ2ðe3e2
4 1 e2e2

6Þ � ð1� e1Þððe3e4 � e2e6Þ2 � 2e2e3e5ðe4 1 e6ÞÞ1 e2e3e2
5ðe2 1 e3Þ. Inserting D9 ¼ 1� D7

�D8 into (A3), it can be rearranged as functions of r¼ D7 1 D8=2 and D8. This means that, when u . 0, the expectation of
the Wang estimator varies with D8 as well as the true relatedness r. However, the coefficient of D8 is always very small and can
be ignored to obtain an almost unbiased estimator, (16).
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