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ABSTRACT

The demography of populations and natural selection shape genetic variation across the genome and
understanding the genomic consequences of these evolutionary processes is a fundamental aim of
population genetics. We have developed a hierarchical Bayesian model to quantify genome-wide population
structure and identify candidate genetic regions affected by selection. This model improves on existing
methods by accounting for stochastic sampling of sequences inherent in next-generation sequencing (with
pooled or indexed individual samples) and by incorporating genetic distances among haplotypes in
measures of genetic differentiation. Using simulations we demonstrate that this model has a low false-
positive rate for classifying neutral genetic regions as selected genes (i.e., fST outliers), but can detect recent
selective sweeps, particularly when genetic regions in multiple populations are affected by selection.
Nonetheless, selection affecting just a single population was difficult to detect and resulted in a high false-
negative rate under certain conditions. We applied the Bayesian model to two large sets of human population
genetic data. We found evidence of widespread positive and balancing selection among worldwide human
populations, including many genetic regions previously thought to be under selection. Additionally, we
identified novel candidate genes for selection, several of which have been linked to human diseases. This
model will facilitate the population genetic analysis of a wide range of organisms on the basis of next-
generation sequence data.

THE distribution of genetic variants among popula-
tions is a fundamental attribute of evolutionary

lineages. Population genetic diversity shapes contempo-
rary functional diversity and future evolutionary dynam-
ics and provides a record of past evolutionary and
demographic processes. Methods to quantify genetic
diversity among populations have a long history
(Wright 1951; Holsinger and Weir 2009) and provide
a basis to distinguish neutral and adaptive evolutionary
histories, to reconstruct migration histories, and to
identify genes underlying diseases and other significant
traits (Bamshad and Wooding 2003; Tishkoff and
Verrelli 2003; Voight et al. 2006; Barreiro et al. 2008;
Lohmueller et al. 2008; Novembre et al. 2008; Tishkoff

et al. 2009; Hohenlohe et al. 2010). For example,
population genetic analyses in humans have resolved a
history of natural selection and independent origins of
lactase persistence in adults in Europe and East Africa
(Tishkoff et al. 2007). Similarly, allelic diversity at the
Duffy blood group locus is consistent with the action of
natural selection, and one allele that has gone to fixation
in sub-Saharan populations confers resistance to malaria
(Hamblin and Di Rienzo 2000; Hamblin et al. 2002).

These studies of natural selection, and many others
involving a diversity of organisms, utilize contrasts
between genetic differentiation at putatively selected
lociandtheremainderof thegenome.Genomicdiversity
within and among populations is determined primarily
by mutation and neutral demographic factors, such as
effective population size and rates of migration among
populations (Wright 1951; Slatkin 1987). Specifically,
these demographic factors determine the rates of
genetic drift and population differentiation across the
genome. In contrast, selection affects variation in
specific regions of the genome, including the direct
targets of selection and to a lesser extent genetic regions
in linkage disequilibrium with these targets (Maynard-
Smith and Haigh 1974; Slatkin and Wiehe 1998;
Gillespie 2000; Stajich and Hahn 2005). Thus, the
genomic consequences of selection are superimposed
on the genomic outcomes of neutral genetic differen-
tiation and the two must be disentangled to identify
regions of the genome affected by selection.

A variety of models and methods have been proposed
to identify genetic regions that have been affected by
selection (Nielsen 2005), and these population genetic
methods can be divided into within-population and
among-population analyses. The former include widely
used neutrality tests based on the site-frequency spec-
trum for a single locus, such as Tajima’s D test (Tajima

1989), as well as recently developed tests based on the
presence of extended blocks of linkage disequilibrium
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or reduced haplotype diversity (Andolfatto et al. 1999;
Sabeti et al. 2002; Voight et al. 2006). Among-population
tests for selection require multilocus data sets and iden-
tify nonneutral or outlier loci by contrasting patterns of
population divergenceamonggenetic regions(Lewontin

and Krakauer 1973; Beaumont and Nichols 1996;
Akey et al. 2002; Beaumont and Balding 2004; Foll

and Gaggiotti 2008; Guo et al. 2009; Chen et al. 2010).
The most commonly employed of these methods is
the FST outlier analysis developed by Beaumont

and Nichols (1996). This test contrasts FST for individ-
ual loci with an expected null distribution of FST on the
basis of a neutral, infinite-island, coalescent model
(Beaumont and Nichols 1996). Loci with very high
levels of among-population differentiation (i.e., high
FST) are considered candidates for positive or divergent
selection, whereas loci with exceptionally low FST are
regarded as candidates for balancing selection. How-
ever, many FSToutlier analyses can be biased by violations
of the assumed demographic history (Flint et al. 1999;
Excoffier et al. 2009). Alternative Bayesian approaches
to obtain a null distribution of population genetic
differentiation assume that FST’s for individual loci
represent independent draws from a common, under-
lying distribution that characterizes the genome and
that can be estimated directly from multilocus data
(Beaumont and Balding 2004; Foll and Gaggiotti

2008; Guo et al. 2009). These approaches are more
robust to different demographic histories, but might
have reduced power to detect selection relative to
methods that model the appropriate demographic
history when it is known (Guo et al. 2009).

Herein we propose a hierarchical Bayesian model for
estimating genomic population differentiation and
detecting selection. This method improves on current
methods for detecting selection in several important
ways. First, unlike previous Bayesian outlier detection
models (e.g., Beaumont and Balding 2004; Foll and
Gaggiotti 2008; Guo et al. 2009), the likelihood
component of the model captures the stochastic sam-
pling processes inherent in next-generation sequence
(NGS) data (Mardis 2008a,b). Specifically, NGS tech-
nologies result in uneven coverage among individuals,
genetic regions, and homologous gene copies, includ-
ing missing data for many individuals and loci, and thus,
increased uncertainty in the diploid sequence of indi-
viduals relative to traditional Sanger sequencing
(Lynch 2009; Gompert et al. 2010; Hohenlohe et al.
2010). This issue is most pronounced when population-
level indexing is used (e.g., Gompert et al. 2010), but
should persist even with individual-level indexing and
high coverage data (i.e., even with high mean coverage
the sequence coverage for certain combinations of
individuals and genetic regions will be low). Moreover,
appropriately modeling and accounting for this un-
certainty is important and vastly preferable to simply
ignoring it or discarding large amounts of sequence data

(e.g., Hohenlohe et al. 2010). Previous methods to
detect selection on the basis of genetic differentiation
among populations have focused solely on allele fre-
quency differences, as captured by FST (Nielsen 2005).
Instead the model we propose measures population
genetic differentiation using Excoffier et al.’s f-statistics,
which are DNA sequence-based measures of the propor-
tion of molecular variation partitioned among groups or
populations (Excoffier et al. 1992). Quantifying genetic
differentiation using f-statistics allows us to include the
genetic distances among sequences in the measure of
differentiation and thus take mutation rate into account,
which should increase our ability to accurately identify
targets of selection (Kronholm et al. 2010). Finally, the
model we propose provides a novel criterion for desig-
nating outlier loci. Although we do not believe this
criterion is inherently superior to alternatives (e.g.,
Beaumont and Nichols 1996; Foll and Gaggiotti

2008; Guo et al. 2009), we believe it accords well with the
concept of statistical outliers and is well suited for
genome scans for divergent selection. Specifically, the
model assumes that the f-statistics for each genetic
region are drawn from a common, genome-level distri-
bution and identifies outlier loci, or loci potentially
affected by selection, on the basis of the probability of
their locus-specific f-statistic given the genome-level
probability distribution of f. This genome-level distribu-
tion is equivalent to the conditional probability for the
locus-specific f-statistics in the model.

We begin this article by fully describing the model,
both verbally and mathematically. We then use coales-
cent simulations to generate data with a known history
and investigate the performance of the model for
identifying genetic regions affected by selection. To
illustrate its capacity to identify exceptional genes that
are likely to have experienced selection, we use the
proposed model to analyze empirical data from two
studies of human population genetic variation. The first
of these data sets includes 316 completely sequenced
genes from 24 individuals with African ancestry and 23
individuals with European ancestry (SeattleSNPs data
set). The second data set was published by Jakobsson

et al. (2008) and includes genotype data from 525,901
SNPs from 33 human populations distributed world-
wide. We analyzed these human data with the known
haplotypes model (see Bayesian models for molecular variance)
and found evidence of selection affecting a total of 569
genes including genes previously identified as targets
of selection in humans (e.g., CYP3A5, SLC24A5, and
PKDREJ) and novel genes not previously thought to be
under selection (e.g., FOXA2 and SPATA5L1). Whereas
these remarkably large-scale studies do not involve NGS
data, the analyses of empirical data identify a large set of
genes for additional study and illustrate our analytical
approach, which can be applied to a diversity of large-
scale genomic data sets, including those that will result

904 Z. Gompert and C. A. Buerkle



from the anticipated widespread adoption of NGS for
population genomics.

METHODS

Bayesian models for molecular variance: Our goal is
to use molecular divergence among populations and
groups to identify genetic regions that might have been
affected by natural selection. Patterns of divergence at
individual loci arise from differences in haplotype fre-
quencies and the genetic distance among haplotypes.
We assume the distances are fixed and known and we
attempt to estimate the haplotype frequencies from
sequence data using a hierarchical Bayesian model. The
model includes a first-level likelihood for the probability
of the observed haplotype counts given population
haplotype frequencies, a conditional prior for the
haplotype frequencies for each locus in each population
given genome-level parameters and genetic distance
matrix, and uninformative priors for the genome-level
parameters. This conditional prior defines the distribu-
tion of f-statistics across the genome, whereas locus-
specific f-statistics are derived from our estimate of
haplotype frequencies and the genetic distance among
haplotypes. From this model we are able to estimate the
probability of each locus-specific f-statistic given the
estimated genome-level distribution, which serves as a
metric for identifying outlier loci that depart from the
typical level of differentiation and therefore might have
been affected by selection.

First-level likelihood models: We developed three
models for the first-level likelihood of the observed ha-
plotype counts (x) given the population haplotype fre-
quencies (p). Each model is applicable to a different
category of DNA sequence data that was generated via a
different process. These models are presented in order
of increasing uncertainty in the true genotype of
individuals and thus in the population allele frequen-
cies. The first model (known haplotype model) is applicable
if the two haplotypes of a diploid individual are known
without error, as is generally assumed for phased Sanger
sequence data. Under this model the probability of the
observed haplotype counts for each locus and popula-
tion follows a multinomial distribution, such that the
complete likelihood is a product of multinomial distri-
butions (for all loci and populations),

Pðx jpÞ ¼
Y

i

Y
j

nij !

xij1! � � � xijk !
p

xij1

ij1 � � � p
xijk

ijk ; ð1Þ

where nij is the total number of observed sequences at
locus i for population j, and xijk and pijk are the observed
count and population frequency of the k th haplotype in
the j th population at the ith locus. The multinomial
likelihood model assumes Hardy–Weinberg equilibrium
for each locus and linkage equilibrium among loci.

Because additional sampling error occurs when se-
quence reads are sampled stochastically from DNA
templates, NGS sequence data require alternative first-
level likelihood models with the specific model depend-
ing on the information associated with each sequence.
NGS can incorporate individual-level indexing or bar-
coding (Craig et al. 2008; Hohenlohe et al. 2010;
Meyer and Kircher 2010). With individual-level in-
dexes a sequence can be assigned to a particular in-
dividual and locus, but there is uncertainty regarding
whether diploid individuals with a single observed ha-
plotype are heterozygous or homozygous. If we assume
sequencing errors are negligible or have already been
corrected, any individual with two distinct haplotypes
sampled is known to be a heterozygote, whereas
individuals with one sampled haplotype might be he-
terozygous for the observed haplotype and an alternative
haplotype or homozygous for the observed haplotype.
Under these circumstances we propose the following
likelihood (NGS-individual model) for the observed
haplotype counts given the population haplotype
frequencies,
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Y
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where the product is across all individuals (l) as well as
populations and loci, h is the number of distinct
haplotypes observed for an individual at a locus, xijka l

and xijkb l are the observed counts of the one- or two-
haplotype sequences for individual l, and pijka

and pijkb
are

the frequencies of these haplotypes in population j. The
complementary set of haplotypes that exist, but that were
not observed for an individual, has counts and frequen-
cies simply denoted by xijkl ¼ 0 and pijk, respectively.

Alternatively, if NGS sequence data consist of indexed
populations of pooled individuals (Gompert et al. 2010),
rather than indexed individuals, information will be
associated with sequences only at the population level.
We propose a third likelihood model (NGS-population
model) for this situation, in which the probability of
the observed haplotype frequencies given the popula-
tion frequencies is described by a multivariate Pólya
distribution

Pðx jp; nÞ ¼
Y

i

Y
j

nij !Q
kðxijk !Þ

Gð
P

k nj pijk 1 1Þ
Gðnij 1

P
k nj pijk 1 1Þ

3
Y

k

Gðxijk 1 nj pijk 1 1Þ
Gðnj pijk 1 1Þ

ð3Þ

(Gompert et al. 2010), where G is the gamma function,
nj is the number of gene copies (i.e., twice the number of
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diploid individuals) sampled from population j, and
other parameters are as described above. This likeli-
hood model has been used previously by Gompert et al.
(2010) for population-level NGS data. This likelihood
function assumes that the frequency of each haplotype
in the sample of individuals from a population can take
on any value between zero and one and thus might not
be appropriate when very low numbers of individuals
are sampled from each population.

Model priors: The Bayesian model includes a condi-
tional prior for the population haplotype frequencies p
assuming the distance matrix d is fixed and known
without error. The conditional prior with its estimated
parameters provides a null distribution for identifying
outliers and inferring selection (see Designating outlier
loci). The conditional prior we choose depends on whe-
ther we are interested in genetic structure among pop-
ulations or genetic structure among groups of populations
(e.g., geographic regions) and among populations within
groups. For genetic structure among populations, we
assign the following prior to p,

Pðp jaST;bST;dÞ ¼
Y

i

1

BðaST; bSTÞ
ðfSTi 1 1ÞaST�1ð1� fSTi ÞbST�1

2aST 1 bST�1 ;

ð4Þ
where B is the beta function and fST denotes fSTi

for
locus i calculated on the basis of pi and di following
Excoffier et al. (1992). This specification of the condi-
tional prior for p does not correspond to a standard
probability distribution with respect to p, but is equiva-
lent to assuming that the locus-specific fST are distrib-
uted Beta(a ¼ aST, b ¼ bST, a ¼ �1, b ¼ 1) with d fixed,
where aST and bST are the shape parameters of a Beta
distribution and a and b define the lower and upper
bounds of the distribution (i.e., we use a rescaled Beta
distribution). Thus, this conditional prior describes the
distribution of fST across the genome, with a mean and
standard deviation given by

mST ¼
2aST

aST 1 bST
� 1 ð5Þ

and

sST ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aSTbST

ðaST 1 bSTÞ2ðaST 1 bST 1 1Þ

s
; ð6Þ

respectively. We complete this model by assigning
uninformative, uniform priors to aST � U(0, ua) and
bST� U(0, ub). For all analyses presented in this article
we set ua ¼ ub ¼ 106, yielding priors with uniform den-
sity over all parameter values with nonnegligible sup-
port in the posterior; however, alternative values might
be necessary for specific data sets. The above specifi-
cation results in the following hierarchical Bayesian
model:

Pðp;aST; bST j x;d; nÞ
}Pðx jp; nÞPðp jaST;bST;dÞPðaSTÞPðbSTÞ: ð7Þ

Weprovideanalternativeconditionalprior for thehap-
lotype frequencies when genetic structure among groups
and populations is of interest. Specifically we assume

Pðp ja;b;dÞ ¼
Y

i

1
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ðfSTi

1 1ÞaST�1ð1� fSTi
ÞbST�1

2aST 1 bST�1

3
1

BðaSC;bSCÞ
ðfSCi 1 1ÞaSC�1ð1� fSCi ÞbSC�1

2aSC 1 bSC�1

3
1

BðaCT;bCTÞ
ðfCTi 1 1ÞaCT�1ð1� fCTi ÞbCT�1

2aCT 1 bCT�1

ð8Þ

where fSCi
and fCTi

denote fSC (molecular variation
among populations within groups of populations) and
fCT (molecular variation among groups of populations
relative to total haplotypic diversity) for locus i cal-
culated on the basis of pi and di following Excoffier

et al. (1992), and other parameters are as described
above. This specification estimates genome-level distri-
butions for each f-statistic independently. Because
locus-specific fST are fully specified given locus-specific
fSC and fCT, an alternative and equally valid modeling
approach would be to treat the mean genome-level fST

as a derived parameter and specify a conditional prior
based only on fSC and fCT. This alternative approach
would account for the lack of independence among fSC,
fCT, and fST and would be closer to existing decom-
positions of f-statistics. However, this alternative model
prior would not provide posterior estimates of aSTor bST,
which are necessary to specify the posterior distribution
for the genome-level distribution of fST, as opposed to
the posterior distribution of the mean genome-level fST.
The former is necessary to identity outlier loci with
respect to fST, which is central to our model. Similar to
the model for genetic differentiation among popula-
tions only, Equation 8 does not correspond to a standard
probability distribution with respect to p, but is equ-
ivalent to assuming that each of the locus-specific f-
statistics follows its own Beta distribution with d fixed. As
with the model for population structure, it is possible to
derive the mean and standard deviation of the genome-
level beta distribution using Equations 5 and 6 and
substituting the appropriate a- and b-parameters. Fi-
nally, as before we assign uninformative, uniform priors
to all a- and b-parameters. This specification results in
the following Bayesian model:

Pðp;a;b j x;d; nÞ
}Pðx jp; nÞPðp ja;b;dÞPðaSTÞPðbSTÞPðaSCÞPðbSCÞ

3 PðaCTÞPðbCTÞ:
ð9Þ

Designating outlier loci: This Bayesian model gives
rise to a framework for identifying outlier loci or genetic
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regions with an unusual proportion of molecular varia-
tion partitioned among populations or groups. Such
genetic regions might have experienced selection di-
rectly, or indirectly through linkage. Genetic regions
with unusual patterns of molecular variation can be
identified by contrasting f-statistics for each locus with
the genome-level distribution for each f-statistic. Spe-
cifically, we identify outlier loci by estimating the
posterior probability distribution for the quantile of
each locus-specific f-statistic in the genome-level distri-
bution. Formally, we define ai as the ath quantile of the
posterior distribution for the locus-specific f-statistic for
locus i and let qn be the interval with endpoints defined
as the nth/2 and 1� nth/2 quantiles of the genome-level
f-statistic distribution. We then consider locus i an out-
lier at the ath quantile with respect to a given f-statistic
with probability n if the interval qn does not contain ai.
Values of n and a used for outlier designation will
determine the stringency of the analysis, with higher
values of a and lower values of n resulting in fewer loci
classified as outliers. In this article we set n ¼ 0.05 (qn ¼
[0.025,0.975]) and use two different values of a (0.5 and
0.95 quantiles). These values for a denote the median
and 95th quantile of the posterior probability distribu-
tion for the quantile of each locus-specific f-statistic.
When only differentiation among populations is being
considered, a genetic region can be designated an out-
lier only with respect to fST, whereas a genetic region
could be an outlier with respect to fST, fSC, or fCT

when group and population structure are considered.
Outlier loci can be classified as having very low fST,
which could be indicative of balancing or purifying
selection, or very high fST, which could be indicative of
positive selection within populations or divergent selec-
tion among populations (Beaumont and Balding

2004; Beaumont 2005). Patterns of selection giving rise
low or high fCT and fSC might be a bit more complex.
For example, high fCT outliers would be expected if
divergent selection occurred among groups of popula-
tions with the same alleles favored within each group
and low fSC outliers might be expected with balancing
selection within groups that favored different subsets of
alleles among groups.

Several approaches have been described for identify-
ing outlier loci using genome scans for differentiation
(Beaumont and Balding 2004; Foll and Gaggiotti

2008; Guo et al. 2009). Our approach is most similar to
that proposed by Guo et al. (2009), but also differs from
that approach in several important ways. Guo et al.
(2009) contrast an approximation of the posterior
probability distribution for each locus-specific fST (ui’s
in their model) with the hyperdistribution describing
among-locus variation in fST (equivalent to our genome-
level distribution). Approximation of the posterior pro-
bability distribution for fST is achieved by defining a Beta
distribution with first and second moments equal to
those of the posterior probability distribution (Guo et al.

2009). This approximation allows Guo et al. (2009) to
measure the divergence between the posterior proba-
bility distribution for each locus-specific fST and the
genome-level distribution (also a Beta distribution, which
is derived from point estimates of genome-level param-
eters), using Kullback–Leibler divergence (Kullback

and Leibler 1951). Following calibration to determine
a cutoff value for significance, the Kullback–Leibler
divergence measure is used to designate outlier loci. The
primary distinction between the outlier detection
method proposed by Guo et al. (2009) and the outlier
detection method we have implemented is that their
method tests for a difference between the posterior
probability distribution of each locus-specific fST (this
distribution measures uncertainty in the parameter
estimate) and a point estimate of the genome-level fST

distribution (this distribution measures expected varia-
tion among loci in fST). In contrast, we test whether
locus-specific f-statistics are unlikely given the genome-
level distribution (i.e., not that our estimates of these
locus-specific f-statistics simply differ significantly from
the genome-level distribution). Additionally, our method
differs by accounting for uncertainty in the genome-
level distribution by taking the marginal distribution
of the quantile of each locus-specific f-statistic in the
genome-level distribution, rather than using a point
estimate of the genome-level distribution, which is nec-
essary for the method of Guo et al. (2009). We do not
believe that either of these methods is necessarily su-
perior, but rather that they provide alternative criteria
and definitions of outlier loci, with our method perhaps
more closely reflecting common conceptions of outlier
loci among evolutionary biologists and their method
utilizing more information from the posterior distribu-
tion of locus-specific fST.

Analysis of simulated data sets: We conducted a series
of simulations to determine what proportion of genetic
regions would be classified as outliers in the absence of
selection. These data sets were simulated for analysis
with the population structure model and for each of the
three likelihood models (i.e., known haplotype model, NGS-
individual model, and NGS-population model). We simu-
lated sequence data using an infinite-sites coalescent
model, using R. Hudson’s software ms (Hudson 2002).
Data sets were simulated with 25 or 500 genetic regions.
The simulations assumed five populations split from a
common ancestor t generations in the past, where t has
units of 4Ne and was set to 0.25, 0.5, or 1.0. We conducted
simulations with migration among the five populations
(Nem) set to 0 or 2. The ancestral population and all five
descendant populations were assigned population mu-
tation rates u ¼ 4Nem of 0.5, where m is the per locus
mutation rate. Forty gene copies were sampled from
each of the five populations. For the known haplotype
model analyses we treated the simulated sequences di-
rectly as the sampled data. For NGS-individual model and
NGS-population model analyses we resampled the simu-
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lated sequence data sets such that coverage for each
sequence was Poisson distributed (l ¼ 2). For the NGS-
individual model analyses we retained information on
which individual each sequence came from, whereas we
retained only population identification for NGS-popula-
tion model analyses. We generated 10 replicate simulated
data sets for each combination of likelihood model,
number of genetic regions (25 or 500), t, and migration
rate. Each data set was analyzed using a Markov chain
Monte Carlo (MCMC) implementation of the proposed
model, using the bamova software we have developed
(see supporting information, File S1, MCMC algorithm;
available from the authors at http://www.uwyo.edu/
buerkle/software/ as stand-alone software). We calcu-
lated the distance matrix for each locus, using the
number of sites by which each pair of sequences
differed. Estimation of the posterior probability distri-
bution for all parameters for each data set was based on a
single MCMC algorithm run that included a 25,000-
iteration burn-in followed by 50,000 samples from the
posterior. Sample history plots were monitored to
ensure appropriate chain mixing and convergence
on the stationary distribution. We classified genetic
regions as outliers on the basis of the posterior proba-
bility distribution for the quantile of each locus-specific
fST in the genome-level fST distribution, as previously
described (see Designating outlier loci). We then calcu-
lated the mean proportion of loci classified as outliers
across the 10 replicates for each combination of
parameters.

We conducted an additional series of simulations to
assess the capacity of our analytical model to detect
selected loci among a larger set of neutral regions. We
began with a set of simulations of population structure,
as above. Simulations were conducted under all combi-
nations of conditions described previously for simula-
tions without selection. However, we simulated selective
sweeps affecting 2 (8%, for 25-locus simulations) or 25
(5%, for 500-locus simulations) of the simulated loci.
We allowed selective sweeps to occur in one, three, or
five populations (one set of simulations for each). Selec-
tive sweeps were simulated by selecting one haplotype
from each affected population at each affected locus and
increasing its frequency to 1. This was meant to simulate
recent and strong selective sweeps where affected loci
were in arbitrary linkage disequilibrium with the gene
subject to selection. Thus, it was possible for the same
or different haplotypes to be driven to fixation across
populations. We calculated the mean proportion of
neutral and nonneutral loci classified as outliers across
the 10 replicates for each combination of parameters.

Finally, we conducted a series of simulations to de-
termine the extent to which our group structure model
could correctly identify genetic regions affected by
selection. For these simulations we concentrated on
the NGS-individual model and a single demographic
history. We simulated two groups of five populations,

with the divergence time of the populations within each
group equal to 0.25 and the divergence of the two
groups equal to 0.75. We allowed no migration between
groups, but set the within-group migration rate to 4. We
simulated data sets of 25 and 500 loci, and as with the
population structure simulations, we simulated selective
sweeps affecting 2 (25-locus simulations) or 25 (500-locus
simulations) genetic regions. Selective sweeps occurred
in all five populations within one group (sg¼ 1) or all five
populations in both groups (sg ¼ 2). We simulated 10
replicate data sets for each combination of simulation
parameters. MCMC settings were as previously described.
We identified outlier loci on the basis of fST (the
partitioning of molecular variation among populations),
fCT (the partitioning of molecular variation between the
two groups), and fSC (the partitioning of molecular
variation among the populations within each group). We
determined the mean proportion of neutral and non-
neutral loci classified as outliers on the basis of each
f-statistic across the 10 replicates for each combination
of parameters.

Analysis of human SeattleSNP data: To illustrate the
application of the proposed model to real genetic data
we analyzed 316 fully sequenced genes (exons and
introns) from the SeattleSNPs data set (http://pga.gs.
washington.edu; downloaded May 2010). Each gene was
sequenced in 24 individuals with African ancestry
[either the African-American (AA) panel or the Hap-
Map Yoruba (YRI) population] and 23 individuals with
European ancestry [either the Centre d’Étude du
Polymorphisme Humain (CEPH) population or the
HapMap Uthah residents with European ancestry
(CEU) population]. The phase of polymorphisms in
these sequences has been estimated statistically using
PHASE v2.0 (Stephens et al. 2001) to produce haplo-
types. Similar to NGS data sets, these data are DNA
sequences, but these data lack the sampling uncertainty
associated with NGS data and might represent fewer
(but much longer) genetic regions than would be typical
for current NGS studies. We used these data and the
bamova software to identify loci with exceptional fST

estimates that were consistent with divergent selection
between or balancing selection within these European
and African ancestry populations. The mean number of
SNPs per gene was 62.98 (SD ¼ 50.73), resulting in a
large number of haplotypes per gene. This large number
of SNPs per gene, which resulted from these data being
complete gene sequences, was considerably greater than
typical for the short reads generated by NGS (e.g.,
Gompert et al. 2010; Hohenlohe et al. 2010) and
resulted in poor MCMC mixing. Therefore we based
our analysis on the first five SNPs in each gene (see File
S1, Human SeattleSNP data: alternative data subsets, for
analyses using other SNPs). All insertion–deletion poly-
morphisms were ignored. We used the known haplotypes
model with population structure. We ran a 25,000-
iteration burn-in followed by 50,000 iterations to esti-
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mate posterior probabilities. We identified outlier loci
using the criteria described for the simulated data sets.
We then examined variation in genetic differentiation
among SNPs within each outlier locus, as well as several
loci that had typical, ‘‘neutral’’ fST estimates, by calcu-
lating point estimates of FST at each SNP.

Analysis of worldwide SNP data: We obtained data
for genomic diversity across 33 widely distributed hu-
man populations (including Africa, Eurasia, East Asia,
Oceania, and America) from Jakobsson et al. (2008)
(version 1.3; http://neurogenetics.nia.nih.gov/paperdata/
public/). These data include statistically phased haplo-
types for 597 individuals, based on 525,901 SNPs. These
data differ from NGS data as they are not DNA
sequences, but the large number of genetic regions in
this data set might be similar to what will be acquired in
NGS studies. For each SNP in the HumanHap550 ge-
notyping panel we obtained annotations and informa-
tion for location relative to genes from the manufacturer
of the genotyping technology (Illumina, San Diego). To
focus our analysis on haplotypic variation within tran-
scribed, genic regions, we retained only those SNPs that
were annotated as being within coding, intron, 59-UTR,
39-UTR, or UTR regions. If for a particular gene this
included .4 SNPs (minimally, for inclusion we required
2 SNPs per locus), we retained SNPs that were annotated
as within coding or intron sequence plus any neighbor-
ing SNPs to bring the total to 4 SNPs per locus. Finally, if
there were .4 SNPs within coding or intron sequence
at a locus, we retained the first and last SNP and
randomly chose 2 intervening SNPs in coding or intron
sequence. We utilized a maximum of 4 SNPs per locus
because this was similar to the number of variable sites
expected in short NGS data (Gompert et al. 2010;
Hohenlohe et al. 2010) and led to a sufficiently small
number of haplotypes across populations, relative to the
numbers of individuals per population, to yield in-
formative haplotype frequencies for populations. Some
isolated SNPs had annotations to genes elsewhere in the
genome and conflicted with neighboring SNPs and were
excluded. However, we did allow these SNPs to break
genes into separate genic regions for analysis, so that we
utilized haplotypic data from 12,649 regions and 11,866
distinct genes. We excluded the limited amount of data
from the mitochondrion, the Y chromosome, and the
pseudoautosomal region of the X and Y chromosomes
and focused on the autosomes and the X chromosome.

We conducted a separate analysis for each chromo-
some to test for evidence of selection on the basis of
levels of molecular differentiation among these human
populations, using the bamova software. This allowed us
to contrast patterns of genetic variation among chro-
mosomes and identify outlier loci relative to levels of
genetic differentiation for the chromosome on which
they are found. We used the known haplotypes likelihood
model with population structure and estimated poste-
rior probabilities on the basis of 50,000 MCMC iterations

following a 25,000-iteration burn-in. We classified out-
lier loci for each data set using the criteria described for
the simulated data sets.

RESULTS

Results from simulated data sets: When data were
simulated in the absence of selection, few genetic
regions were classified as outliers and thus as being
associated with targets of selection (Table 1). This result
suggests that the method has a low false-positive rate
(mean proportion ¼ 0.012, SD ¼ 0.030). The pro-
portion of genetic regions classified as outliers was
similar across all likelihood models, but tended to be
slightly lower when migration among populations was
simulated (particularly for high fST outliers). With a ¼
0.5 the mean proportion of genetic regions classified as
outliers across 10 replicate simulations varied from 0.003
(known haplotype model, no migration, 500 sequence loci,
high fST outliers) to 0.034 (NGS-population model, no
migration, 500 sequence loci, low fST outliers). Using
a ¼ 0.95, the mean proportion of outliers detected
across 10 replicate simulations varied from 0 (many
simulation conditions) to 0.004 (NGS-individual model,
no migration, 500 sequence loci, high fST outliers).

Simulations that included selection typically resulted
in an increased number of genetic regions being classi-
fied as outliers. As expected, we found that the ability to
correctly classify nonneutral genetic regions as outlier
loci was dependent upon the extent of selection. Few
outliers were detected when only one population was
affected (e.g., high fST, a ¼ 0.5, NGS-individual model
mean ¼ 0.057, SD ¼ 0.040), but most selected loci were
correctly classified as outliers when all five populations
were affected (e.g., high fST, a ¼ 0.5, NGS-individual
model mean¼ 0.612, SD¼ 0.310; Table S1, Table S2, and
Table S3). Selection was easiest to detect when data were
simulated and analyzed in accordance with the known
haplotype model (in this case, when all five populations were
affected by selection, all selected loci were identified as
outliers even with a ¼ 0.95; Table S1). Selection was
generally easier to detect when migration was simulated.
For example, under the known haplotype model the pro-
portion of selected loci correctly classified as high outliers
increased from 0.429 to 0.492 when simulated popula-
tions experienced the homogenizing effects of migration
(means across all simulation conditions). For the com-
plete set of simulations, the proportion of selected
genetic regions that were correctly classified as outlier
loci was greater than the proportion of neutral genetic
regions incorrectly classified as outlier loci (Table S1,
Table S2, and Table S3).

The ability of the method to correctly identify genetic
regions affected by selective sweeps in the presence of
group structure (i.e., when populations are organized
into groups of populations) was highly dependent on the
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extent of the selective sweeps. When selective sweeps
were confined to a single group, outliers were most often
detected as genetic regions with high differentiation
among populations within a group (i.e., high fSC; Table
S4). The proportion of swept genetic regions correctly
classified as fSC outliers was generally small and did not
exceed 0.150, but was much greater than the proportion
of neutral genetic regions classified as fSC outliers. In
contrast, when both groups of populations were affected
by selective sweeps, nearly all swept loci were classified
as high fST and fSC outliers (92.5–100% using a ¼ 0.5)
and a smaller proportion (0.100–0.225) were classified
as low or high fCT outliers. Thus, the selective sweeps
were most readily detected on the basis of high differen-
tiation among all populations (fST) or among popula-
tions within each group (fSC), but could also be detected
on the basis of low or high differentiation between the
two groups (fCT). This variety of outcomes arises from
the stochastic nature used to determine the specific
haplotypes that were swept to fixation. The false-positive
rate for these group analyses was very low (between 0 and
0.032), similar to the population structure analyses (Table
S2 and Table S4).

Divergent selection among African and European
populations: Mean genome-level fST between African
ancestry and European ancestry populations based on
the SeattleSNPs data set was 0.080 [95% equal tail
probability interval (ETPI) ¼ 0.065–0.097]. This means
that �8% of DNA sequence variation was partitioned
between the African and European ancestry populations.

We classified three genes as high fST outliers (using
a ¼ 0.5) on the basis of the first five SNPs data subset
(Figure 1 and Figure 2). One of these genes was
HSD11B2. Approximately 32% of molecular variation
at this gene was partitioned between African and
European ancestry populations (fST ¼ 0.317, 95%
ETPI ¼ 0.159–0.482, Figure 1). Allelic variants of this
gene produce an inherited form of hypertension and an
end-stage renal disease (Quinkler and Stewart 2003).
A weak association has also been detected between an
intronic microsatellite in this gene and type 1 diabetes
mellitus and diabetic nephropathy (Lavery et al. 2002).
FOXA2 was also identified as an outlier, with fST¼ 0.321
(95% ETPI¼ 0.124–0.513, Figure 1). FOXA2 regulates
insulin sensitivity and controls hepatic lipid metabolism
in fasting and type 2 diabetes mice (Wolfrum et al. 2004;

TABLE 1

Proportion of outlier loci in simulated neutral data

m ¼ 0 m ¼ 2

a ¼ 0.5 a ¼ 0.95 a ¼ 0.5 a ¼ 0.95

No. loci t Low High Low High Low High Low High

Known haplotypes model
25 0.25 0.012 0.028 0.000 0.000 0.016 0.020 0.000 0.000

0.50 0.028 0.028 0.000 0.000 0.016 0.012 0.000 0.000
1.00 0.024 0.004 0.004 0.000 0.012 0.016 0.000 0.000

500 0.25 0.0132 0.0212 0.0004 0.0036 0.0108 0.0170 0.0000 0.0012
0.50 0.0240 0.0164 0.0028 0.0004 0.0130 0.0158 0.0000 0.0012
1.00 0.0320 0.0032 0.0080 0.0000 0.0136 0.0188 0.0002 0.0024

NGS-individual model
25 0.25 0.012 0.012 0.000 0.000 0.020 0.016 0.000 0.000

0.50 0.004 0.024 0.000 0.000 0.020 0.012 0.000 0.000
1.00 0.020 0.024 0.000 0.000 0.040 0.008 0.000 0.000

500 0.25 0.0136 0.0242 0.0005 0.0042 0.0098 0.0156 0.0004 0.0020
0.50 0.0220 0.0202 0.0022 0.0042 0.0112 0.0182 0.0004 0.0020
1.00 0.0280 0.0074 0.0068 0.0006 0.0140 0.0176 0.0008 0.0036

NGS-population model
25 0.25 0.016 0.020 0.000 0.000 0.008 0.012 0.000 0.000

0.50 0.024 0.040 0.000 0.000 0.008 0.012 0.000 0.000
1.00 0.032 0.004 0.000 0.000 0.004 0.008 0.000 0.004

500 0.25 0.0112 0.0202 0.0002 0.0024 0.0054 0.0166 0.0000 0.0018
0.50 0.0190 0.0164 0.0006 0.0012 0.0100 0.0174 0.0000 0.0012
1.00 0.0340 0.0064 0.0050 0.0000 0.0088 0.0180 0.0000 0.0022

Mean proportion of loci is shown over 10 replicates identified as outliers in the absence of selection for each of the three dif-
ferent likelihoods (known haplotypes model, NGS-individual model, and NGS-population model). Three times since divergence (t) and
two levels of migration (m) were simulated. Outlier loci were identified as low or high outliers relative to the genome-wide dis-
tribution and based on two different quantiles (a ¼ 0.5 or 0.95) of their posterior distribution.
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Puigserver and Rodgers 2006). A genome-wide associ-
ation study detected a SNP near FOXA2 (rs1209523) that
was associated with fasting glucose levels in European-
and African-Americans (Xing et al. 2010). This outlier is
particularly interesting as type 2 diabetes is 1.2–2.3 times
more common in African-Americans than in European-
Americans (Harris 2001). The third outlier locus was
POLG2, with an estimated fST of 0.327 (95% ETPI ¼
0.175–0.477, Figure 1). This gene was also classified as a
target of selection in humans in a recent study (Barreiro

et al. 2008).
Selection among worldwide human populations: For

the worldwide human SNP data, estimates of mean
chromosome-level fST were similar for the autosomal
chromosomes and ranged from 0.083 (95% ETPI ¼
0.0752–0.091; chromosome 22) to 0.113 (95% ETPI ¼
0.104–0.120; chromosome 16; Table 2 and Figure 3).
The estimate of fST for the X chromosome was
considerably higher (0.139, 95% ETPI ¼ 0.128–0.149).

We detected remarkable variation in fST along
each of the chromosomes (Figure 4). We detected 569
unique fST outlier loci, which we designate as candi-
date genes for selection among worldwide human pop-
ulations (Table S5). Of these 569 genes, 518 were high
fSToutlier loci (including 222 with a¼0.95) and 51 were
low fSToutlier loci (including6 witha¼0.95). Outlier loci
were detected on all chromosomes, with the greatest
number identified on chromosome 1 (67 outlier loci)
and the fewest on chromosome 13 (9 outlier loci; Table 2
and Figure 4). Some of the genes that we classified as
outliers have previously been implicated as genes experi-
encing selection in human populations. These include

CYP3A4 and CYP3A5, which are cytochrome P450 genes
found near one another on chromosome 7 (a ¼ 0.95;
CYP3A4 fST ¼ 0.293, 95% ETPI ¼ 0.245–0.319 and
CYP3A5 fST ¼ 0.359, 95% ETPI ¼ 0.315–0.401). These
genes are important for detoxification of plant second-
ary compounds and are involved in metabolism of some
prescribed drugs. Additional evidence that these genes
have experienced positive selection in human popula-
tions exists from previous studies based on distortions of
the site frequency spectrum in African, European, and
Chinese populations; population differentiation between
the CEU and YRI populations; and extended haplotype
homozygosity in HapMap populations (Carlson et al.
2005; Voight et al. 2006; Nielsen et al. 2007; Chen et al.
2010). Another example is the PKDREJ gene on chromo-
some 22, which is a candidate sperm receptor gene of
mammalian egg-coat proteins and had one of the highest
estimates of fST (0.455, 95% ETPI ¼ 0.396–0.504).
Variation in this gene is consistent with positive selection
among primate lineages, although evidence suggests
that balancing selection might act to maintain diversity
at this gene in human populations (Hamm et al. 2007).
We also found evidence of divergent selection acting on
SLC24A5, which has been associated with differences in
skin pigmentation among humans and was classified as
a candidate for positive selection in several studies
(Barreiro et al. 2008). Finally, three of the high fST

outliers at a ¼ 0.95 (RTTN, MSX2, and CDAN1) were
among seven human skeletal genes identified by Wu
and Zhang as genes with elevated FST at nonsynony-
mous SNPs between African and non-African (Euro-
pean and East Asian) populations and candidates for
recent positive selection in Europeans and East Asians
(Wu and Zhang 2010).

We detected additional genes with very high fST that
have not, to the best of our knowledge, been previously
implicated as experiencing selection in human populations
but have been found to be associated with disease traits. For
example, the estimate of fST for spermatogenesis-
associated 5-like 1 (SPATA5L1) on chromosome 15 was
0.347 (95% ETPI ¼ 0.246–0.430). This gene was classi-
fied as a high fST outlier in the analysis and has been
linked to renal function and kidney disease, but has not
been identified in previous tests for selection (Köttgen

et al. 2009).
We also identified novel candidate targets of balanc-

ing selection in worldwide human populations. Inter-
estingly, none of the genes that we classified as low fST

outlier loci were implicated as targets of balancing
selection in European- and African-American popula-
tions in a recent study by Andrés et al. (2009). Several of
these genes have been linked to diseases. For example,
RIF1 was classified as a low fST outlier at the a ¼ 0.95
level (fST¼�0.065, 95% ETPI¼�0.105–�0.023). RIF1
is an anti-apoptotic factor involved in DNA repair that is
necessary for S-phase progression and is heavily ex-
pressed in breast cancer tumors (Wang et al. 2009).

Figure 1.—Locus-specific fST stimates for Africans and
Europeans (SeattleSNPs data set). A point estimate of the ge-
nome-level fST distribution (based on the median from the
posterior probability distributions of aST and bST) is denoted
with a solid black line. The posterior probability distributions
for the three outlier loci (colored lines) and 50 additional,
randomly chosen genetic regions (gray lines) are also shown.
These results are based on the first five SNPs in each gene;
additional results are shown in Figure S3.

Bayesian Population Genomics 911

http://www.genetics.org/cgi/data/genetics.110.124693/DC1/9
http://www.genetics.org/cgi/data/genetics.110.124693/DC1/4


Another example is the AKT3 gene found on chromo-
some 1 (fST ¼ �0.046, 95% ETPI ¼ �0.102–0.020;
outlier at a ¼ 0.5). This gene is involved in cell-cycle
regulation and is highly expressed in malignant mela-
noma, but is also important for attainment of normal
organ size, including brain size in mice (Stahl et al.
2004; Easton et al. 2005).

DISCUSSION

We have presented a novel model to quantify genome-
wide population genetic structure and identify genetic
regions that are likely to have experienced natural se-
lection. Unlike previous methods for quantifying struc-
ture and detecting genetic signatures of selection, the
proposed method accurately models the stochastic sa-
mpling of sequences that is inherent in current NGS
instruments and incorporates genetic distances among
sequences in estimates of genetic differentiation. Al-
though few population genomics studies based on NGS
of individuals have been published to date (hence the
analysis of Sanger sequence and SNP human data sets
instead of NGS data sets), various large-scale projects are
currently underway to obtain these data in large samples
of humans (e.g., 1000 genomes project, http://www.
1000genomes.org) and a few recent studies suggest that

these data will soon be available for many nonhuman
(including nonmodel) species (Gompert et al. 2010;
Hohenlohe et al. 2010). However, beyond data acqui-
sition, substantial biological insights will be possible
only if accompanied by models and methods designed
to take full advantage of these data, while accurately
modeling sources of error. Along with a few other recent
reports of models for NGS (Guo et al. 2009; Lynch 2009;
Futschik and Schlötterer 2010; Gompert et al.
2010), we believe our analytical methods help to address
this need.

Model properties: The analyses of simulated and
human genetic data sets suggest that the model
provides statistically sound estimates of population
differentiation for large sets of loci (see File S1, Figure
S1, and Figure S2, Simulations: estimation of f-
statistics). For example, the estimates of genome-level
fST for the SeattleSNPs human sequence data and
chromosome-level fST for the worldwide human SNP
data (0.080–0.139) were similar to mean levels of
genetic differentiation among human populations
based on FST [e.g., FST ¼ 0.09–0.14 for Yoruba, Euro-
pean, Han Chinese, and Japanese populations (Weir

et al. 2005; Barreiro et al. 2008)]).
The simulation results indicate that the model only

rarely identifies neutral loci incorrectly as outliers (i.e.,
it has a low false-positive rate). Using a ¼ 0.5, the false-

TABLE 2

Summary of worldwide human HapMap data and results

High fST Low fST

Chromosome Chromosome fST No. loci a ¼ 0.5 a ¼ 0.95 a ¼ 0.5 a ¼ 0.95

1 0.098 (0.095–0.103) 1402 59 28 8 1
2 0.101 (0.097–0.106) 956 32 11 5 1
3 0.099 (0.095–0.104) 723 29 13 2 0
4 0.100 (0.094–0.106) 563 22 12 1 0
5 0.095 (0.089–0.100) 565 20 10 3 2
6 0.091 (0.087–0.095) 710 23 8 6 0
7 0.098 (0.092–0.103) 679 25 14 2 0
8 0.092 (0.087–0.098) 438 24 6 2 0
9 0.095 (0.089–0.099) 569 22 9 2 0

10 0.092 (0.087–0.098) 526 20 6 3 2
11 0.096 (0.092–0.101) 686 24 7 1 0
12 0.097 (0.092–0.102) 683 36 14 2 0
13 0.090 (0.082–0.099) 243 8 7 1 0
14 0.100 (0.093–0.107) 388 16 8 2 0
15 0.109 (0.101–0.117) 380 20 10 0 0
16 0.113 (0.104–0.120) 426 21 9 1 0
17 0.107 (0.101–0.114) 603 27 12 1 0
18 0.092 (0.084–0.100) 225 8 4 3 0
19 0.099 (0.094–0.104) 729 34 10 4 0
20 0.101 (0.093–0.109) 367 15 8 0 0
21 0.083 (0.075–0.091) 158 6 3 1 0
22 0.102 (0.093–0.111) 283 11 6 1 0
X 0.139 (0.128–0.149) 347 16 7 0 0

Summary of data and results for each chromosome are shown, including chromosome-level fST (median and 95% ETPI), the
number of loci, and the number of loci classified as outliers (data from Jakobsson et al. 2008).
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positive rate for high or low fST outliers was never .0.04,
and using a ¼ 0.95 this rate was never .0.01. Low false-
positive rates are particularly important for genome-
wide scans in which a large number of genes could
otherwise show spurious evidence of selection. In
contrast, false-positive rates as high as 0.343 have been
reported for FST outlier analyses of selection that use
coalescent simulations under an incorrect demographic
history to derive a neutral distribution (Excoffier et al.
2009). Moreover, the low false-positive rate for the
method held across all simulated demographic scenar-
ios (i.e., different population divergence times, variation
in migration rates, and the presence or absence of group
structure). This is expected as the null, genome-level
distribution we estimate is based on the observed data
rather than an assumed demographic history and most
demographic histories should be appropriately cap-
tured by this genome-level distribution (Beaumont

and Balding 2004; Guo et al. 2009). Similarly low
false-positive rates were reported by Guo et al. (2009),

using a hierarchical Bayesian model based on FST. Non-
etheless, it is important to note that these hierarchical
models generally identify outlier loci as those that are
inconsistent with the genome as a whole and thus will
not work well if most of the genome has recently expe-
rienced selection of a similar magnitude.

Simulation results further indicate that the method
has the ability to detect genetic regions under selection
and to a greater extent when selective sweeps affect
multiple populations or migration occurs. When a sim-
ulated genetic region was affected by selection in at least
three populations, the selected locus was generally at
least 10 times more likely to be classified as an outlier
than a randomly chosen neutral locus. This suggests a
high true-positive rate (at least under favorable con-
ditions) and that candidate selected genes identified by
the method will be enriched substantially for genes
actually experiencing selection. This is particularly true
when genes are classified as outliers using the more
stringent criterion of a ¼ 0.95 (although this will also

Figure 2.—Point estimates of FST along specific genes
(SeattleSNPs data set). Point estimates of FST are shown at
each SNP for seven genes identified as outliers in the com-
parison of human populations with African and European an-
cestry as well as three randomly chosen neutral genes.

Figure 3.—Chromosome-level estimates of fST for the
large sample of human genetic diversity in 33 populations
(data from Jakobsson et al. 2008). (A and B) Point estimates
of each chromosome-level fST distribution (based on the me-
dian from the posterior probability distributions of aST and
bST) are denoted with solid black lines (autosomes) or a
dashed orange line (A; X chromosome). (B) Posterior prob-
ability distributions for the mean chromosome-level fST for
each chromosome.
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decrease the total number of selected genes identified
relative to a ¼ 0.5). One benefit of quantifying genetic
divergence on the basis of haplotypes (using fST)
instead of SNP, microsatellite, or AFLP alleles (using
FST) is that multiple selective sweeps should result in
increased genetic distances among haplotypes in differ-
ent populations, making them easier to detect than
genes that experienced a single selective sweep, as was
used for the simulations.

Despite these generally promising results from the
simulations, many selected genes were not classified as
outliers using the method and constitute false negatives.
There are several synergistic reasons that genes affected
by selection might not be classified as outliers, which
include inherent limitations in outlier-based tests for
selection and difficulties detecting selection (which
does not always leave a clear signal), as well as specific
details of the simulations (Nielsen 2005; Kelley et al.

2006). First, as pointed out previously, outlier analyses
will detect only genes that stand out from the genome-
wide distribution and thus might not detect genes
experiencing weak selection or be applicable when
much of the genome is under selection (Michel et al.
2010). However, this particular issue is more likely to
affect empirical data than the simulated data sets. The
data we simulated experienced selective sweeps with
arbitrary linkage between the affected genetic region
and the gene under selection. This means that selection
could have favored the same or different haplotypes in
each population. Thus, a clear molecular signature was
not always left by the simulated selective sweeps. We
simulated selection in this manner for computational
efficiency and because it accurately reflects the effect
of a recent and complete selective sweep. Specifically,
we believe that this is a realistic model for selection
as researchers will often detect selection on the basis

Figure 4.—Estimates of fST across the genome of worldwide human populations (data from Jakobsson et al. 2008). Each
panel depicts a different human chromosome and is labeled accordingly. The solid black line denotes the point estimate (median
of the posterior distribution) of the mean chromosome-level fST for a chromosome. Estimates of fST for individual genes are
shown in gray for nonoutlier genes and light (at a ¼ 0.5) or dark blue (at a ¼ 0.95) for outlier genes. For each gene the solid
circle gives the median from the posterior distribution of fST for that locus and the bars denote the 95% ETPI.
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of genetic regions linked to the gene under selection
rather than the actual gene under selection and patterns
of linkage might vary among populations. Nonetheless,
when evidence of selection comes directly from the
target of selection or there is tight linkage with consis-
tent patterns of linkage disequilibrium between the se-
lected gene and a sequenced genetic region, a stronger
signal of selection should be evident and selection
should be easier to detect.

Evidence of selection in human populations: A
diverse array of studies (Akey et al. 2002; Nielsen et al.
2007; Barreiro et al. 2008; Nielsen et al. 2009) has found
that natural selection has played an important role in
shaping functional genetic variation in humans. Analyses
based on our model for quantifying the distribution of
genetic variation among populations similarly find sub-
stantial evidence for the action of natural selection. We
classified �10 times as many genes as candidates for
positive or divergent selection (high fST outlier loci) than
as candidates for balancing selection (low fST outlier
loci). However, this does not mean that divergent and
positive selection more commonly affects human genetic
variation than balancing selection. Evidence from other
studies suggests that weak negative selection is prevalent
in the human genome and balancing selection is also
fairly common (Bustamante et al. 2005; Andrés et al.
2009). Instead this difference in the prevalence of
different forms of selection might indicate that there is
more variation in the strength of positive selection, re-
sulting in a greater number of extreme genetic regions,
than there is in the strength of negative or balancing
selection with many genetic regions weakly affected by
these factors. However, this cannotbe explicitly addressed
by our study. Finally, previous simulation studies suggest
that it is difficult to detect balancing selection using
outlier analyses (Beaumont and Balding 2004; Guo et al.
2009), which might reflect the different molecular signals
left by divergent and balancing selection or the bounded
nature of FST and fST.

Specific genes identified as outliers by our analysis
include several genes that have been repeatedly impli-
cated as targets of positive selection in humans, such as
POLG2, CYP3A5, and SLC24A5. Nonetheless, we also
detected novel candidate genes for selection in humans
(e.g., FOXA2) and failed to detect selection on genes
expected to have experienced strong selection on the
basis of previous studies, such as the lactase (LCT) gene
(Bersaglieri et al. 2004; Nielsen et al. 2007; Tishkoff

et al. 2007). A lack of complete concordance with earlier
studies is not surprising as a general lack of concor-
dance among studies of selection in humans has been
noted (Nielsen et al. 2007). This lack of concordance
likely reflects the sensitivity of different methods to
different signatures of selection, which affects whether
methods are more likely to detect recent, ongoing, or
more ancient selective sweeps, as well as the specific
nucleotides and populations analyzed. For example, the

lack of evidence from the worldwide human data set for
selection on LCTappears to reflect the SNPs included in
this study. Previous studies of human genetic variation
have detected high values of FST at specific SNPs in the
LCT gene (e.g., 0.53 for SNPs rs4988235 and rs182549),
but have also shown that FST varies across this gene
(Bersaglieri et al. 2004). Previous estimates of FST for
the two genic SNPs in LCT included in our analysis that
were also investigated by Bersaglieri et al. (2004) were
0 (rs2874874) and 0.17 (rs2322659), which do not stand
out markedly from background levels of differentiation.

Conclusions: Technological advances in DNA sequ-
encing are ushering in a new era of population
genomics. Whereas researchers previously were con-
strained to various, relatively low-throughput molecular
markers for genotyping, it is now possible to rapidly
generate very large volumes of DNA sequence data for
any group of organisms (Mardis 2008a; Gilad et al.
2009). This new capability will allow researchers to
address long-standing and fundamental questions in
evolutionary biology, which were once considered nearly
intractable because of limited genetic data (Mardis

2008b). However, most published NGS studies have
been primarily descriptive (e.g., transcriptome charac-
terization; Vera et al. 2008; Parchman et al. 2010) or
have been forced to discard valuable data because of
analytical limitations (Hohenlohe et al. 2010) and have
not taken full advantage of the potential of the sequence
data. To do so, researchers need robust and accessible
methods and models that can be applied to NGS data to
test evolutionary hypotheses. The model presented here
helps fill this gap, as it allows us to quantify heteroge-
neous genomic divergence among populations and
identify genetic regions affected by selection. The
Bayesian analysis of molecular variance illustrates the
potential of combining appropriate models and NGS to
address important questions in evolutionary biology and
genetics and is a critical step toward utilizing the growing
abundance of sequence data for population genomics.
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File S11

SUPPORTING METHODS AND RESULTS2

MCMC algorithm We developed a Metropolis-Hastings MCMC algorithm (Gamerman3

and Hedibert 2006) to obtain samples from the joint posterior probability distribution for4

all model parameters. Haplotype frequencies were estimated using independence or random-5

walk chains. When independence chains were used, proposal values for haplotype frequencies6

(a vector pij containing values for each locus and population) were sampled from Dirichlet7

distributions that were independent of p from the previous time-step and similar in form8

to the expected posterior distribution for these parameters. This proposal distribution is9

very efficient when dealing with few haplotypes and intermediate haplotype frequencies.10

Random-walk chains were used when these criteria were not met, which involved sampling11

haplotype frequencies from Dirichlet distributions that were proportional to the vector pij12

from the previous MCMC step. At least one of these two proposal algorithms generally13

worked well with each data set, however, more complicated, alternative proposal distributions14

might be considered when a very large number of haplotypes are analyzed. The α and β15

parameters associated with the conditional prior on haplotype frequencies were estimated16

using random-walk chains. Specifically, new values for each α and β pair were proposed17

from bivariate Gaussian distributions centered on the previous parameter values with user18

adjusted variance and covariance. Specification of a high covariance between proposal values19

of α and β was imposed to increase chain mixing. The MCMC algorithm was written in C++20

using the GNU Scientific Library (Galassi et al. 2009) and is available from the authors at21

http://www.uwyo.edu/buerkle/software/ as the stand-alone software bamova.22

Simulations: estimation of φ statistics We conducted a series of simulations to deter-23

mine whether the proposed model provided reasonable estimates of genome-level φ-statistics.24

For these simulations we were solely concerned with genetic differentiation among popula-25
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tions (rather than also considering differentiation among groups of populations). For each26

of our three likelihood models we simulated sequence data using an infinite sites coalescent27

model (using R. Hudson’s software ms ; Hudson 2002). One group of data consisted of28

sequences from 25 genetic regions, whereas the second group consisted of sequences from29

500 genetic regions. All simulations assumed five populations split from a common ancestor30

τ generations in the past, where τ has units of 4Ne. We varied τ from 0 to 1 in steps of31

0.05 to produce 21 data sets each for 25 and 500 loci. The ancestral population and all five32

descendant populations were assigned population mutation rates θ = 4Neµ of 0.5, where µ33

is the per locus mutation rate. We assumed no migration following population subdivision.34

Forty gene copies were sampled from each of the five populations. For the known haplotype35

model analyses we treated the simulated sequences directly as the sampled data. For NGS–36

individual model and NGS-population model analyses we re-sampled the simulated sequence37

data sets such that coverage for each sequence was Poisson distributed (λ = 2). For the38

NGS–individual model analyses we retained information on which individual each sequence39

came from, whereas we only retained population identification for NGS-population model40

analyses. Each data set was analyzed using our bamova software, with MCMC details as41

described in the main document.42

MCMC implementation of the proposed Bayesian models accurately quantified genetic43

structure among five simulated populations with sequence data from 25 or 500 genetic re-44

gions (Figure S1). In general, estimates of mean genome-level φST (µST ) increased with45

the time since divergence of the five populations (τ). Credible intervals for genome-level46

parameters were relatively narrow, particularly when estimates were based on 500 genetic47

regions (Figure S1, S2). Moreover, credible intervals, and thus the uncertainty in genome-48

level parameters, were similar for all three first-level likelihood models (known haplotype49

model, NGS-individual model, and NGS-population model). We detected considerable varia-50

tion in the extent of population structure among genetic regions (and hence non-zero σST for51

genome-level φST ), except when the population divergence time was very low (Fig. S2). Pos-52
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terior probability estimates for µST were similar to the empirical mean of the locus-specific φ53

statistics calculated directly from the raw data; however, the estimates of σST were generally54

lower than the empirical standard deviation of φST from the raw data.55

In the analyses of simulated data sets, φST increased reliably and as expected with time56

since population divergence. Moreover, estimates of genome-level φST using the known57

haplotypes model were very similar to non-Bayesian point estimates of mean φST (Figure58

S1). Additionally the estimates of genome-level φST for the known haplotypes model, the59

NGS–individual model, and the NGS–population model were similar. This similarity in re-60

sults among models suggest that high-coverage NGS data can provide parameter estimates61

with precision and accuracy equivalent to Sanger sequencing. Furthermore, the estimates62

of genome-level φST for the SeattleSNPs human sequence data and chromosome-level φST63

for the worldwide human SNP data (0.080–0.139) were similar to mean levels of genetic64

differentiation among human populations based on FST (e.g., FST = 0.09–0.14 for Yoruba,65

European, Han Chinese and Japanese populations; Weir et al. 2005; Barreiro et al.66

2008). An important attribute of the model is that it also provides an accurate estimate67

of the uncertainty in the parameter estimates. This is an attribute not necessarily shared68

by non-Bayesian methods of parameter estimation, particularly when hierarchical or derived69

parameters are involved (Link and Baker 2009).70

Human SeattleSNP data: alternative data subsets In addition to analysing the71

SeattleSNPs data set based on the first five SNPs in each gene we analysed four additional72

subsets of these data: 1) sequences based on the middle five SNPs in each gene, 2) sequences73

based on the last five SNPs in each gene, 3) sequences based on five SNPs spaced evenly74

across each gene, 4) and sequences based on every 12th SNP in each gene (mean number of75

SNPs = 5.24, sd = 0.423). Analyses of these data sets were as described in the main text76

for the first five SNPs data set.77

We classified four genes as high φST outliers (using a = 0.5) in two or more of the data78
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subsets (Figs. 1, S3). Three of these genes, HSD11B2, FOXA2, and POLG2 were classified79

as φST outliers based on the ’first five SNPs’ data subset, and are described in the main80

document. Other outlier gene identified in more than one data subset was CPSF4, which81

encodes the cleavage polyadenylation specificity factor subunit 4 protein and is an essential82

component of pre-mRNA 3’ processing in mammals (Barabino et al. 1997). Estimates83

of φST for CPSF4 were as high as 0.382 (95% ETPI 0.262–0.496; ‘last five SNPs’ data84

subset, Fig. S3). Four additional genes were identified as high φST outliers in single subsets85

of the data: FUT2, IL1F6, EPPB9, and IKBKB. When classified as outliers these genes86

had φST estimates similar to the genes detected as outliers more than once (Figs. 1, S3).87

Interestingly, FUT2 was classified as a candidate gene experiencing balancing selection in88

European Americans based on levels of polymorphism and intermediate-frequency alleles by89

Andres et al. (Andrés et al. 2009) and is generally regarded as a well-established target90

of balancing selection (contrary to our findings). Variation among data subsets in whether91

genes were detected as outliers depended both on the distribution of divergent nucleotides92

along each gene and the extent of divergence at each of these nucleotides (Fig. 2). No genes93

were identified as low φST outliers, nor were any genes identified as high φST outliers using94

a = 0.95.95
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A. Known haplotypes model, 25 loci
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C. NGS−individual model, 25 loci
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B. Known haplotypes model, 500 loci
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Figure S1.—Posterior probability distribution for mean genome-level φST (µST ). The median
(solid circle), 95% ETPI (vertical lines), and empirical mean φST (open box, known haplotypes

model) from a set of simulated data are shown in each plot.
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A. Known haplotypes model, 25 loci
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Figure S2.—Posterior probability distribution for the standard deviation of the genome-level φST

distribution. The median (solid circle), 95% ETPI (vertical lines), and empirical standard deviation
of φST (open box, known haplotypes model) are shown for each set of simulations.
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Figure S3.—Locus-specific φST estimates for Africans and Europeans (SeattleSNPs data set). A
point estimate of the genome-level φST distribution (based on the median from the posterior prob-
ability distributions of αST and βST ) is denoted with a solid black line. The posterior probability
distributions for the outlier loci (colored lines) and 50 additional randomly chosen genetic regions
(gray lines) are shown in each plot. Results from the middle five SNPs in each gene (A), the last
five SNPs in each gene (B), five evenly spaced SNPs in each gene (C), and every 12th in each gene
(D) are shown.
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TABLE S4
Proportion of outlier loci (group structure) with the NGS–individual model

Neutral Selective Sweep

a = 0.5 a = 0.5 a = 0.95 a = 0.95 a = 0.5 a = 0.5 a = 0.95 a = 0.95

SG No. loci φ low high low high low high low high

1 25 φST 0.004 0.030 0.002 0.009 0.000 0.025 0.000 0.000

φCT 0.009 0.028 0.000 0.004 0.025 0.025 0.000 0.000

φSC 0.007 0.024 0.000 0.000 0.000 0.150 0.000 0.025

500 φST 0.014 0.032 0.003 0.008 0.016 0.012 0.000 0.000

φCT 0.019 0.032 0.003 0.009 0.048 0.008 0.012 0.000

φSC 0.009 0.010 0.000 0.000 0.004 0.120 0.000 0.044

2 25 φST 0.004 0.002 0.000 0.000 0.000 0.925 0.000 0.875

φCT 0.020 0.017 0.002 0.000 0.225 0.100 0.175 0.025

φSC 0.000 0.000 0.000 0.000 0.000 0.950 0.000 0.900

500 φST 0.006 0.002 0.000 0.000 0.000 1.000 0.000 0.988

φCT 0.020 0.029 0.004 0.009 0.164 0.108 0.160 0.100

φSC 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.988

Mean proportion of neutrally evolving and selected loci over 10 replicates identified as outliers with
group structure for the NGS-individual model.
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TABLE S5

Summary of outlier analysis for the worldwide human SNP data (Jakobsson et al.

2008). For each genetic region we give the chromosome number (Chrom.), gene ID

(Gene), and classification as a low (l) or high (h) φST outlier as well as whether

outlier status was at a = 0.5 or a = 0.95. Additionally we provide the median and

credible intervals for each locus’s φST and quantile in the genome-level distribution.

Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

1 AKT3 l–0.5 0.0015 0.0167 0.1217 -0.1017 -0.0455 0.0201

1 C1orf116 l–0.5 0.0016 0.0190 0.1253 -0.1007 -0.0420 0.0209

1 C1orf117 l–0.5 0.0018 0.0137 0.0711 -0.0981 -0.0508 -0.0009

1 GPR161 l–0.5 0.0001 0.0061 0.1521 -0.1631 -0.0712 0.0297

1 GSTM4 l–0.5 0.0011 0.0205 0.1673 -0.1089 -0.0399 0.0335

1 MYCBP l–0.5 0.0019 0.0146 0.0828 -0.0969 -0.0493 0.0048

1 PLA2G2D l–0.5 0.0014 0.0243 0.1920 -0.1036 -0.0351 0.0399

1 ACADM h–0.5 0.9536 0.9938 0.9995 0.2119 0.2655 0.3168

1 AIM1L h–0.5 0.9249 0.9851 0.9981 0.1960 0.2441 0.2906

1 AP4B1 h–0.5 0.9489 0.9951 0.9997 0.2087 0.2710 0.3267

1 ASPM h–0.5 0.8376 0.9752 0.9981 0.1653 0.2304 0.2903

1 ATPAF1 h–0.5 0.9639 0.9971 0.9999 0.2192 0.2824 0.3420

1 C1orf113 h–0.5 0.9074 0.9882 0.9992 0.1883 0.2500 0.3076

1 C1orf114 h–0.5 0.8921 0.9770 0.9973 0.1825 0.2325 0.2834

1 C1orf123 h–0.5 0.9202 0.9903 0.9994 0.1935 0.2550 0.3111

1 C1orf161 h–0.5 0.9433 0.9886 0.9987 0.2055 0.2510 0.2984

1 C1orf83 h–0.5 0.8171 0.9774 0.9987 0.1603 0.2330 0.2983

1 C1orf83 h–0.5 0.9513 0.9960 0.9998 0.2101 0.2755 0.3345

1 CD34 h–0.5 0.9540 0.9915 0.9990 0.2125 0.2581 0.3017

1 ELA3B h–0.5 0.8788 0.9763 0.9973 0.1782 0.2318 0.2832

1 FCER1A h–0.5 0.9222 0.9829 0.9975 0.1951 0.2405 0.2846

1 GPR88 h–0.5 0.9547 0.9900 0.9984 0.2127 0.2540 0.2942

Continued on next page
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TABLE S5 – continued from previous page

Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

1 HMCN1 h–0.5 0.9608 0.9982 1.0000 0.2174 0.2915 0.3563

1 HNRPR h–0.5 0.9246 0.9884 0.9989 0.1960 0.2506 0.3016

1 ILF2 h–0.5 0.9176 0.9845 0.9981 0.1926 0.2431 0.2907

1 INSRR h–0.5 0.8887 0.9753 0.9965 0.1814 0.2304 0.2779

1 KCNT2 h–0.5 0.9559 0.9981 1.0000 0.2131 0.2912 0.3615

1 KIAA0319L h–0.5 0.8693 0.9802 0.9986 0.1750 0.2366 0.2958

1 LRRC7 h–0.5 0.9286 0.9898 0.9993 0.1978 0.2539 0.3104

1 MEF2D h–0.5 0.9292 0.9855 0.9982 0.1980 0.2449 0.2914

1 NBL1 h–0.5 0.9640 0.9929 0.9991 0.2204 0.2627 0.3031

1 NBPF3 h–0.5 0.9042 0.9777 0.9967 0.1870 0.2334 0.2789

1 ORC1L h–0.5 0.9018 0.9832 0.9985 0.1860 0.2410 0.2956

1 PHTF1 h–0.5 0.9478 0.9909 0.9991 0.2078 0.2563 0.3049

1 PSMA5 h–0.5 0.9569 0.9947 0.9996 0.2142 0.2688 0.3209

1 RGL1 h–0.5 0.9513 0.9930 0.9995 0.2103 0.2627 0.3141

1 SNX27 h–0.5 0.9244 0.9779 0.9954 0.1959 0.2337 0.2721

1 TRIM46 h–0.5 0.9376 0.9838 0.9971 0.2023 0.2420 0.2815

1 TM2D1 l–0.95 0.0008 0.0051 0.0273 -0.1154 -0.0755 -0.0320

1 C1orf41 h–0.95 0.9968 0.9998 1.0000 0.2798 0.3322 0.3808

1 CLCNKB h–0.95 0.9859 0.9988 0.9999 0.2456 0.2997 0.3505

1 CLSPN h–0.95 0.9975 0.9998 1.0000 0.2855 0.3343 0.3793

1 EIF2C1 h–0.95 0.9999 1.0000 1.0000 0.3387 0.3881 0.4335

1 EIF2C3 h–0.95 0.9961 0.9997 1.0000 0.2760 0.3237 0.3695

1 EPS15 h–0.95 0.9862 0.9989 1.0000 0.2461 0.3010 0.3552

1 FRRS1 h–0.95 0.9710 0.9957 0.9997 0.2256 0.2740 0.3218

1 KHDRBS1 h–0.95 0.9757 0.9984 1.0000 0.2309 0.2947 0.3554

1 KIAA0319L h–0.95 0.9664 0.9963 0.9998 0.2214 0.2768 0.3306

1 KIAA0907 h–0.95 0.9712 0.9989 1.0000 0.2261 0.3016 0.3673

1 MASP2 h–0.95 0.9899 0.9989 0.9999 0.2540 0.3015 0.3473

1 OSBPL9 h–0.95 0.9796 0.9986 1.0000 0.2354 0.2974 0.3520

Continued on next page
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TABLE S5 – continued from previous page

Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

1 PMVK h–0.95 0.9848 0.9998 1.0000 0.2434 0.3282 0.4002

1 POLR3GL h–0.95 0.9871 0.9997 1.0000 0.2475 0.3256 0.3922

1 RABGAP1L h–0.95 0.9755 0.9974 0.9999 0.2311 0.2844 0.3359

1 RABGGTB h–0.95 0.9757 0.9961 0.9996 0.2311 0.2757 0.3174

1 RBBP5 h–0.95 0.9943 0.9996 1.0000 0.2673 0.3194 0.3679

1 RC3H1 h–0.95 0.9912 0.9994 1.0000 0.2571 0.3129 0.3632

1 SH3BP5L h–0.95 0.9982 0.9999 1.0000 0.2922 0.3371 0.3799

1 SHE h–0.95 0.9889 0.9990 0.9999 0.2514 0.3028 0.3492

1 SLC16A1 h–0.95 0.9896 0.9993 1.0000 0.2533 0.3095 0.3599

1 SLC9A11 h–0.95 0.9987 1.0000 1.0000 0.2977 0.3642 0.4257

1 SYF2 h–0.95 0.9998 1.0000 1.0000 0.3325 0.4019 0.4630

1 UBE2J2 h–0.95 0.9767 0.9996 1.0000 0.2321 0.3199 0.3941

1 YY1AP1 h–0.95 0.9811 0.9996 1.0000 0.2375 0.3189 0.3886

1 ZBTB41 h–0.95 0.9975 0.9998 1.0000 0.2856 0.3355 0.3850

1 ZMYM4 h–0.95 0.9860 0.9982 0.9999 0.2458 0.2920 0.3372

1 ZMYM6 h–0.95 0.9997 1.0000 1.0000 0.3267 0.3962 0.4585

2 EIF2AK2 l–0.5 0.0010 0.0145 0.1055 -0.0956 -0.0384 0.0216

2 MGC39518 l–0.5 0.0003 0.0125 0.1879 -0.1204 -0.0421 0.0451

2 SMYD5 l–0.5 0.0049 0.0219 0.0819 -0.0632 -0.0278 0.0123

2 XPO1 l–0.5 0.0003 0.0164 0.2286 -0.1175 -0.0352 0.0541

2 ALK h–0.5 0.8903 0.9772 0.9971 0.1800 0.2279 0.2737

2 CAB39 h–0.5 0.9596 0.9938 0.9996 0.2123 0.2590 0.3075

2 CHST10 h–0.5 0.8857 0.9832 0.9988 0.1785 0.2357 0.2910

2 CREG2 h–0.5 0.8386 0.9791 0.9986 0.1645 0.2304 0.2885

2 CTDSP1 h–0.5 0.9642 0.9928 0.9990 0.2160 0.2556 0.2937

2 FLJ20758 h–0.5 0.9261 0.9873 0.9987 0.1937 0.2427 0.2892

2 KYNU h–0.5 0.9414 0.9933 0.9997 0.2005 0.2571 0.3138

2 LOC51252 h–0.5 0.9550 0.9897 0.9984 0.2096 0.2476 0.2849

2 MALL h–0.5 0.9563 0.9971 0.9999 0.2097 0.2747 0.3367
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

2 MKI67IP h–0.5 0.9526 0.9959 0.9998 0.2076 0.2674 0.3228

2 ORMDL1 h–0.5 0.8793 0.9895 0.9997 0.1765 0.2470 0.3128

2 REEP1 h–0.5 0.8450 0.9847 0.9994 0.1661 0.2382 0.3043

2 REEP1 h–0.5 0.9332 0.9911 0.9994 0.1968 0.2507 0.3046

2 RHBDD1 h–0.5 0.9498 0.9937 0.9995 0.2065 0.2583 0.3075

2 RNF149 h–0.5 0.9336 0.9899 0.9989 0.1970 0.2478 0.2930

2 SELI h–0.5 0.9476 0.9964 0.9999 0.2044 0.2702 0.3299

2 STK11IP h–0.5 0.8709 0.9848 0.9991 0.1736 0.2381 0.2956

2 SULT1C2 h–0.5 0.9477 0.9948 0.9997 0.2048 0.2625 0.3164

2 TMEFF2 h–0.5 0.9186 0.9854 0.9981 0.1904 0.2391 0.2841

2 TRPM8 h–0.5 0.8220 0.9842 0.9995 0.1605 0.2373 0.3055

2 ZNF512 h–0.5 0.9559 0.9948 0.9997 0.2100 0.2627 0.3143

2 RIF1 l–0.95 0.0006 0.0048 0.0267 -0.1051 -0.0646 -0.0226

2 AOX2 h–0.95 0.9840 0.9980 0.9999 0.2371 0.2823 0.3275

2 BIN1 h–0.95 0.9919 0.9994 1.0000 0.2525 0.3044 0.3556

2 C2orf13 h–0.95 0.9994 1.0000 1.0000 0.3041 0.3569 0.4085

2 CMKOR1 h–0.95 0.9707 0.9967 0.9998 0.2216 0.2720 0.3213

2 KIAA1212 h–0.95 0.9818 0.9990 1.0000 0.2333 0.2946 0.3490

2 PROKR1 h–0.95 0.9948 0.9997 1.0000 0.2625 0.3165 0.3658

2 PSCDBP h–0.95 0.9968 0.9998 1.0000 0.2725 0.3220 0.3735

2 RAB3GAP1 h–0.95 0.9625 0.9986 1.0000 0.2137 0.2881 0.3572

2 SMC6L1 h–0.95 0.9960 1.0000 1.0000 0.2677 0.3464 0.4152

2 SMYD1 h–0.95 1.0000 1.0000 1.0000 0.3423 0.3974 0.4457

2 ZRANB3 h–0.95 0.9765 0.9992 1.0000 0.2268 0.2993 0.3597

3 CEP63 l–0.5 0.0015 0.0108 0.0543 -0.0848 -0.0445 -0.0017

3 GPR156 l–0.5 0.0023 0.0122 0.0503 -0.0767 -0.0415 -0.0044

3 ARL6 h–0.5 0.9189 0.9826 0.9977 0.1864 0.2296 0.2720

3 B3GNT5 h–0.5 0.9435 0.9935 0.9996 0.1977 0.2522 0.3032

3 BCL6 h–0.5 0.9323 0.9882 0.9987 0.1927 0.2388 0.2832
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

3 C3orf17 h–0.5 0.9370 0.9900 0.9991 0.1943 0.2426 0.2906

3 C3orf25 h–0.5 0.9158 0.9838 0.9983 0.1847 0.2315 0.2776

3 DNAH1 h–0.5 0.9268 0.9860 0.9985 0.1898 0.2347 0.2800

3 FLJ25996 h–0.5 0.9350 0.9882 0.9986 0.1935 0.2389 0.2821

3 MAPKAPK3 h–0.5 0.8826 0.9899 0.9997 0.1736 0.2424 0.3076

3 NGLY1 h–0.5 0.9304 0.9885 0.9990 0.1910 0.2392 0.2876

3 NR2C2 h–0.5 0.9094 0.9770 0.9961 0.1831 0.2227 0.2617

3 PCAF h–0.5 0.9187 0.9856 0.9985 0.1866 0.2340 0.2793

3 PLCXD2 h–0.5 0.9041 0.9751 0.9963 0.1803 0.2207 0.2623

3 PLS1 h–0.5 0.9424 0.9894 0.9989 0.1976 0.2415 0.2861

3 RASA2 h–0.5 0.8803 0.9806 0.9986 0.1725 0.2271 0.2824

3 RBP2 h–0.5 0.8786 0.9843 0.9991 0.1718 0.2322 0.2907

3 UNQ846 h–0.5 0.9097 0.9806 0.9975 0.1829 0.2271 0.2704

3 BTLA h–0.95 0.9910 0.9993 1.0000 0.2450 0.2953 0.3438

3 C3orf23 h–0.95 0.9959 0.9997 1.0000 0.2624 0.3097 0.3539

3 C3orf37 h–0.95 0.9697 0.9977 0.9999 0.2157 0.2733 0.3248

3 C3orf58 h–0.95 0.9842 0.9992 1.0000 0.2326 0.2921 0.3468

3 COPG h–0.95 0.9941 0.9997 1.0000 0.2541 0.3098 0.3629

3 GNAI2 h–0.95 0.9980 0.9999 1.0000 0.2761 0.3260 0.3715

3 GORASP1 h–0.95 0.9995 1.0000 1.0000 0.2997 0.3492 0.3956

3 LMLN h–0.95 0.9778 0.9981 0.9999 0.2234 0.2769 0.3268

3 LTF h–0.95 0.9766 0.9978 0.9999 0.2225 0.2743 0.3243

3 MSL2L1 h–0.95 0.9707 0.9983 1.0000 0.2165 0.2792 0.3377

3 NPCDR1 h–0.95 0.9794 0.9985 0.9999 0.2254 0.2813 0.3323

3 RBP1 h–0.95 0.9772 0.9971 0.9998 0.2232 0.2689 0.3134

3 TRAK1 h–0.95 0.9983 1.0000 1.0000 0.2783 0.3344 0.3882

4 KLHL8 l–0.5 0.0001 0.0080 0.1424 -0.1536 -0.0674 0.0264

4 C4orf18 h–0.5 0.9279 0.9814 0.9966 0.2011 0.2425 0.2824

4 CCDC4 h–0.5 0.9555 0.9926 0.9993 0.2178 0.2660 0.3140
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

4 HCAP-G h–0.5 0.9144 0.9843 0.9984 0.1941 0.2475 0.2979

4 LEF1 h–0.5 0.9273 0.9826 0.9974 0.2010 0.2444 0.2878

4 MOBKL1A h–0.5 0.9038 0.9853 0.9990 0.1899 0.2490 0.3071

4 NUDT6 h–0.5 0.9562 0.9924 0.9992 0.2182 0.2652 0.3109

4 NUP54 h–0.5 0.9501 0.9935 0.9996 0.2135 0.2693 0.3228

4 STX18 h–0.5 0.9399 0.9877 0.9986 0.2078 0.2536 0.3022

4 TBC1D19 h–0.5 0.9401 0.9911 0.9993 0.2076 0.2618 0.3156

4 TLR10 h–0.5 0.8653 0.9763 0.9978 0.1768 0.2357 0.2920

4 ARHGAP10 h–0.95 0.9977 0.9998 1.0000 0.2930 0.3374 0.3778

4 CENTD1 h–0.95 0.9902 0.9984 0.9999 0.2597 0.3007 0.3447

4 DCK h–0.95 0.9999 1.0000 1.0000 0.3526 0.4099 0.4624

4 ENAM h–0.95 0.9993 1.0000 1.0000 0.3171 0.3827 0.4396

4 ESSPL h–0.95 0.9755 0.9970 0.9998 0.2361 0.2863 0.3362

4 ETFDH h–0.95 0.9992 1.0000 1.0000 0.3127 0.3954 0.4679

4 LRBA h–0.95 0.9765 0.9975 0.9999 0.2361 0.2906 0.3455

4 NPNT h–0.95 0.9859 0.9989 1.0000 0.2508 0.3070 0.3613

4 PHF22 h–0.95 0.9985 0.9999 1.0000 0.3024 0.3501 0.3943

4 POLN h–0.95 0.9869 0.9984 0.9999 0.2516 0.3001 0.3454

4 SLC30A9 h–0.95 0.9916 0.9991 1.0000 0.2641 0.3107 0.3573

4 TMEM34 h–0.95 0.9989 1.0000 1.0000 0.3075 0.3612 0.4108

5 DNAJA5 l–0.5 0.0010 0.0071 0.0386 -0.0917 -0.0542 -0.0132

5 C6 h–0.5 0.8581 0.9869 0.9996 0.1593 0.2280 0.2928

5 CD180 h–0.5 0.8830 0.9792 0.9981 0.1674 0.2171 0.2665

5 GMCL1L h–0.5 0.9080 0.9871 0.9991 0.1753 0.2284 0.2809

5 HSPA4 h–0.5 0.9065 0.9840 0.9984 0.1748 0.2236 0.2694

5 IL4 h–0.5 0.9003 0.9792 0.9975 0.1729 0.2173 0.2615

5 LOC51334 h–0.5 0.9439 0.9887 0.9986 0.1908 0.2315 0.2708

5 LOC90624 h–0.5 0.9509 0.9917 0.9993 0.1951 0.2384 0.2826

5 MARCH6 h–0.5 0.9528 0.9897 0.9985 0.1963 0.2336 0.2703
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

5 SKP2 h–0.5 0.9493 0.9936 0.9996 0.1934 0.2439 0.2916

5 SRFBP1 h–0.5 0.8352 0.9788 0.9988 0.1541 0.2166 0.2760

5 GPBP1 l–0.95 0.0002 0.0023 0.0206 -0.1175 -0.0774 -0.0293

5 RBM22 l–0.95 0.0000 0.0004 0.0386 -0.1900 -0.1092 -0.0118

5 HINT1 h–0.95 0.9818 0.9987 1.0000 0.2207 0.2745 0.3265

5 LOC92270 h–0.95 0.9862 0.9994 1.0000 0.2273 0.2886 0.3431

5 MGC23985 h–0.95 0.9958 0.9998 1.0000 0.2533 0.3026 0.3497

5 MSX2 h–0.95 0.9929 0.9997 1.0000 0.2417 0.2991 0.3511

5 NSUN2 h–0.95 0.9796 0.9961 0.9996 0.2176 0.2540 0.2929

5 PITX1 h–0.95 0.9988 1.0000 1.0000 0.2753 0.3344 0.3864

5 ROPN1L h–0.95 0.9688 0.9952 0.9996 0.2080 0.2498 0.2925

5 SDHA h–0.95 0.9773 0.9974 0.9998 0.2159 0.2619 0.3059

5 SLC36A2 h–0.95 0.9893 0.9996 1.0000 0.2325 0.2929 0.3505

5 WDR70 h–0.95 0.9943 0.9997 1.0000 0.2455 0.2979 0.3491

6 FRS3 l–0.5 0.0003 0.0041 0.0388 -0.1045 -0.0605 -0.0098

6 GCM2 l–0.5 0.0014 0.0173 0.1098 -0.0787 -0.0300 0.0207

6 KIFC1 l–0.5 0.0003 0.0099 0.1468 -0.1083 -0.0425 0.0312

6 MYCT1 l–0.5 0.0026 0.0239 0.1380 -0.0682 -0.0222 0.0287

6 TDRD6 l–0.5 0.0004 0.0053 0.0448 -0.1009 -0.0555 -0.0063

6 ZNF187 l–0.5 0.0030 0.0223 0.1170 -0.0654 -0.0239 0.0232

6 C6orf146 h–0.5 0.9155 0.9867 0.9989 0.1696 0.2166 0.2631

6 C6orf70 h–0.5 0.8524 0.9768 0.9985 0.1509 0.2040 0.2573

6 CDC40 h–0.5 0.8677 0.9762 0.9979 0.1548 0.2034 0.2521

6 CYB5R4 h–0.5 0.9572 0.9951 0.9997 0.1886 0.2369 0.2827

6 FNDC1 h–0.5 0.9051 0.9779 0.9969 0.1658 0.2051 0.2448

6 IHPK3 h–0.5 0.8933 0.9791 0.9975 0.1624 0.2062 0.2490

6 IL20RA h–0.5 0.8823 0.9753 0.9972 0.1591 0.2024 0.2471

6 PEX6 h–0.5 0.9103 0.9771 0.9958 0.1682 0.2044 0.2388

6 PGBD1 h–0.5 0.8928 0.9843 0.9990 0.1622 0.2132 0.2650
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

6 POPDC3 h–0.5 0.9417 0.9948 0.9998 0.1799 0.2359 0.2923

6 SRPK1 h–0.5 0.8672 0.9891 0.9997 0.1547 0.2210 0.2831

6 TAGAP h–0.5 0.9185 0.9893 0.9993 0.1706 0.2214 0.2709

6 UBD h–0.5 0.9104 0.9962 0.9999 0.1672 0.2418 0.3070

6 VIP h–0.5 0.9282 0.9951 0.9999 0.1743 0.2367 0.2935

6 ZNF435 h–0.5 0.9373 0.9855 0.9978 0.1788 0.2147 0.2508

6 C6orf125 h–0.95 0.9783 0.9984 0.9999 0.2060 0.2567 0.3038

6 C6orf167 h–0.95 0.9725 0.9968 0.9998 0.2003 0.2447 0.2880

6 C6orf206 h–0.95 0.9992 1.0000 1.0000 0.2669 0.3475 0.4119

6 GSTA5 h–0.95 0.9781 0.9986 1.0000 0.2057 0.2587 0.3096

6 KIAA0408 h–0.95 0.9932 0.9998 1.0000 0.2305 0.2864 0.3374

6 PAK1IP1 h–0.95 0.9994 1.0000 1.0000 0.2722 0.3395 0.3991

6 SNRPC h–0.95 0.9881 0.9994 1.0000 0.2194 0.2732 0.3227

6 VNN3 h–0.95 0.9711 0.9976 0.9999 0.1988 0.2501 0.2996

7 IGF2BP3 l–0.5 0.0001 0.0043 0.0569 -0.1411 -0.0728 -0.0046

7 PIP l–0.5 0.0012 0.0186 0.1446 -0.0982 -0.0374 0.0290

7 C7orf34 h–0.5 0.8282 0.9763 0.9989 0.1589 0.2243 0.2905

7 CREB3L2 h–0.5 0.9083 0.9757 0.9961 0.1840 0.2240 0.2661

7 EPHB6 h–0.5 0.9386 0.9912 0.9994 0.1967 0.2488 0.3030

7 FAM3C h–0.5 0.9403 0.9912 0.9993 0.1978 0.2488 0.2993

7 MDH2 h–0.5 0.9449 0.9929 0.9995 0.2003 0.2537 0.3039

7 PBEF1 h–0.5 0.9085 0.9791 0.9969 0.1837 0.2276 0.2701

7 PSCD3 h–0.5 0.8635 0.9754 0.9976 0.1680 0.2233 0.2764

7 NYD-SP18 h–0.5 0.8941 0.9879 0.9994 0.1778 0.2413 0.3028

7 RPA3 h–0.5 0.9227 0.9784 0.9956 0.1896 0.2269 0.2628

7 SP4 h–0.5 0.9258 0.9846 0.9982 0.1911 0.2354 0.2805

7 TRIM24 h–0.5 0.9181 0.9852 0.9985 0.1871 0.2364 0.2843

7 CYP3A43 h–0.95 0.9678 0.9963 0.9998 0.2160 0.2674 0.3187

7 CYP3A4 h–0.95 0.9896 0.9990 0.9999 0.2453 0.2928 0.3384
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

7 CYP3A5 h–0.95 0.9997 1.0000 1.0000 0.3147 0.3589 0.4011

7 DDX56 h–0.95 0.9896 0.9996 1.0000 0.2449 0.3094 0.3660

7 FLJ10324 h–0.95 0.9736 0.9969 0.9998 0.2214 0.2714 0.3188

7 FLJ12571 h–0.95 0.9949 0.9997 1.0000 0.2615 0.3126 0.3597

7 ING3 h–0.95 0.9839 0.9980 0.9999 0.2349 0.2804 0.3245

7 KCND2 h–0.95 0.9762 0.9966 0.9998 0.2249 0.2692 0.3172

7 MYH16 h–0.95 0.9936 0.9997 1.0000 0.2565 0.3131 0.3663

7 SMURF1 h–0.95 0.9961 0.9997 1.0000 0.2674 0.3123 0.3575

7 SVH h–0.95 0.9999 1.0000 1.0000 0.3252 0.4036 0.4681

7 TRIAD3 h–0.95 0.9990 1.0000 1.0000 0.2925 0.3765 0.4434

7 TRIM4 h–0.95 0.9893 0.9995 1.0000 0.2441 0.3060 0.3639

7 ZFP95 h–0.95 0.9999 1.0000 1.0000 0.3291 0.3757 0.4177

8 EXTL3 l–0.5 0.0017 0.0111 0.0564 -0.0708 -0.0363 0.0030

8 ZHX1 l–0.5 0.0000 0.0037 0.1125 -0.1293 -0.0582 0.0243

8 ADCK5 h–0.5 0.8071 0.9781 0.9991 0.1410 0.2044 0.2643

8 ASH2L h–0.5 0.8827 0.9764 0.9972 0.1596 0.2027 0.2447

8 C8orf72 h–0.5 0.8684 0.9757 0.9982 0.1553 0.2021 0.2531

8 CHRNA6 h–0.5 0.8063 0.9830 0.9995 0.1409 0.2101 0.2734

8 CNOT7 h–0.5 0.8986 0.9773 0.9968 0.1640 0.2036 0.2418

8 FLJ23356 h–0.5 0.8522 0.9829 0.9991 0.1508 0.2100 0.2644

8 KIAA0196 h–0.5 0.8861 0.9781 0.9975 0.1599 0.2044 0.2474

8 KIAA1967 h–0.5 0.9152 0.9847 0.9986 0.1693 0.2124 0.2558

8 LRP12 h–0.5 0.8505 0.9780 0.9986 0.1508 0.2044 0.2569

8 POTE8 h–0.5 0.8039 0.9887 0.9998 0.1404 0.2188 0.2901

8 SAMD12 h–0.5 0.9250 0.9859 0.9984 0.1738 0.2142 0.2533

8 SDCBP h–0.5 0.8948 0.9832 0.9986 0.1628 0.2105 0.2566

8 SLA h–0.5 0.9488 0.9922 0.9994 0.1847 0.2264 0.2685

8 SLC30A8 h–0.5 0.8587 0.9754 0.9979 0.1530 0.2019 0.2495

8 TEX15 h–0.5 0.9448 0.9947 0.9998 0.1815 0.2340 0.2851
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

8 TSPYL5 h–0.5 0.9590 0.9968 0.9999 0.1892 0.2428 0.2921

8 UBXD6 h–0.5 0.9613 0.9926 0.9991 0.1916 0.2274 0.2617

8 ZNF34 h–0.5 0.9154 0.9893 0.9994 0.1692 0.2201 0.2701

8 C8orf77 h–0.95 0.9849 0.9988 1.0000 0.2131 0.2595 0.3041

8 CRISPLD1 h–0.95 0.9872 0.9989 1.0000 0.2174 0.2610 0.3049

8 IKBKB h–0.95 0.9750 0.9982 1.0000 0.2016 0.2532 0.3034

8 TCEA1 h–0.95 0.9806 0.9987 1.0000 0.2077 0.2587 0.3090

8 TMEM64 h–0.95 0.9744 0.9986 1.0000 0.2008 0.2575 0.3133

8 ZNF395 h–0.95 0.9868 0.9995 1.0000 0.2152 0.2740 0.3292

9 C9orf152 l–0.5 0.0009 0.0089 0.0591 -0.0869 -0.0446 0.0029

9 PMPCA l–0.5 0.0009 0.0204 0.1845 -0.0880 -0.0255 0.0422

9 C5 h–0.5 0.9506 0.9921 0.9993 0.1909 0.2349 0.2771

9 CDC14B h–0.5 0.8811 0.9847 0.9992 0.1639 0.2203 0.2762

9 CDKN2A h–0.5 0.9539 0.9925 0.9994 0.1933 0.2355 0.2798

9 CTSL2 h–0.5 0.9390 0.9887 0.9987 0.1855 0.2271 0.2674

9 DAB2IP h–0.5 0.9607 0.9987 1.0000 0.1964 0.2680 0.3335

9 DBC1 h–0.5 0.9401 0.9892 0.9989 0.1860 0.2279 0.2691

9 GARNL3 h–0.5 0.8711 0.9861 0.9995 0.1609 0.2225 0.2838

9 IARS h–0.5 0.9418 0.9869 0.9980 0.1871 0.2237 0.2596

9 KIAA1539 h–0.5 0.9371 0.9869 0.9985 0.1844 0.2235 0.2645

9 LAMC3 h–0.5 0.9604 0.9935 0.9993 0.1979 0.2381 0.2778

9 NDUFA8 h–0.5 0.9580 0.9927 0.9992 0.1959 0.2358 0.2757

9 NPR2 h–0.5 0.9598 0.9960 0.9998 0.1968 0.2479 0.2943

9 NR6A1 h–0.5 0.8937 0.9890 0.9995 0.1670 0.2275 0.2846

9 C9orf114 h–0.95 0.9843 0.9979 0.9998 0.2203 0.2594 0.2969

9 C9orf89 h–0.95 0.9873 0.9987 0.9999 0.2247 0.2679 0.3117

9 FLJ16636 h–0.95 0.9999 1.0000 1.0000 0.3092 0.4013 0.4717

9 PRG-3 h–0.95 0.9976 1.0000 1.0000 0.2567 0.3238 0.3828

9 RABGAP1 h–0.95 0.9970 1.0000 1.0000 0.2525 0.3159 0.3742
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

9 STRBP h–0.95 0.9809 0.9984 0.9999 0.2151 0.2649 0.3138

9 TBC1D13 h–0.95 0.9953 0.9995 1.0000 0.2463 0.2850 0.3239

9 TRPM6 h–0.95 0.9984 1.0000 1.0000 0.2647 0.3209 0.3727

9 ZBTB26 h–0.95 0.9937 0.9998 1.0000 0.2394 0.2991 0.3526

10 IFIT2 l–0.5 0.0002 0.0085 0.1270 -0.1137 -0.0483 0.0254

10 ANKRD2 h–0.5 0.8747 0.9838 0.9991 0.1592 0.2166 0.2709

10 CDNF h–0.5 0.9584 0.9935 0.9994 0.1939 0.2360 0.2780

10 BMPR1A h–0.5 0.8985 0.9796 0.9975 0.1673 0.2110 0.2530

10 C10orf70 h–0.5 0.9145 0.9863 0.9989 0.1722 0.2202 0.2691

10 C10orf99 h–0.5 0.8952 0.9784 0.9974 0.1658 0.2098 0.2530

10 CHUK h–0.5 0.8947 0.9844 0.9990 0.1653 0.2173 0.2697

10 GDF2 h–0.5 0.8063 0.9813 0.9993 0.1428 0.2133 0.2757

10 HECTD2 h–0.5 0.9484 0.9957 0.9999 0.1872 0.2441 0.2992

10 ITGB1 h–0.5 0.8937 0.9778 0.9976 0.1650 0.2092 0.2540

10 KIAA1754 h–0.5 0.8782 0.9786 0.9982 0.1605 0.2098 0.2602

10 PPP3CB h–0.5 0.9238 0.9923 0.9997 0.1754 0.2327 0.2890

10 REEP3 h–0.5 0.9600 0.9956 0.9998 0.1944 0.2437 0.2926

10 SEPHS1 h–0.5 0.8384 0.9810 0.9992 0.1499 0.2126 0.2729

10 TTC18 h–0.5 0.8960 0.9774 0.9972 0.1660 0.2085 0.2511

10 ECHDC3 l–0.95 0.0000 0.0009 0.0123 -0.1395 -0.0916 -0.0406

10 USP54 l–0.95 0.0000 0.0003 0.0486 -0.1953 -0.1090 -0.0052

10 ADD3 h–0.95 0.9648 0.9979 1.0000 0.1972 0.2573 0.3121

10 CTNNA3 h–0.95 0.9988 0.9999 1.0000 0.2673 0.3114 0.3530

10 ECHS1 h–0.95 0.9660 0.9975 0.9999 0.1983 0.2546 0.3083

10 IPMK h–0.95 0.9927 0.9997 1.0000 0.2339 0.2876 0.3400

10 OIT3 h–0.95 0.9966 0.9998 1.0000 0.2490 0.2946 0.3391

10 POLR3A h–0.95 0.9976 1.0000 1.0000 0.2552 0.3211 0.3815

11 PRDX5 l–0.5 0.0002 0.0230 0.3628 -0.1124 -0.0215 0.0759

11 BAD h–0.5 0.8636 0.9865 0.9994 0.1606 0.2250 0.2827
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

11 C11orf49 h–0.5 0.8937 0.9779 0.9977 0.1696 0.2135 0.2592

11 C11orf56 h–0.5 0.9421 0.9864 0.9983 0.1886 0.2250 0.2633

11 CCS h–0.5 0.9536 0.9896 0.9983 0.1950 0.2306 0.2647

11 CKAP5 h–0.5 0.9338 0.9890 0.9990 0.1845 0.2295 0.2747

11 FADS3 h–0.5 0.9348 0.9859 0.9980 0.1854 0.2241 0.2624

11 FLJ12529 h–0.5 0.8833 0.9794 0.9981 0.1662 0.2152 0.2637

11 GTF2H1 h–0.5 0.9245 0.9887 0.9991 0.1803 0.2288 0.2756

11 MGC34821 h–0.5 0.8774 0.9786 0.9981 0.1645 0.2144 0.2633

11 NRXN2 h–0.5 0.9228 0.9851 0.9983 0.1798 0.2228 0.2661

11 SART1 h–0.5 0.8403 0.9882 0.9996 0.1548 0.2278 0.2900

11 SDHD h–0.5 0.9500 0.9981 1.0000 0.1924 0.2637 0.3260

11 SF1 h–0.5 0.9482 0.9906 0.9990 0.1919 0.2328 0.2729

11 SF3B2 h–0.5 0.9418 0.9911 0.9993 0.1883 0.2342 0.2795

11 SIAE h–0.5 0.9499 0.9943 0.9997 0.1929 0.2433 0.2934

11 SLC43A1 h–0.5 0.9208 0.9863 0.9988 0.1792 0.2247 0.2705

11 SYT7 h–0.5 0.9650 0.9946 0.9996 0.2019 0.2443 0.2873

11 DDB1 h–0.95 1.0000 1.0000 1.0000 0.3472 0.4089 0.4610

11 DKFZP564J0863 h–0.95 0.9754 0.9993 1.0000 0.2105 0.2809 0.3416

11 FADS1 h–0.95 0.9958 0.9995 1.0000 0.2500 0.2868 0.3201

11 FBXL11 h–0.95 0.9935 0.9998 1.0000 0.2406 0.2968 0.3522

11 FLJ20294 h–0.95 0.9689 0.9976 0.9999 0.2052 0.2592 0.3103

11 HRASLS5 h–0.95 0.9878 0.9995 1.0000 0.2271 0.2846 0.3406

11 MGC2574 h–0.95 0.9694 0.9965 0.9998 0.2061 0.2527 0.2988

12 CCDC65 l–0.5 0.0062 0.0243 0.0830 -0.0681 -0.0341 0.0044

12 RAB5B l–0.5 0.0022 0.0206 0.1205 -0.0915 -0.0387 0.0195

12 BAZ2A h–0.5 0.9248 0.9887 0.9992 0.1925 0.2472 0.3020

12 C12orf44 h–0.5 0.9647 0.9947 0.9995 0.2167 0.2644 0.3092

12 C12orf51 h–0.5 0.9439 0.9917 0.9993 0.2025 0.2545 0.3048

12 CUTL2 h–0.5 0.9607 0.9944 0.9996 0.2139 0.2633 0.3122
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

12 DPY19L2 h–0.5 0.8293 0.9834 0.9994 0.1603 0.2373 0.3063

12 EP400NL h–0.5 0.9365 0.9867 0.9984 0.1984 0.2430 0.2880

12 EPS8 h–0.5 0.9156 0.9898 0.9993 0.1883 0.2495 0.3068

12 IFT81 h–0.5 0.9400 0.9850 0.9975 0.2006 0.2399 0.2790

12 KERA h–0.5 0.9284 0.9831 0.9973 0.1948 0.2368 0.2782

12 KIAA0789 h–0.5 0.9388 0.9844 0.9974 0.1999 0.2389 0.2787

12 LOC196463 h–0.5 0.8520 0.9869 0.9995 0.1665 0.2433 0.3109

12 LYZ h–0.5 0.8838 0.9856 0.9993 0.1761 0.2410 0.3033

12 MBD6 h–0.5 0.8855 0.9814 0.9986 0.1773 0.2343 0.2910

12 NAP1L1 h–0.5 0.9429 0.9892 0.9989 0.2018 0.2483 0.2944

12 NOL1 h–0.5 0.9249 0.9929 0.9997 0.1923 0.2578 0.3162

12 NR4A1 h–0.5 0.9583 0.9956 0.9997 0.2116 0.2686 0.3207

12 OACT5 h–0.5 0.9479 0.9928 0.9994 0.2048 0.2578 0.3082

12 SLC15A4 h–0.5 0.9033 0.9789 0.9973 0.1834 0.2310 0.2790

12 SLCO1C1 h–0.5 0.9353 0.9838 0.9972 0.1984 0.2378 0.2772

12 SMARCC2 h–0.5 0.8367 0.9758 0.9985 0.1627 0.2273 0.2900

12 UBE2N h–0.5 0.9420 0.9906 0.9992 0.2014 0.2513 0.3010

12 ULK1 h–0.5 0.9188 0.9853 0.9984 0.1901 0.2405 0.2883

12 ACTR6 h–0.95 0.9832 0.9981 0.9999 0.2378 0.2858 0.3319

12 ANAPC5 h–0.95 0.9906 0.9994 1.0000 0.2514 0.3080 0.3631

12 AQP6 h–0.95 0.9872 0.9983 0.9999 0.2447 0.2882 0.3300

12 C12orf30 h–0.95 0.9764 0.9966 0.9997 0.2285 0.2743 0.3197

12 CART1 h–0.95 0.9881 0.9986 0.9999 0.2464 0.2916 0.3334

12 CEP290 h–0.95 0.9750 0.9969 0.9998 0.2269 0.2763 0.3260

12 CMAS h–0.95 0.9786 0.9976 0.9999 0.2304 0.2813 0.3307

12 EIF4B h–0.95 0.9993 1.0000 1.0000 0.3036 0.3599 0.4132

12 GABARAPL1 h–0.95 0.9846 0.9983 0.9999 0.2399 0.2879 0.3336

12 MPHOSPH9 h–0.95 0.9687 0.9962 0.9997 0.2200 0.2720 0.3211

12 PAWR h–0.95 0.9962 0.9999 1.0000 0.2718 0.3351 0.3930
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

12 SPATS2 h–0.95 0.9999 1.0000 1.0000 0.3465 0.3944 0.4380

12 STRAP h–0.95 0.9966 0.9999 1.0000 0.2746 0.3368 0.3933

12 WDR66 h–0.95 0.9826 0.9985 0.9999 0.2362 0.2901 0.3448

13 WBP4 l–0.5 0.0008 0.0147 0.1256 -0.1006 -0.0426 0.0212

13 RB1 h–0.5 0.9494 0.9963 0.9999 0.1894 0.2510 0.3053

13 C13orf12 h–0.95 0.9902 0.9991 1.0000 0.2324 0.2771 0.3200

13 FAM48A h–0.95 0.9972 1.0000 1.0000 0.2557 0.3291 0.3980

13 FBXL3 h–0.95 0.9992 1.0000 1.0000 0.2792 0.3340 0.3856

13 GTF2F2 h–0.95 0.9942 0.9996 1.0000 0.2444 0.2911 0.3377

13 KLF5 h–0.95 0.9993 1.0000 1.0000 0.2817 0.3346 0.3838

13 NDFIP2 h–0.95 0.9984 1.0000 1.0000 0.2685 0.3216 0.3695

13 TGDS h–0.95 0.9835 0.9983 0.9999 0.2202 0.2661 0.3100

14 C14orf165 l–0.5 0.0001 0.0066 0.1247 -0.1503 -0.0683 0.0226

14 FOS l–0.5 0.0012 0.0187 0.1340 -0.1041 -0.0414 0.0246

14 C14orf174 h–0.5 0.9462 0.9882 0.9984 0.2094 0.2514 0.2926

14 DLK1 h–0.5 0.9429 0.9921 0.9994 0.2068 0.2611 0.3118

14 DLST h–0.5 0.9431 0.9890 0.9986 0.2075 0.2531 0.2954

14 GPHN h–0.5 0.9125 0.9801 0.9974 0.1924 0.2376 0.2848

14 KIAA0423 h–0.5 0.8789 0.9807 0.9985 0.1792 0.2385 0.2965

14 PSEN1 h–0.5 0.8692 0.9765 0.9980 0.1762 0.2332 0.2901

14 RAB2B h–0.5 0.9103 0.9801 0.9974 0.1917 0.2376 0.2840

14 SEC10L1 h–0.5 0.9293 0.9856 0.9983 0.1999 0.2461 0.2923

14 BRF1 h–0.95 0.9960 0.9996 1.0000 0.2777 0.3227 0.3675

14 EFS h–0.95 0.9841 0.9975 0.9997 0.2458 0.2863 0.3260

14 IL17E h–0.95 0.9890 0.9985 0.9999 0.2549 0.2970 0.3367

14 JPH4 h–0.95 0.9972 0.9999 1.0000 0.2839 0.3437 0.3976

14 MTA1 h–0.95 0.9992 1.0000 1.0000 0.3105 0.3607 0.4061

14 RBM23 h–0.95 0.9993 0.9999 1.0000 0.3142 0.3511 0.3843

14 SIX4 h–0.95 0.9705 0.9989 1.0000 0.2264 0.3029 0.3691
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

14 TDP1 h–0.95 0.9675 0.9959 0.9998 0.2245 0.2759 0.3272

15 DYX1C1 h–0.5 0.9427 0.9866 0.9978 0.2258 0.2705 0.3146

15 FURIN h–0.5 0.9098 0.9795 0.9971 0.2090 0.2584 0.3074

15 HERC2 h–0.5 0.9329 0.9915 0.9994 0.2197 0.2828 0.3389

15 ARPP-19 h–0.5 0.9645 0.9928 0.9990 0.2425 0.2869 0.3301

15 PDIA3 h–0.5 0.9641 0.9923 0.9989 0.2422 0.2854 0.3267

15 PEX11A h–0.5 0.9113 0.9877 0.9990 0.2085 0.2730 0.3310

15 SLC28A2 h–0.5 0.9498 0.9913 0.9991 0.2300 0.2826 0.3326

15 SNRPN h–0.5 0.9585 0.9948 0.9997 0.2368 0.2954 0.3536

15 TMEM87A h–0.5 0.9278 0.9893 0.9991 0.2169 0.2767 0.3334

15 ZNF690 h–0.5 0.9388 0.9757 0.9923 0.2251 0.2533 0.2824

15 ARIH1 h–0.95 0.9877 0.9989 0.9999 0.2728 0.3290 0.3828

15 CDAN1 h–0.95 0.9959 0.9996 1.0000 0.3016 0.3500 0.3959

15 DUOX2 h–0.95 1.0000 1.0000 1.0000 0.3899 0.4480 0.4977

15 FRMD5 h–0.95 0.9892 0.9988 0.9999 0.2784 0.3275 0.3731

15 NIP h–0.95 0.9729 0.9973 0.9999 0.2507 0.3107 0.3657

15 RBPMS2 h–0.95 0.9911 0.9989 0.9999 0.2832 0.3304 0.3761

15 SLC24A5 h–0.95 0.9757 0.9959 0.9996 0.2545 0.3008 0.3466

15 SPATA5L1 h–0.95 0.9700 0.9995 1.0000 0.2462 0.3471 0.4295

15 TP53BP1 h–0.95 0.9939 0.9992 0.9999 0.2933 0.3369 0.3800

15 TRIP4 h–0.95 0.9866 0.9987 0.9999 0.2710 0.3257 0.3788

16 HAS3 l–0.5 0.0011 0.0091 0.0560 -0.1321 -0.0778 -0.0154

16 ADAT1 h–0.5 0.9233 0.9847 0.9983 0.2271 0.2832 0.3398

16 ARHGAP17 h–0.5 0.8884 0.9775 0.9973 0.2099 0.2710 0.3289

16 C16orf34 h–0.5 0.8907 0.9787 0.9975 0.2115 0.2726 0.3301

16 CCL22 h–0.5 0.8749 0.9819 0.9985 0.2047 0.2782 0.3424

16 FLJ20581 h–0.5 0.9630 0.9931 0.9992 0.2543 0.3059 0.3564

16 LONPL h–0.5 0.9167 0.9857 0.9984 0.2237 0.2851 0.3405

16 LRRC36 h–0.5 0.9125 0.9859 0.9987 0.2214 0.2854 0.3454

Continued on next page



Z. Gompert and C. A. Buerkle 29 SI

TABLE S5 – continued from previous page

Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

16 MGC33367 h–0.5 0.9190 0.9803 0.9968 0.2247 0.2753 0.3238

16 MPFL h–0.5 0.9211 0.9761 0.9947 0.2263 0.2692 0.3106

16 SPIN1 h–0.5 0.9085 0.9892 0.9994 0.2188 0.2934 0.3623

16 TRAF7 h–0.5 0.8984 0.9771 0.9970 0.2147 0.2706 0.3267

16 ZNF23 h–0.5 0.9333 0.9962 0.9999 0.2322 0.3217 0.3969

16 ABCC12 h–0.95 0.9821 0.9981 0.9999 0.2796 0.3377 0.3919

16 CCL17 h–0.95 0.9877 0.9987 0.9999 0.2904 0.3469 0.3991

16 CORO7 h–0.95 0.9854 0.9986 0.9999 0.2849 0.3454 0.4005

16 CREBBP h–0.95 0.9904 0.9995 1.0000 0.2973 0.3667 0.4290

16 GABARAPL2 h–0.95 0.9817 0.9983 0.9999 0.2788 0.3404 0.3962

16 GLIS2 h–0.95 0.9931 0.9992 0.9999 0.3074 0.3586 0.4062

16 PLEKHG4 h–0.95 0.9993 1.0000 1.0000 0.3621 0.4125 0.4598

16 POLR3E h–0.95 0.9665 0.9977 0.9999 0.2579 0.3339 0.4015

16 SLC9A5 h–0.95 0.9974 0.9999 1.0000 0.3318 0.3985 0.4603

17 TUSC5 l–0.5 0.0047 0.0207 0.0685 -0.0761 -0.0376 0.0015

17 ADORA2B h–0.5 0.9079 0.9800 0.9978 0.2013 0.2512 0.3036

17 CASC3 h–0.5 0.9093 0.9876 0.9991 0.2019 0.2643 0.3230

17 CD300LF h–0.5 0.9182 0.9817 0.9975 0.2062 0.2535 0.3021

17 CDR2L h–0.5 0.9264 0.9908 0.9994 0.2094 0.2717 0.3298

17 DDX5 h–0.5 0.8575 0.9949 1.0000 0.1829 0.2859 0.3739

17 ERN1 h–0.5 0.9634 0.9917 0.9988 0.2343 0.2743 0.3163

17 ET h–0.5 0.9080 0.9885 0.9993 0.2016 0.2662 0.3271

17 GRB2 h–0.5 0.9599 0.9926 0.9992 0.2309 0.2771 0.3224

17 KIAA1618 h–0.5 0.9183 0.9776 0.9960 0.2066 0.2480 0.2901

17 NDEL1 h–0.5 0.8524 0.9774 0.9984 0.1820 0.2477 0.3106

17 NLGN2 h–0.5 0.9421 0.9899 0.9989 0.2189 0.2693 0.3183

17 RSAD1 h–0.5 0.8919 0.9862 0.9990 0.1947 0.2614 0.3193

17 SCARF1 h–0.5 0.9176 0.9853 0.9986 0.2056 0.2597 0.3129

17 TTC25 h–0.5 0.8478 0.9839 0.9992 0.1797 0.2571 0.3250
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

17 ZNF232 h–0.5 0.9295 0.9856 0.9983 0.2115 0.2604 0.3080

17 AATF h–0.95 0.9977 0.9998 1.0000 0.3051 0.3484 0.3962

17 C17orf64 h–0.95 0.9999 1.0000 1.0000 0.3710 0.4266 0.4791

17 CENTA2 h–0.95 0.9763 0.9973 0.9999 0.2473 0.3002 0.3529

17 CSNK1D h–0.95 0.9919 0.9995 1.0000 0.2754 0.3355 0.3891

17 DERL2 h–0.95 0.9941 0.9995 1.0000 0.2832 0.3350 0.3831

17 G6PC h–0.95 0.9675 0.9953 0.9996 0.2367 0.2881 0.3382

17 GNA13 h–0.95 0.9927 0.9995 1.0000 0.2782 0.3348 0.3885

17 ITGAE h–0.95 0.9968 0.9999 1.0000 0.2965 0.3706 0.4349

17 PRPF8 h–0.95 0.9816 0.9978 0.9999 0.2539 0.3047 0.3557

17 TTC19 h–0.95 0.9934 0.9996 1.0000 0.2813 0.3379 0.3916

17 USP32 h–0.95 0.9955 0.9999 1.0000 0.2885 0.3654 0.4355

17 WDR68 h–0.95 0.9936 0.9996 1.0000 0.2810 0.3392 0.3897

18 ANKRD30B l–0.5 0.0043 0.0219 0.0782 -0.0497 -0.0194 0.0130

18 C18orf10 l–0.5 0.0001 0.0031 0.0419 -0.1105 -0.0594 -0.0030

18 SERPINB12 l–0.5 0.0008 0.0138 0.1152 -0.0809 -0.0295 0.0253

18 GATA6 h–0.5 0.9591 0.9941 0.9996 0.1882 0.2291 0.2702

18 GNAL h–0.5 0.8948 0.9777 0.9970 0.1617 0.2019 0.2391

18 KIAA1328 h–0.5 0.9065 0.9869 0.9992 0.1653 0.2128 0.2610

18 ME2 h–0.5 0.8918 0.9802 0.9983 0.1593 0.2045 0.2502

18 KIAA1772 h–0.95 0.9898 0.9997 1.0000 0.2174 0.2765 0.3330

18 PSMA8 h–0.95 0.9796 0.9980 0.9999 0.2043 0.2484 0.2909

18 RTTN h–0.95 0.9898 0.9995 1.0000 0.2183 0.2688 0.3188

18 TXNDC10 h–0.95 0.9982 1.0000 1.0000 0.2497 0.3032 0.3559

19 FLJ23447 l–0.5 0.0005 0.0130 0.1581 -0.1151 -0.0449 0.0347

19 MYBPC2 l–0.5 0.0073 0.0239 0.0674 -0.0575 -0.0288 0.0017

19 SFRS16 l–0.5 0.0050 0.0195 0.0612 -0.0651 -0.0343 -0.0013

19 ZNF599 l–0.5 0.0018 0.0110 0.0486 -0.0873 -0.0490 -0.0082

19 BPY2IP1 h–0.5 0.9530 0.9955 0.9998 0.2065 0.2650 0.3216
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

19 C19orf25 h–0.5 0.8690 0.9769 0.9980 0.1713 0.2264 0.2813

19 CBLC h–0.5 0.9506 0.9935 0.9995 0.2049 0.2568 0.3073

19 DDX49 h–0.5 0.8839 0.9773 0.9973 0.1760 0.2269 0.2747

19 EEF2 h–0.5 0.8921 0.9756 0.9969 0.1795 0.2249 0.2717

19 EMR1 h–0.5 0.9506 0.9897 0.9986 0.2059 0.2463 0.2866

19 EPN1 h–0.5 0.9660 0.9949 0.9996 0.2165 0.2622 0.3069

19 FCAR h–0.5 0.8873 0.9835 0.9987 0.1772 0.2351 0.2895

19 GTF2F1 h–0.5 0.9585 0.9937 0.9994 0.2102 0.2578 0.3025

19 LIM2 h–0.5 0.9221 0.9916 0.9996 0.1906 0.2511 0.3098

19 LOC115098 h–0.5 0.9420 0.9908 0.9992 0.2004 0.2493 0.2969

19 LOC126208 h–0.5 0.9280 0.9912 0.9994 0.1930 0.2501 0.3027

19 MAP4K1 h–0.5 0.9053 0.9799 0.9973 0.1840 0.2300 0.2741

19 MGC11271 h–0.5 0.9626 0.9926 0.9992 0.2137 0.2541 0.2957

19 PGPEP1 h–0.5 0.9147 0.9859 0.9988 0.1873 0.2390 0.2894

19 PIAS4 h–0.5 0.9618 0.9946 0.9996 0.2131 0.2611 0.3074

19 PPP1R15A h–0.5 0.9009 0.9758 0.9963 0.1824 0.2253 0.2681

19 PRKCSH h–0.5 0.8978 0.9827 0.9984 0.1808 0.2339 0.2852

19 RASGRP4 h–0.5 0.9242 0.9823 0.9972 0.1918 0.2332 0.2741

19 TNPO2 h–0.5 0.9010 0.9833 0.9986 0.1820 0.2346 0.2871

19 TYROBP h–0.5 0.6729 0.9752 0.9994 0.1284 0.2245 0.3048

19 ZNF444 h–0.5 0.9335 0.9857 0.9980 0.1960 0.2388 0.2799

19 ZNF560 h–0.5 0.9269 0.9905 0.9994 0.1925 0.2485 0.3039

19 ZNF653 h–0.5 0.9179 0.9932 0.9998 0.1884 0.2560 0.3192

19 ARHGEF1 h–0.95 0.9832 0.9990 1.0000 0.2348 0.2938 0.3495

19 CDC34 h–0.95 0.9784 0.9961 0.9995 0.2290 0.2677 0.3053

19 CNN1 h–0.95 0.9996 1.0000 1.0000 0.3092 0.3651 0.4170

19 FKBP8 h–0.95 0.9974 1.0000 1.0000 0.2755 0.3567 0.4256

19 LOC112703 h–0.95 0.9694 0.9975 0.9999 0.2187 0.2771 0.3310

19 PSMC4 h–0.95 0.9700 0.9961 0.9997 0.2196 0.2678 0.3142

Continued on next page
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

19 SAMD4B h–0.95 0.9939 0.9998 1.0000 0.2580 0.3197 0.3779

19 ZNF440L h–0.95 0.9952 0.9998 1.0000 0.2639 0.3204 0.3741

19 ZNF93 h–0.95 0.9660 0.9985 1.0000 0.2155 0.2869 0.3506

19 ZNRF4 h–0.95 0.9748 0.9983 0.9999 0.2243 0.2847 0.3394

20 BCAS4 h–0.5 0.9511 0.9871 0.9982 0.2194 0.2588 0.3027

20 CST9 h–0.5 0.9204 0.9826 0.9976 0.2023 0.2507 0.2971

20 DEFB123 h–0.5 0.9249 0.9947 0.9999 0.2038 0.2810 0.3526

20 FLJ33706 h–0.5 0.9489 0.9961 0.9999 0.2175 0.2880 0.3500

20 PDYN h–0.5 0.9562 0.9901 0.9985 0.2238 0.2653 0.3060

20 RNPC1 h–0.5 0.9103 0.9812 0.9974 0.1979 0.2481 0.2950

20 STK35 h–0.5 0.9651 0.9938 0.9993 0.2313 0.2767 0.3207

20 AHCY h–0.95 0.9995 1.0000 1.0000 0.3291 0.4079 0.4767

20 BCL2L1 h–0.95 0.9709 0.9941 0.9992 0.2373 0.2781 0.3197

20 C20orf4 h–0.95 0.9998 1.0000 1.0000 0.3469 0.4151 0.4748

20 CBLN4 h–0.95 0.9986 0.9999 1.0000 0.3127 0.3579 0.3995

20 HM13 h–0.95 0.9999 1.0000 1.0000 0.3653 0.4175 0.4648

20 PSMA7 h–0.95 0.9946 0.9994 1.0000 0.2818 0.3277 0.3707

20 SRMS h–0.95 0.9688 0.9952 0.9996 0.2337 0.2834 0.3308

20 TPX2 h–0.95 0.9697 0.9956 0.9997 0.2356 0.2848 0.3349

21 BRWD1 l–0.5 0.0016 0.0211 0.1346 -0.0542 -0.0123 0.0316

21 CHODL h–0.5 0.7998 0.9759 0.9990 0.1226 0.1753 0.2261

21 NDUFV3 h–0.5 0.9511 0.9941 0.9997 0.1615 0.2003 0.2384

21 USP16 h–0.5 0.8572 0.9769 0.9984 0.1334 0.1761 0.2187

21 C21orf33 h–0.95 0.9733 0.9976 0.9999 0.1743 0.2142 0.2534

21 DSCR8 h–0.95 0.9715 0.9981 1.0000 0.1715 0.2174 0.2606

21 MRAP h–0.95 0.9902 0.9994 1.0000 0.1914 0.2332 0.2736

22 PDGFB l–0.5 0.0049 0.0232 0.0820 -0.0823 -0.0425 -0.0000

22 ADRBK2 h–0.5 0.9624 0.9939 0.9994 0.2303 0.2791 0.3269

22 CARD10 h–0.5 0.9206 0.9815 0.9969 0.2042 0.2501 0.2928
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Chrom. Gene Class. Quant. Quant. Quant. φST φST φST

(lb) (median) (ub) (lb) (median) (ub)

22 FAM83F h–0.5 0.8972 0.9915 0.9997 0.1924 0.2711 0.3406

22 LIF h–0.5 0.7590 0.9832 0.9995 0.1523 0.2531 0.3337

22 ZNF278 h–0.5 0.9363 0.9899 0.9992 0.2118 0.2670 0.3202

22 FLJ10945 h–0.95 0.9759 0.9956 0.9995 0.2442 0.2871 0.3283

22 FLJ20699 h–0.95 0.9802 0.9994 1.0000 0.2476 0.3275 0.3993

22 FLJ27365 h–0.95 0.9739 0.9937 0.9990 0.2419 0.2787 0.3157

22 MMP11 h–0.95 0.9848 0.9986 0.9999 0.2565 0.3119 0.3625

22 PKDREJ h–0.95 1.0000 1.0000 1.0000 0.3964 0.4547 0.5044

22 ZBED4 h–0.95 0.9974 0.9998 1.0000 0.3005 0.3498 0.3996

X CRSP2 h–0.5 0.9387 0.9837 0.9971 0.2888 0.3411 0.3935

X EDA2R h–0.5 0.9130 0.9907 0.9996 0.2697 0.3607 0.4439

X FLJ20298 h–0.5 0.8873 0.9848 0.9990 0.2563 0.3435 0.4233

X HEPH h–0.5 0.9445 0.9910 0.9991 0.2930 0.3618 0.4247

X IGBP1 h–0.5 0.9262 0.9779 0.9951 0.2806 0.3297 0.3778

X ITIH5L h–0.5 0.9379 0.9912 0.9993 0.2863 0.3625 0.4313

X LOC158957 h–0.5 0.9322 0.9817 0.9967 0.2833 0.3369 0.3886

X NRK h–0.5 0.8801 0.9806 0.9981 0.2524 0.3348 0.4065

X PRRG1 h–0.5 0.9661 0.9961 0.9998 0.3144 0.3877 0.4564

X AR h–0.95 0.9983 0.9998 1.0000 0.4152 0.4645 0.5098

X GNL3L h–0.95 0.9762 0.9980 0.9999 0.3276 0.4068 0.4786

X GPKOW h–0.95 0.9983 1.0000 1.0000 0.4117 0.4910 0.5563

X MSN h–0.95 0.9834 0.9985 0.9999 0.3410 0.4138 0.4804

X PHKA1 h–0.95 0.9713 0.9954 0.9995 0.3207 0.3828 0.4396

X RPL10 h–0.95 0.9726 0.9957 0.9996 0.3227 0.3850 0.4414

X TSC22D3 h–0.95 0.9724 0.9968 0.9998 0.3217 0.3930 0.4590


