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Decades of biochemical research have identified most of the enzymes that catalyze metabolic
reactions in the yeast Saccharomyces cerevisiae. The adaptation of metabolism to changing
nutritional conditions, in contrast, is much less well understood. As an important stepping stone
toward such understanding, we exploit the power of proteomics assays based on selected reaction
monitoring (SRM) mass spectrometry to quantify abundance changes of the 228 proteins that
constitute the central carbon and amino-acid metabolic network in the yeast Saccharomyces
cerevisiae, at five different metabolic steady states. Overall, 90% of the targeted proteins, including
families of isoenzymes, were consistently detected and quantified in each sample, generating a
proteomic data set that represents a nutritionally perturbed biological system at high reproduci-
bility. The data set is near comprehensive because we detect 95-99 % of all proteins that are required
under a given condition. Interpreted through flux balance modeling, the data indicate that
S. cerevisiae retains proteins not necessarily used in a particular environment. Further, the data
suggest differential functionality for several metabolic isoenzymes.
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Introduction

Systems biology aims at the comprehensive description of
biological systems and ultimately at predicting the behavior
of the system from the dynamic and quantitative interactions
of its constituting components (Kitano, 2002b; Sauer et al,
2007). Among the cellular systems, metabolism is unique
because the topology of the network is almost completely
known (Duarte et al, 2007; Feist et al, 2009). Specifically, most
of the reactions, the catalyzing enzymes, the enzyme-encoding
genes and the converted metabolites are known. While we can
also monitor the integrated network operation in the form of
metabolite fluxes (Sauer, 2006), we do not yet understand how
the behavior of the system emerges from the interaction of the
system’s components. To establish this link, mathematical
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models are needed (Kitano, 2002a; Aldridge et al, 2006),
whose development in turn requires computational tools
(Heinemann and Sauer, 2010) and quantitative, comprehen-
sive data on the response of network components to external
and internal stimuli (Sauer et al, 2007).

A genome-scale stoichiometric model of the metabolic
reaction network in yeast (Kuepfer et al, 2005) that was
recently updated through a community consensus (Herrgard
et al, 2008) is arguably one of the topologically most complete
biological systems. In this model, 177 stoichiometrically
distinct metabolic reactions—catalyzed by 210 enzymes,
including isoenzymes—represent central carbon and amino-
acid metabolism. A particular feature of this metabolic system
is the large number of isoenzymes; i.e., distinct proteins that
catalyze identical reactions and often exhibit a high degree of
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amino-acid sequence identity (e.g., see Wilson, 2003). While
the existence of isoenzymes has been known for a long time,
the reasons that might explain their preservation in the
genome have been much less clear. Suggested reasons include
redundancy as a means to buffer against mutations, differ-
ential regulation, gene dosage, facilitation of evolutionary
innovation and functional diversification (Kuepfer et al, 2005;
Ihmels et al, 2007; Wagner, 2008). For the metabolic network
considered here, 51 out of 177 reactions can be catalyzed by
more than one isoenzyme, with up to seven isoenzymes
catalyzing one reaction and up to 99.5% amino-acid sequence
identity between them. Furthermore, 31 proteins involved in 11
multi-subunit protein complexes also show up to 95% amino-
acid sequence identity. Because proteins with a high degree of
sequence similarity generate similar peptides upon tryptic
digestion, their distinction by mass spectrometric analysis
poses a particular analytical challenge. The quantification of
the comprehensive set of enzymes and isoenzymes represent-
ing the central carbon and amino-acid metabolism in yeast,
under different metabolic states, would provide a unique
opportunity to observe the change of the system as a whole
and generate key information for the modeling of this
system (Kotte and Heinemann, 2009; Oberhardt et al, 2009;
Heinemann and Sauer, 2010).

In spite of significant advances in the standard shotgun
proteomic technology, the consistent and reproducible detec-
tion and quantification of proteins across different complex
samples remain challenging (Bell et al, 2009). This is due to the
fact that this mass spectrometric method contains stochastic
elements, particularly in the selection of precursor ions for
collision-activated dissociation, that are difficult to control
even if extraordinary precautions are taken to control
experimental variability (Tabb et al, 2010). This problem
becomes particularly apparent when predetermined sets of
proteins of interest need to be measured, and is compounded
if they share extensive sequence similarity, such as the
isoenzymes in the metabolic sub-proteome.

In this study, we therefore chose to apply a targeted
proteomics approach based on selected reaction monitoring
(SRM), whereby the proteotypic peptides (PTPs) for each
protein on the target list are selectively detected and quantified
(Baty and Robinson, 1977; Anderson and Hunter, 2006; Lange
et al, 2008b). The pivotal element of this technique is the a
priori development of highly specific mass spectrometric
assays for each protein and the use of these assays for the
detection and quantification of the proteins on a target list in
multiple biological samples. We have recently shown that SRM
assays can be generated at high throughput using synthetic
peptide libraries (Picotti et al, 2010) and that proteins spanning
the whole dynamic range of abundance can be detected by the
technique in minimally fractionated yeast whole-proteome
digests (Picotti et al, 2009). The technique is also highly
multiplexed, highly reproducible (Addona et al, 2009) and
quantitatively accurate, attributes that are critical for the
generation of consistent, comprehensive and quantitative data
sets from multiple samples (Stahl-Zeng et al, 2007).

In this study, we demonstrate comprehensive analysis of the
210 enzymes (comprising 228 proteins) that constitute our
model-defined sub-proteome and the quantification of this
protein set under five metabolic states. We thereby extend
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previous proteomics investigations of yeast metabolism which
focused primarily on the comparison between aerobic and
anaerobic growth (Daran-Lapujade et al, 2007; de Groot et al,
2007) or different nutrient limitations (Gutteridge et al, 2010)
in chemostat cultures. Our five conditions were chosen to
cause major differences in metabolic fluxes, particularly
through the here studied metabolic sub-network. In combina-
tion with model-derived predictions, we used our comprehen-
sive data set to address two key questions. First, are enzymes
absent or only downregulated under conditions where they are
not necessary for metabolic operation? And, second, what is
the role of the large number of isoenzymes in the sub-network
studied?

Results

Selection of the system components from a yeast
metabolic network model

On the basis of a genome-scale stoichiometric model of the
yeast metabolic network (Kuepfer et al, 2005; Herrgard et al,
2008), we defined the components of the biological sub-system
under study. It consists of the central carbon and amino-acid
metabolism in the yeast S. cerevisiae and includes all reactions
of intermediary carbon, nitrogen and sulfur metabolism as
well as anabolism and catabolism of amino acids, trehalose
and glycogen (Figure 1A, Supplementary Table 1). This
network is well characterized and there is general agreement
on its topology and components (Herrgdrd et al, 2008). The
230 genes of this network encode 228 different proteins, which
assemble into 210 enzymes that catalyze the 177 stoichiome-
trically distinct biochemical reactions (Figure 1C). The
presence of isoenzymes, promiscuous enzymes and protein
complexes in the protein set precluded a one-to-one mapping
of proteins to reactions due to the more complex relationships
schematically shown in Figure 1B. Only five reactions in the
chosen network have not yet been associated with an open
reading frame. The protein abundance in this network ranges
from more than a million to less than a hundred copies per cell
(Figure 1D), as determined by an antibody-based quantifica-
tion approach in a different study (Ghaemmaghami et al,
2003). The system also included several proteins for which
the cellular abundance could not be determined in the
previous study.

Selection of perturbing conditions

To elucidate how this network of proteins responds to
environmental challenges, we chose five nutritional condi-
tions resulting in maximal difference in magnitude and
direction of metabolic fluxes through this network. The
reference condition was aerobic growth on high glucose as
the sole carbon and energy source, and ammonia as the sole
nitrogen source. The specific nutritional conditions and their
phenotypic characteristics are summarized in Table 1. The
nutritional perturbations concerned the carbon source (galac-
tose or ethanol instead of glucose), oxygen availability
(anaerobic instead of aerobic) or the nitrogen source (complex
medium consisting of an amino-acid mix lacking carbohy-
drates, instead of ammonium). Reversal of metabolic flux was
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Figure 1  The targeted network of central carbon and amino-acid metabolism of S. cerevisiae. (A) Schematic representation of the network. Reactions indicated with
red arrows can be catalyzed by isoenzymes and the black dots indicate the number of isoenzymes (Supplementary Table 1). Bold, central carbon metabolism. (B) Four
classes of gene—protein-reaction relations in the metabolic network. (C) Characteristic numbers for the considered network. (D) Distribution of cellular abundances for
the proteins in central metabolism of S. cerevisiae, as derived from antibody-based expression data (Ghaemmaghami et al, 2003). The left most bar (‘no abundance
measured’) represents 35 proteins whose abundance could not be determined in that study. ND, not detected in this study.

expected for (i) glycolysis and gluconeogenesis in glucose-/ grown versus all other cultures. We observed substrate
galactose-grown versus ethanol-grown cells, and (ii) for consumption rates that differed several fold in the selected
amino-acid catabolism and anabolism in complex medium- culture conditions, with the highest overall rate of metabolism
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Table I Specific growth, consumption and production rates of substrates and products during exponential growth

Condition Growth  Glucose consumption Galactose consumption Ethanol production Acetate production Glycerol production

rate (h™H) rate (mmol rate (mmol rate (mmol (gram rate (mmol rate (mmol

(g biomass dry (g biomass dry biomass dry (g biomass dry (g biomass dry
weighth)™ D] weighth)™ h weighth)™ h weighth)™ h weighth)™ D)

Glucose grown 0.30+0.01 15.1+1.4 NA 29.5°% 0.4%0.1 1.0+0.3
Galactose grown 0.2510.01 NA 7.6120.4 11.0° 0.6x0.1 0.1+£0.1
Anaerobically 0.25+0.03 16.0+2.2 NA 27.1° 0.1+£0.0 1.9+0.6
glucose grown
Ethanol grown 0.07£0.01 NA NA —4.2+0.9? <0.01 <0.002
Grown on complex 0.17+0.05 NA NA <3.1 <0.08 <0.03

medium

NA, not applicable.

“Because of evaporation of ethanol from the broth under the experimental conditions, these ethanol production rates for glucose, galactose and anaerobically grown
conditions were estimated from mass balance calculations using the measured values as lower boundaries (See Supplementary Table 2). The ethanol consumption rate
for the ethanol-grown condition was corrected for evaporation by determining the evaporation rate of ethanol in a separate cell-free experiment.
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Figure 2 Comparison of protein necessity and presence. Protein necessity
under each of the five tested conditions was determined by flux balance analysis
through minimization of the Euclidean norm of intracellular fluxes on the basis of
the physiological data (Table ). The numbers on the bars indicate amounts of
proteins in each class.

on glucose and the lowest on ethanol and in complex medium
(Table I). Thus, by the selected conditions the metabolic fluxes
through the network must also change, presumably leading to
different abundances and presence of proteins.

To predict condition-specific enzyme necessity in this
system, we used the computational framework of flux balance
analysis (FBA; Schellenberger and Palsson, 2009). On the basis
of the determined physiological data (Table I), we identified
the most efficient, fully connected network of biochemical
reactions by minimizing the Euclidean norm of fluxes
(Supplementary Table 2). From these FBA solutions, we
determined for each of the targeted proteins its condition-
dependent necessity to attain the determined physiology, thus
obtaining a measure for a protein’s expected presence under
each condition. Depending on the condition, 121-133 of the
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targeted proteins were deemed necessary to establish a
network that is sufficient to generate biomass (Figure 2,
Supplementary Table 3). The notable exception was the
complex medium culture, in which only 68 of the targeted
proteins were deemed necessary. This model prediction is
intuitively logical because biosynthetic pathways for amino
acids are not required in the presence of these amino acids.
This prediction is consistent with existing genetic evidence, for
instance, for the leucine synthesis pathway in S. cerevisiae
upon supplementation of leucine (Chin et al, 2008) or for the
downregulation of all synthesis pathways upon supplementa-
tion of amino acids (Zaslaver et al, 2004).

Protein measurements at different metabolic
states

To quantitatively monitor the set of proteins that constitute the
selected sub-proteome, we developed protein-specific SRM
assays for each of the 228 target proteins. For each protein, we
selected a set of representative PTPs and for each PTP we
developed an SRM assay consisting of 3-4 validated precursor-
to-fragment ion transitions. We measured the protein species
in a total proteome digest background and determined their
abundance relative to a common, stable isotope-labeled
reference sample. The selection of targeted peptides for highly
sequence similar isoenzymes is illustrated in Figure 3. Tryptic
peptides were selected such that they were detectable by
electrospray mass spectrometry, were unique for the proteome
and contained sufficient sequence divergence to distinguish
between the targeted proteins. The only exception was the
isoenzymes Errl, Err2 and Err3, which show 100 % nucleic and
amino-acid sequence identity between ERRI and ERR2 and
99% nucleic acid sequence identity (resulting in two differing
amino acids) between ERR3 and ERRI/ERR2. As the two
peptides distinguishing between ERR3 and ERR1/ERR2 could
not be analyzed by liquid chromatography coupled-mass
spectrometry, we used non-unique peptides to monitor the
cumulative amount of these three proteins. For all other
proteins we measured only unique peptides, between two and
ten per protein for about two-thirds of the sub-proteome.
Several proteins, e.g., isoenzymes with very large sequence
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Figure 3 Example of proteolytic pattern complexity for isoenzymes. Tryptic peptides for three isoenzymes of glyceraldehyde-3-phosphate dehydrogenase are shown
as connected circles. Red circles indicate peptides shared by at least two of the three isoenzymes. Green circles indicate peptides unique to one isoenzyme. Numbers
indicate the number of observations of the peptide in the PeptideAtlas database (S. cerevisiae build, 2009).

overlap (up to 99.5% sequence identity), could be specifically
quantified only via one or few distinguishing peptides. The
distribution of peptides targeted for each protein is shown in
Supplementary Figure 3. The complete set of targeted proteins,
the selected PTPs and their respective SRM assays are
available in Supplementary Table 4 or via the SRMAtlas
interface (www.srmatlas.org; Picotti et al, 2008).

The 228 developed SRM assays were then applied to detect
and quantify the proteins in trypsinized extracts of S. cerevisiae
cells, harvested during mid-exponential growth under each of
the five growth conditions from three independent replicate
experiments. A total of ~35000 SRM traces were recorded,
and 205 of the 228 targeted proteins (90%) were detected
under at least one condition. Overall, 199 proteins were
detected under all five conditions (Supplementary Table 3).
The 23 proteins that were not detected under any condition are
listed in Supplementary Table 5, including plausible explana-
tions for the failure of their detection. Mostly, these undetected
proteins were not necessary under any of the tested metabolic
conditions; hence, not expected to be present. Alternatively,
potential technical reasons for missing these proteins include
low abundance of the proteins that lack PTPs with good MS
properties or whose PTPs are highly modified or membrane
localization. Variations of the protocols applied here, e.g., the
use of proteases other than trypsin, testing a higher number of
PTPs or adapting the protein extraction procedure to detect
membrane or cell wall proteins might help covering the missed
proteins. A small number of proteins were not detected under
four (Gall, Gal7, Gall0 and Aro9), three (Agx1) or one (Met3)
condition(s). The inability to detect these six proteins under
the respective condition was always due to a decrease in the
signal of the best-responding peptide below the noise level,
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indicating reduction of the abundance of the respective
protein to a very low level or disappearance under that
particular condition. For these six proteins, the pattern of
the observed abundance reduction was consistent with their
reported functions in the Saccharomyces Genome Database
(www.yeastgenome.org). The 205 detected proteins covered
the full range of previously reported cellular abundances
(Ghaemmaghami et al, 2003), without a bias against low-
abundant proteins, and included also proteins whose abun-
dance could not be measured in a previous study (Ghaemma-
ghami et al, 2003). The lack of an abundance bias in this data
set is further supported by the even spread of the 23 undetected
proteins over all abundance regimes (Figure 1D).
Condition-dependent changes in protein abundance were
expressed as log, of the ratio of a protein’s abundance at a
given condition relative to the aerobic glucose-grown condi-
tion (see complete quantitative data set in Supplementary
Table 6 and Supplementary Figure 1, including standard errors
and P-values for significance of the abundance change).
Globally, the range of protein abundance changes with respect
to the glucose-grown culture was drastically broader for the
complex medium and ethanol-grown yeast (27° to 2°- and 273
to 28-fold change, respectively) than for the anaerobic and
galactose-grown cells (272 to 2'- and 272 to 2-fold change,
respectively). For the galactose-grown condition, only the
three proteins involved in the galactose-assimilation pathway
(Gall, Gal7 and Gal10) showed large fold changes (up to 2'%,
see Supplementary Table 6), compared with the more
moderate abundance changes of the other target proteins.
The number of proteins that showed significant abundance
changes of at least twofold, either up or downregulated
(P-value <0.05, relative to glucose-grown cells), was 145, 96,
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46 and 39 for the complex medium, ethanol, galactose and
anaerobically grown cultures, respectively (Supplementary
Table 6 and Supplementary Figure 1). Overall, a large fraction
of proteins shows significant changes across the different
experiments, in agreement with our initial choice of conditions
that introduce drastically different modes of metabolic
operation.

Besides enzymes in the galactose-assimilation pathway,
which strongly increase abundance upon growth on galactose,
the largest measurable increases in protein abundance (> 2°-
fold) were observed for Acsl, Adh2, Icll, Idp2, Mdh2, Mls1,
Pckl and TKI2 on ethanol- or complex medium (Supplemen-
tary Table 6 and Supplementary Figure 1). Most of these
proteins are gluconeogenic or glyoxylate shunt enzymes,
illustrating the importance of these two pathways under those
conditions. The largest identified abundance decreases (> 2*-
fold) were observed on complex medium for Arg3, Gdh1, His4,
Met10, Metl6, Met6 and Ser3, key enzymes of amino-acid
biosynthesis and sulfate assimilation, which are not required
in complex medium (Supplementary Table 6, and Supplemen-
tary Figure 1).

Presence of non-necessary proteins

On the basis of the FBA simulations, we expected to detect only
121-133 of the targeted proteins under the different conditions
if only proteins necessary for that condition would be present.
In contrast to these expectations, we detected the vast majority
of the 228 targeted proteins to be present under all conditions
(Figure 2, Supplementary Table 3). Only a small fraction of the
non-necessary proteins was indeed not detected. We conclude
from these data that in fact many more proteins are present—
at least at a basal level—than that are actually necessary for a
given condition. One potential explanation for the presence of
non-necessary enzymes is to enable the organism to maintain

growth and realize immediate basal metabolic fluxes even
upon a rapid change to new environmental conditions (Kotte
et al, 2010).

We next asked whether the abundances of non-necessary
proteins were lower under conditions where the respective
proteins were not necessary. To address this question, we first
defined whether a protein needs to change its status from
‘necessary’ to ‘non-necessary’ based on the FBA predictions
between the ten possible condition comparisons. In 614 cases,
a protein changed its status from ‘necessary’ in one condition
to ‘non-necessary’ in another. In about half of these cases (275
cases), the protein’s abundance did not change more than
twofold. In the other half (303 cases, 49%), a status change
from ‘necessary’ to ‘non-necessary’ was accompanied by an at
least twofold decrease in abundance. In the remaining 36
cases, protein abundance increased more than twofold,
despite a change from ‘necessary’ to ‘non-necessary’, which
would be a counterintuitive phenomenon. In the group of
proteins that did not need to change from ‘necessary’ to ‘non-
necessary’, the protein abundances changed more than
twofold in only 27% of a total of 1446 cases. This indicates
that changes in necessity status from ‘necessary’ to ‘non-
necessary’ were more frequently accompanied by large
protein abundance decreases.

Finally, we asked whether there is a relationship between
the abundance of a protein and the predicted metabolic flux
through the reaction catalyzed by it. For this purpose, we
plotted the normalized changes of the FBA predicted fluxes
(Supplementary Table 2) as a function of the change in protein
abundance between the condition comparisons (Figure 4).
Most flux changes did not require a corresponding change in
protein abundance. Changing the flux from zero in one
condition to some value in another (normalized flux change
of 2 or —2), however, required protein abundance changes in
most cases. This on/off flux control by protein abundance was
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Figure 4 Correlation of FBA-calculated normalized flux changes with protein abundance changes for the four condition comparisons. Normalized flux changes were
calculated using the following formula: (flux A—flux B)/((flux A + flux B)/2), where ‘flux A’ is the flux calculated for condition A, and ‘flux B’ the flux for the same reaction
under the reference condition. Data are presented for the comparison of the galactose- (green), anaerobically (blue), ethanol- (red) and complex-grown condition (black)
with the aerobic glucose-grown condition. The maximum normalized flux change of 2 (or —2) represents a change from zero in one condition to any magnitude. Fluxes
involving promiscuous enzymes, isoenzymes and protein complexes were excluded from the analysis.
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the most pronounced for the comparison of growth on
complex versus glucose medium, where essentially all
biosynthetic amino-acid fluxes are reduced to zero and most
of the catalyzing enzymes are significantly less abundant. This
implies that newly required fluxes are predominantly regu-
lated by altered protein abundance while flux modulations
are not.

Analysis of isoenzyme abundance patterns

Of the proteins that are not strictly necessary for growth under
a given condition, about 40 % were isoenzymes of presumably
redundant function. Hence, we asked whether the previously
proposed functional diversification (Thmels et al, 2004, 2007)
is reflected at the proteome level; i.e., whether isoenzymes
exhibit identical or distinct regulation patterns. The data set
generated in this study is ideal and unique to answer this
question because most isoenzymes in the defined network
were completely covered. We used hierarchical clustering
(Eisen et al, 1998) to generate patterns of abundance change
for all detected isoenzymes over all conditions. Specifically, we
relate isoenzyme abundance pattern to the major functional
clusters of gluconeogenesis and glyoxylate shunt (Figure 5,
block ‘a’), tricarboxylic acid cycle (Figure 5, block ‘b’),
and glycolysis and pentose phosphate pathway (Figure 5,
block ‘¢’).

For central carbon metabolism, the only isoenzymes that
clustered in the same branch next to each other were Pdc1 and
Pdc6. A high degree of functional similarity was seen for the
Gpm1/Gpm3 and for the Gnd1/Gnd2 families of isoenzymes
because the members of each family clustered in proximate
branches. For four families with more than two isoenzymes,
always two members clustered close to each other but other
members did not (Idp1/Idp3 but not Idp2, Tdh2/Tdh3 but not
Tdh1, Eno2/Err, but not Enol and Adh3/Adh4, but not Adh1/
Adh2/Adh6; Figure 5). For all other families, all members
clustered in distant branches indicating functional diversifica-
tion. Of note, in comparison, subunits of protein complexes
preferably clustered in proximate branches with the exception
of Sdh4 (Figure 5, green open symbols). Sdh4 is the membrane
anchor protein of the succinate dehydrogenase protein
complex (Oyedotun and Lemire, 2004) that includes also
Sdhl, Sdh2 and Sdh3. The divergent pattern of Sdh4,
compared with the other members of the complex, might be
a protocol artifact related to sub-optimal extraction of
membrane proteins. Although slightly less distinct than for
central carbon metabolism, similar observations of distant
and proximate clustering were made for isoenzymes and
protein complexes in amino-acid metabolism (Supplementary
Figure 2). These data, therefore, provide evidence for
functional divergence within most isoenzyme families.

Divergent isoenzyme functions

We next attempted to determine the different functions of
divergent isoenzymes. This analysis was based on the
hypothesis that similar functions should lead to similar protein
abundance patterns, therefore resulting in different patterns
for functionally divergent isoenzymes. The known pattern of
alcohol dehydrogenase isoenzymes Adhl and Adh2 provide a
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case supporting this hypothesis. In agreement with their
described function in the SGD database (www.yeastgenome.
org), we found that the major ethanol-consuming isoenzyme
(Adh2) clustered with the glyoxylate shunt and gluconeogen-
esis proteins, whereas the major ethanol-producing isoenzyme
(Adh1) clustered in the glycolytic branch (Figure 5). The
extension of this type of analysis to other isoenzyme families
indicated new cases of functional diversification.

The first reaction of glucose breakdown can be catalyzed by
three hexokinase isoenzymes. While Hxk2 clustered indeed in
the glycolytic branch, Glk1 clustered with the tricarboxylic
acid cycle proteins and Hxk1 clustered with a protein involved
in the synthesis of storage carbohydrates, Glc3 (Supplemen-
tary Figure 2), and several other members of the storage
pathway can be found in proximate branches (Gsy2, Ugpl,
Tsll, Tpsl and Tps2), supporting the notion that Hxkl is
related to storage carbohydrates (Figure 5). Indeed, both Glk1
and Hxkl have been speculated to direct glucose toward
glycogen storage rather than the regular glycolytic path
(Thmels et al, 2004), as is the case for Hxk2.

The non-oxidative part of the pentose phosphate pathway,
i.e., the transketolases Tkll and Tkl2 and the transaldolases
Tall and Ygr043c (recently renamed to Ngml (Hua et al,
2008)), where Ygr043c has so far been classified as a
transaldolase of unknown function, provide evidence for an
entirely novel functional differentiation between isoenzymes.
In our data set, Tkll and Tall cluster, as expected with the
pentose phosphate proteins in a glycolytic branch. Their
isoenzymes Tkl2 and Ygr043c, however, clustered with the
gluconeogenic proteins, indicating that their function is either
directly in gluconeogenic metabolism or possibly in the supply
of the pentose precursors for amino or nucleic acid synthesis
under conditions where their regular synthesis from glucose 6-
phosphate is difficult or insufficient.

Of the two isoenzymes for phospoglucomutase (Pgm1 and
Pgm2) that catalyze the interconversion of glucose 1-phos-
phate and glucose 6-phosphate, Pgm2 clustered with the
glycogen breakdown to glucose 1-phosphate enzymes Gphl
and Gdbl (Supplementary Figure 2). The Pgm1l isoenzyme
clustered far away with proteins for glycogen and trehalose
synthesis (Ugpl, Gsy2, Glc3, Tpsl, Tps2 and Tsl1). These
data suggest, therefore, that Pgm1 and Pgm2 have alternative
functions in synthesis and breakdown of glycogen, respec-
tively.

Finally, the isocitrate dehydrogenase isoforms Idp1 and Idp2
clustered with the glycolytic and gluconeogenic/glyoxylate
shunt proteins, respectively (Figure 5). As the cytosolic,
NADP-specific isoform Idp2 is not a part of the glyoxylate
shunt, our data suggest a gluconeogenic function in NADPH
formation, a redox cofactor required for biosynthesis (Minard
and McAlister-Henn, 2005). Idp2-based NADPH formation on
non-fermentable substrates is further supported by low
simulated fluxes for the oxidative pentose-phosphate pathway
(the second source for cytosolic NADPH) under gluconeogen-
esis (Supplementary Table 2) and by clustering of Ald6, the
third major source of cytosolic NADPH (Minard and McAlister-
Henn, 2005), far away from the gluconeogenic enzymes. This
conclusion is consistent with idp2 mutant data during growth
on acetate (Minard and McAlister-Henn, 2005). Overall, we
thus provide evidence for functional diversification of various
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Figure 5 Hierarchical clustering analysis of abundance changes in the proteins of central carbon metabolism. Pink boxes indicate branches containing mainly proteins
of ‘a’ gluconeogenesis and glyoxylate shunt; ‘b’ tricarboxylic acid cycle and ‘c’ glycolysis, ethanol formation and the pentose phosphate pathway. Isoenzyme families are
indicated by identical, closed, red symbols before the protein name; proteins engaged in a protein complex are indicated by identical, open, green symbols. The heat map
on the left indicates the direction and magnitude of the abundance changes for each listed protein.
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isoenzymes and for several cases the data presented here
suggest novel functional roles.

Discussion

In this study, we exploited the power of SRM-based targeted
proteomics to consistently and reproducibly detect and
quantify a target set of yeast metabolic proteins covering a
broad range of abundance levels across several samples and
experiments. From the 228 target protein set, selected from a
consensus stochiometric metabolic model for the central
carbon and amino-acid metabolism of S. cerevisiae, ~90%
were successfully identified in minimally one of the samples.
This substantially expands the coverage achieved by previous
proteomic studies of yeast metabolism. For example, 57, 58
and 55% of the here targeted metabolic proteome was covered
by de Groot et al (2007), Gutteridge et al (2010) and Kolkman
et al (2006), respectively and only up to 30% of isoenyzme
families could be quantitatively resolved (Kolkman et al, 2006;
de Groot et al, 2007; Gutteridge et al, 2010). To score the
comprehensiveness of our proteomics method, we used a
model-based approach to assess which proteins can be
expected to be present. On the basis of this analysis, the data
reported here are 95-99% comprehensive. Our inability to
detect up to 5% remaining proteins may be explained by other
factors, such as (i) low abundance and lack of PTPs with good
MS properties, (ii) occurrence of post-translational modifica-
tions that decrease or eliminate the signal of the corresponding
target tryptic peptide or (iii) loss of the protein during the
sample preparation steps (e.g., for cell wall or membrane
proteins). The detectable proteins were consistently measured
in unfractionated yeast proteome tryptic digests. This is in
agreement with our earlier demonstration that proteins
spanning the whole abundance range of the yeast proteome
can be detected by SRM (Picotti et al, 2009) and with the
high degree of data reproducibility generated by the SRM
technique demonstrated in a previous multi-center study
(Addona et al, 2009).

The applied method consistently quantified the target
protein set across 15 samples, including biological triplicates,
without the problem of missed data points. This number of
consistently analyzed samples and replicates constitutes an
improvement with respect to the lower reproducibility of data
generated by shotgun proteomic studies. In fact, in many
proteomic studies to date no replicate data sets were reported
and only small numbers of samples were analyzed. This is in
large part due to the significant effort and cost associated with
generating comprehensive and quantitative proteomic data,
especially where approaches based on in-depth fractionation
were used. Also, the SRM approach allowed here for the
quantitative discrimination of proteins with a high sequence
overlap, such as isoenzymes, allowing us to gain insight into
their functional diversification. Classical shotgun proteomic
measurements based on automated peptide sequencing would
be biased against the discrimination of isoenzymes, as their
shared peptides are more likely to be high abundant and
therefore preferentially detected. Overall, this study has
resulted in the largest to date SRM-based proteomic data set
(>200 proteins quantified across multiple conditions), with

© 2011 EMBO and Macmillan Publishers Limited

Quantitative analysis of yeast central metabolism
R Costenoble et a/

high comprehensiveness for the metabolic network under
study, challenged with a set of nutritional conditions that
imply radically different modes of metabolic operation. We
expect that this will be a useful blueprint for further developing
mathematical models of the yeast metabolism and a valuable
basis for follow-up studies on the function of target (meta-
bolic) proteins.

Despite their power in analyzing target proteins across
several samples and replicates, SRM approaches are in their
infancy and face still considerable technical challenges to their
high-throughput application. The first is the need for designing
optimal assays for each target protein. Recently, significant
advances have been realized to speed up and automate this
step and strategies based on unpurified synthetic peptides
allow for the fast and low-cost development of SRM assays for
essentially any protein or proteome of interest (Picotti et al,
2010). Another challenge is the analysis of SRM data,
which involves the detection and assignment of the relevant
peaks in the raw MS data. Here, this step was carried out
manually, using the most up to date and stringent confidence
criteria (Anderson and Hunter, 2006; Lange et al, 2008a;
Picotti et al, 2009; MacLean et al, 2010 see details in the
Materials and methods). However, manual peak assignment
remains tedious and does not allow attributing a false
discovery rate based on objective criteria to SRM-based
peptide identifications. To this direction, algorithms are
currently being developed to automate evaluation of SRM
peak matches and their statistical treatment (Reiter L et al, in
preparation). The last bottleneck is the number of target
proteins that can be concurrently analyzed in a single SRM
run. This is at present significantly lower than that of proteins
identified in a shotgun proteomics experiment on a high-
performance MS (de Godoy et al, 2008) and efforts are
currently underway by the MS vendors to improve the
multiplexing of this technology. For the specific network
under study, the set of ~200 metabolic proteins can be
quantified in ~4h of instrument time per sample, measuring
multiple SRM transitions per peptide, multiple peptides per
protein (where available), with light (endogenous) and heavy
(internal standard) signals. The data set presented here,
consisting of 15 samples, can be acquired in ~ 3 days of mass
spectrometric measurements.

Remarkably, the total number of metabolic proteins
detectable, and thus expressed, did not change much between
the different metabolic states. Although the identity of the
necessary proteins varies slightly between conditions (Sup-
plementary Table 3), yeast cells should be able to grow with
roughly 120 proteins in the considered network, yet many
more are always present. Expression of unneeded proteins has
long been known to reduce growth rates and thereby
presumably evolutionary fitness (Dekel and Alon, 2005);
hence, intuition and genetic evidence (Zaslaver et al, 2004)
suggest that enzymes are downregulated under conditions
when their reactions are not required. Their here demon-
strated unexpected persistence might be explained by the
lower than expected costs of unneeded protein synthesis after
several generations of exponential growth, at least in
Escherichia coli (Shachrai et al, 2010). Alternatively, it can be
an adaptive strategy for rapid and flexible responses to
environmental changes (Kotte et al, 2010).
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About 40% of the apparently ‘superfluous’ proteins are
isoenzymes. We showed here that differences in abundance
changes among isoenzymes were indicative for different
isoenzyme functionality, consistent with earlier studies based
on transcriptional data (Thmels et al, 2004). On the basis of
abundance pattern clustering in different functional classes of
metabolic pathways, many isoenzymes show evidence for
functional diversification in the presented experiments, which
might explain their parallel presence in the S. cerevisiae
genome (Kuepfer et al, 2005; Thmels et al, 2007). As we only
tested a very limited number of conditions, it is our expectation
that also for the isoenzymes that did not show functional
diversification so far, such evidence could be found under
appropriate metabolic setups.

In conclusion, this study shows that quantitative assays for
large sets of biologically related proteins can be developed
and deployed to monitor responses of these proteins to a set
of different environmental or genetic conditions, providing
detailed insights in a cell’s physiology. This approach is ideal
to explore the dynamics of cellular networks, under physio-
logical or challenged conditions, also for organisms other than
yeast, and thus has the potential to find broad applications in
systems biology, biomedical and pharmaceutical research.

Materials and methods

Yeast culture conditions and protein extraction

All experiments were performed with the prototrophic strain
S. cerevisiae FY4 (Winston et al, 1995). Mineral medium (Verduyn
et al, 1990) was supplemented with 10gl~' of the carbon sources
glucose, galactose or ethanol. Medium for anaerobic cultures was
buffered with 10 mM KH-Phthalate buffer. Complex medium contained
20gl™! yeast extract and 40gl~' peptone. Cultures were grown in
50 ml of respective medium in 500 ml shake flasks at 30°C and shaken
at 250r.p.m. Anaerobic cultures were grown in 50 ml of medium in
150ml air-tight serum flasks and shaken at 110r.p.m. Anaerobic
medium and flasks were flushed with nitrogen gas (certified <5p.p.m.
0,) upon closure and during sampling, and were sealed with oxygen-
impermeable rubber septa.

For each growth condition, triplicate cultures were inoculated from
a single pre-culture, pre-grown on identical medium and conditions.
Two ml aliquots were withdrawn at regular intervals and treated as
described before for biomass content and HPLC analysis (Heer and
Sauer, 2008). Aliquots for proteome analysis were withdrawn during
the late exponential growth phase at high biomass content when cells
still grew exponentially. From each culture, 36 ml of cell broth were
harvested on ice and centrifuged for 3 min at 4°C. Pellets were washed
once with ice-cold washing buffer (20mM HEPES, pH 7.5, 2mM
EDTA), frozen in liquid nitrogen and stored at —80°C until extraction.

15N isotopically labeled yeast cells to be used as internal standard
for protein abundance quantification were derived from a yeast
batch culture that displayed diauxic growth in 21 minimal medium
with 5g1™" glucose and '*N-labeled ammonium (99% purity '°N,
(NH,4),SO4, Cambridge Isotope Laboratories) as sole nitrogen source.
Cells were grown in a fully aerated bioreactor. To gain high coverage of
metabolic proteins, aliquots from the different phases (growth on
glucose, transient phase and growth on ethanol) of this experiment
were mixed.

Proteins were extracted and precipitated as described previously
(Picotti et al, 2009). Before precipitation, the total protein concentra-
tion in the lysis buffer was calculated based on the average results of a
spectrophotometrical BCA (bicinchoninic acid, Perbio Science, Lau-
sanne, Switzerland) assay, conducted in triplicate for every sample.
A 100 pg aliquot of each sample was mixed to an equal amount of
15N-isotopically labeled internal protein standard (see above). Tryptic
digestion was conducted as described in Picotti et al (2009). Digested
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peptide mixtures were cleaned on C18 cartridges (Sep-Pak tC18,
Waters) and eluted with 60% (vol/vol) acetonitrile. Samples were
dried in a vacuum centrifuge, and solubilized in 0.1 % formic acid upon
analysis. All samples reported in this work were processed in parallel.

Design of SRM assays

For each protein targeted in this work, up to ten PTPs for detection and
quantification via SRM were selected. Preferentially, detectable PTPs
were chosen based on their number of observations in the publicly
accessible proteomic data repository PeptideAtlas (www.peptideatla-
s.org, a large proteomic data repository that contains more than 50 000
unique peptides observed in shotgun proteomic experiments (Deutsch
et al, 2008)). Peptide identifications deriving from isotope-coded
affinity tag experiments were not considered. For proteins with less
than five PTPs available from PeptideAtlas, additional PTPs amenable
for mass spectrometry analysis were derived by prediction using the
publicly available software PeptideSieve (Mallick et al, 2007;
tools.proteomecenter.org, Seattle Proteome Centre). For proteins never
observed in PeptideAtlas, the five peptides resulting from PeptideSieve
prediction were synthesized on a small scale in an unpurified format
using the SPOT-synthesis technology (JPT Peptide Technologies) and
used as a reference to derive the optimal parameters for the
corresponding SRM assays.

For each PTP, three to eight SRM transitions for both the double- and
the triple-charged state were calculated, corresponding to fragment
ions of the y-series. Fragment ions with a mass-to-charge ratio (m/z)
greater than the precursor ion m/z were prioritized. Fragments with
m/z ratios close to the precursor ion m/z (smaller than 5 Th difference)
were discarded. This selection process was automated through in-
house written software. The selected transitions were used to detect
the peptides by SRM in whole S. cerevisiae protein digests and to trigger
acquisition of the full fragment ion spectra of the peptides. For low-
abundant PTPs and PTPs predicted by PeptideSieve, full fragment ion
spectra were acquired from synthetic peptide preparations. Optimal
fragments to be used in the final SRM assays were chosen from the full
fragment ion spectra, acquired on the triple quadrupole mass
spectrometer (see below).

Mass spectrometry analysis

All peptide samples were analyzed on a hybrid triple quadrupole/ion
trap mass spectrometer equipped with a nanoelectrospray ion source
(4000QTrap, AB/Sciex). Chromatographic separations of peptides
were performed on a nano-LC system (Tempo, AB/Sciex) coupled to a
fused silica emitter (length 16 cm, diameter 75pum) packed with a
Magic C18 AQ 5pm resin (Michrom BioResources). Peptides were
loaded on the column from a cooled (4°C) autosampler (Tempo, AB/
Sciex) and chromatographically separated using a linear gradient of
acetonitrile/water at a flow rate of 300 nlmin~'. A gradient from 5 to
30% acetonitrile in 30 or 60 min was used. In the assay validation
phase, the mass spectrometer was operated in MRM mode, triggering
acquisition of a full MS/MS spectrum upon detection of an SRM trace.
The set of SRM transitions generated as described above was split into
multiple MS methods and analyzed in several runs. MRM acquisition
was performed with Q1 and Q3 operated at unit resolution (0.7 m/z
half maximum peak width). MS/MS spectra were acquired in
enhanced product ion mode for the two highest MRM transitions,
using the following settings: dynamic fill time, Q1 resolution low, scan
speed 4000 a.m.u.s™ !, m/z range 300-1400. Collision energies (CEs)
were calculated according to the formulas: CE=0.044 x m/z+ 5.5 and
CE=0.051 x m/z+0.5 (with m/z being the mass-to-charge ratio of
the precursor ion) for doubly and triply charged precursor ions,
respectively.

Database search and extraction of optimal SRM
transitions

Raw MS/MS .wiff data was converted to .mzXML format with the
program mzWiff and searched against the yeast SGD database (version
dated 01/26/2006) using Sequest (version 27). A decoy database was
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generated by randomly reshuffling amino acids in between tryptic
cleavage sites, and appended to the target database. Precursor mass
tolerance was set at 2.1Da. Data were searched with full tryptic
cleavage and carboxyamidomethylation of cysteine residues as a static
modification. The search results were validated and assigned
probabilities using the PeptideProphet program implemented in the
Trans-Proteomic-Pipeline (Deutsch et al, 2008), with decoy-assisted
semiparametric model and retention-time model enabled, as pre-
viously described (Picotti et al, 2008) and filtered to a decoy-estimated
false discovery rate of 1%.

For each peptide, the 3 or 4 fragment ions resulting in the highest
signals were selected from the QQQ MS/MS spectra as previously
described (Picotti et al, 2008) as final SRM assay. The corresponding
SRM transitions associated with the '°N analog of each peptide were
calculated and measured as internal standard. The final SRM assays
were used to detect and quantify the proteins in total lysates of yeast
cells grown under the set of five conditions mentioned above, using
time-scheduled SRM/MRM acquisition (retention time window, 200-
300s; target scan time, 3.5s, maximally 950 transitions per run).
Blank runs (water, 0.1 % formic acid, injected) were performed prior to
most SRM measurements. In these controls, the same SRM method
was used as in the following (sample) run (e.g, a method in which the
same set of transitions was measured). The complete set of SRM assays
is available in Supplementary Table 4 or via the public SRMAtlas
database (www.srmatlas.org; Picotti et al, 2008). The usage of time-
scheduled SRM acquisition maximized the throughput and sensitivity
of the proteomic analysis (Stahl-Zeng et al, 2007). MS/MS spectra are
available at https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/
GetPeptideSpectra.

Quantification of protein abundance changes

Peak heights for the transitions associated with the native and
!>N-labelled peptides were quantified using MultiQuant v.1.1 Beta
(Applied Biosystems). To accept validation of a set of SRM traces, we
checked that the retention time at which the MS/MS spectrum was
acquired from the natural or synthetic sources matched that of the SRM
peaks defining the peptide of interest. We also confirmed ‘coelution’
and shape similarity of different SRM traces recorded for a given
peptide. In some dubious cases, we also checked that relative
intensities of SRM traces from different fragments matched those
observed in the MS/MS spectrum of the peptide. For relative
quantification of each protein across the set of different growth
conditions, the ratio between the light and heavy SRM peak height was
calculated and normalized to that obtained for the aerobic glucose-
grown sample. Protein abundance changes were expressed as the
mean log, ratios out of the different transitions over peptides, protein
and the three replicate cultures per condition + the standard error of
the mean. Outlier transitions (for instance, shouldered transition
traces, noisy transitions or with a signal-to-noise ratio smaller than
three) were not considered in the calculations. A Student’s one sample
t-test was performed on the log, ratios to determine statistically
significant changes in protein abundances (P<0.05). For proteins that
were not detected in all five conditions (i.e., the signal of their best-
responding PTP decreased to the noise level in one or several of the five
growth conditions), we used the noise levels of the SRM traces to
estimate a minimal abundance change compared with a condition with
an above-noise signal.

Minimal set of necessary proteins

For determination of the minimal set of necessary proteins under
each of the five growth conditions, FBA (Fell and Small, 1986) was
performed using an updated version of a previously published
genome-scale model of the metabolism of S. cerevisiae (Kuepfer
et al, 2005; Supplementary Table 7). Measured specific production and
consumption rates (Table I) were used as constraints on the metabolic
network, and minimization of the Euclidean norm of fluxes (Blank
et al, 2005) was used as objective function. It minimizes the total sum
of the squared values of all fluxes in the network. Calculations were
carried out using MATLAB scripts (The MathWorks) and solved using
LINDO numerical solver software package (Lindo Systems). On the
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basis of the FBA solution, reactions from the targeted sub-network that
had a value zero were classified as non-necessary, and reactions with a
value were classified as necessary. As necessary reactions do not map
one-to-one to necessary proteins, this was corrected for the presence of
isoenzymes, protein promiscuity and protein complexes, as explained
in Supplementary Table 3.

Hierarchical cluster analysis

The Pearson’s linear correlation coefficients of the log, of the
measured abundance changes for each protein were calculated with
the log, of the abundance of this protein under aerobic glucose-grown
conditions set to zero. The correlation coefficients were then used to
calculate the Euclidean distances between proteins with which
hierarchical cluster trees were generated using group average as
clustering method. All calculations were performed in MATLAB
software. Protein abundance changes of <20% and protein abun-
dance changes with P-values for their significance >0.05 were
assumed to be only marginal changes, and their value was set to zero
for the cluster analysis. Abundance changes for proteins that were not
observed under a particular condition were also set to zero for that
condition change. The reported minimal abundance changes for these
proteins for conditions where they were observed were then taken as
the value to cluster. Proteins for which now five zero values were
yielded were excluded from the cluster analysis all together.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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