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Abstract

Biological particle mixing (bioturbation) and solute transfer (bio-irrigation) contribute extensively to ecosystem functioning
in sediments where physical mixing is low. Macrobenthos transports oxygen and organic matter deeper into the sediment,
thereby likely providing favourable niches to lower trophic levels (i.e., smaller benthic animals such as meiofauna and
bacteria) and thus stimulating mineralisation. Whether this biological transport facilitates fresh organic matter assimilation
by the metazoan lower part of the food web through niche establishment (i.e., ecosystem engineering) or rather deprives
them from food sources, is so far unclear. We investigated the effects of the ecosystem engineers Lanice conchilega (bio-
irrigator) and Abra alba (bioturbator) compared to abiotic physical mixing events on survival and food uptake of nematodes
after a simulated phytoplankton bloom. The 13C labelled diatom Skeletonema costatum was added to 4 treatments: (1)
microcosms containing the bioturbator, (2) microcosms containing the bio-irrigator, (3) control microcosms and (4)
microcosms with abiotic manual surface mixing. Nematode survival and subsurface peaks in nematode density profiles were
most pronounced in the bio-irrigator treatment. However, nematode specific uptake (Dd13C) of the added diatoms was
highest in the physical mixing treatment, where macrobenthos was absent and the diatom 13C was homogenised. Overall,
nematodes fed preferentially on bulk sedimentary organic material rather than the added diatoms. The total C budget (mg C
m22), which included TO13C remaining in the sediment, respiration, nematode and macrobenthic uptake, highlighted the
limited assimilation by the metazoan benthos and the major role of bacterial respiration. In summary, bioturbation and
especially bio-irrigation facilitated the lower trophic levels mainly over the long-term through niche establishment. Since
the freshly added diatoms represented only a limited food source for nematodes, the macrobenthic effect was more
pronounced in niche establishment than the negative structuring effects such as competition.

Citation: Braeckman U, Provoost P, Moens T, Soetaert K, Middelburg JJ, et al. (2011) Biological vs. Physical Mixing Effects on Benthic Food Web Dynamics. PLoS
ONE 6(3): e18078. doi:10.1371/journal.pone.0018078

Editor: Andrew Wilby, University of Lancaster, United Kingdom

Received October 20, 2010; Accepted February 22, 2011; Published March 24, 2011

Copyright: � 2011 Braeckman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Support was given to U.B. by the Research Foundation - Flanders (FWO). This paper contributes to the Westbanks project (www.vliz.be/projects/
westbanks), which is supported by the Belgian Science Policy (BelSPO, contract no. SD/BN/01A) to the Ghent University BBSea Project (GOA 01600705), FWO
project (G.0041.08) and the European Union Network of Excellence MarBEF (GOCE-CT-2003-505446). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Ulrike.Braeckman@UGent.be

Introduction

Phytoplankton blooms are the major source of organic matter

for shallow seas like the North Sea. About 20% of the annual

phytoplankton bloom settles down to the seafloor as phytodetritus

[1]. Shallow benthic communities are generally considered to

depend on this input of locally produced organic matter [OM] [2].

OM enters the different parts of the food web, in which grazing

macro- and meiobenthos disintegrate and process the larger

particles and act in concert with bacteria as key players in

mineralisation processes (ammonification, nitrification, denitrifi-

cation, …). The cycling of this OM is essential to provide the

nutrients to sustain primary production [3]. Mixing processes

(both physical and biological) at the sea floor play an important

role in OM cycling [4]. Intensive physical mixing, induced by e.g.

storm events and tidal action [5] dilutes the OM in the surface

layer where it was deposited and makes it less accessible to deposit-

feeding macrobenthos, but favours bacteria [6] and possibly

metazoan members of the lower food web. Biological mixing

influences OM availability in two ways: on the one hand,

bioturbation and bio-irrigation indirectly alter the distribution of

small infauna through establishment of micro-habitats in the

otherwise anoxic and food-depleted deep sediment layers [7–9]. In

addition, dense tube lawns have been found to increase food

availability owing to the local decrease in near-bed current velocity

[10]. This ecosystem engineering sensu Jones et al. [11] contributes

extensively to ecosystem functioning in sediments where physical

mixing is low [12,13]. On the other hand, biological mixing goes

along with predation or with exploitative competition when the

same food source is shared. The effect of biological mixing on

infaunal abundance and distribution is well established [7,14–16].

However, the relative importance of the mechanisms through

which this effect occurs (food availability, sediment oxygenation),

are not fully clear. Whether this biological mixing facilitates

the uptake of fresh organic matter by the metazoan members of

the lower food web through ecosystem engineering or rather

deprives them from food sources, is so far not unambiguously

determined.
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In a controlled laboratory experiment, we therefore investigated

whether phytodetritus uptake by the metazoan members of the

lower food web is either facilitated or hampered by biological and

physical mixing. Nematodes are an ideal model organism to

represent the metazoan lower food web, since they are ubiquitous,

numerically the most important metazoans in the biosphere and

comprise a high trophic diversity [17]. We added 13C labelled

diatoms to microcosms containing subtidal sediment with its

natural nematode communities but devoid of the natural

macrobenthos population. We contrasted a regular physical

mixing treatment (upper 2 cm reworked with a sediment stirrer)

with the addition of two functionally different macrobenthos

species (a bioturbator and a bio-irrigator) in single-species

treatments. The two species are dominant representatives of the

Abra alba–Kurtiella bidentata community in the Belgian part of the

North Sea [18]. The bio-irrigating polychaete Lanice conchilega is a

suspension–deposit feeder that lives sedentary with limited impact

on particle mixing once the tubes are established. Its piston–

pumping [19] induces deep sediment oxygenation and associated

stimulation of bacteria as food sources along the tube walls, which

results in the extension of the suitable habitat for nematodes [7]

and an enhancement of benthic mineralisation [20]. The

bioturbating bivalve Abra alba is a suspension-deposit feeder that

reworks the sediment at random and does not actively irrigate its

feeding pits, resulting in a limited stimulation of benthic

mineralisation rates [20]. However, its exploitative competition

for food at the sediment surface and subsurface faecal pellet

deposition has also been shown to extend nematode distribution to

deeper layers [7].

We tested whether metazoan lower food web dynamics are (1)

affected by mixing; (2) different in biologically or physically mixed

sediments; (3) sediment–depth dependent and (4) different for

dominant members of the nematode community.

Results

Survival of macrobenthos
7564% of the Abra alba specimens were recovered alive at the

time of slicing, 17 to 18 days after food addition. The biomass of

the bivalves totalled 5.760.7 g C m22. A. alba individuals were

found between 1 and 4 cm of which 89% was concentrated

between 1 and 3 cm. Lanice conchilega tubes extended to the very

bottom of the microcosms (69 cm) and all animals were alive at

the time of slicing. L. conchilega biomass totalled 2.160.2 g C m22.

The total nematode biomass at the end of the experiment

averaged 0.02060.003 g C m22 in the BT treatment and

0.04460.007 g C m22 in the BI treatment.

Environmental variables
Pigments. Total chlorophyll-a concentration did not differ

among treatments (1–factor Permanova, p.0.05) but its vertical

distribution was significantly affected by the different mixing

treatments (Table 1): the upper cm of the BT treatments was

depleted in chl-a compared with the same layers in the other

treatments. Even the second cm of the BT treatment contained

less chl-a than the same one in the PM and CF treatment.

Furthermore, the 4–5 cm layer from the C and BT treatment had

a significantly higher concentration than that of the BI 4–5 cm

(Table S1, Fig. 1). Compared to the C treatment, the chl-a profile

was less steep in the CF, BI and BT treatment (being depleted in

the upper cm of the BT treatment) and this photopigment was

homogenised over the upper 2 cm in the PM treatment (Table

S2).

Sediment organic matter content. About 10% of the

initially added TO13C remained in the sediment at the end of

the experiment and the remnants significantly varied among

treatments (Table 1). In the end, TO13C concentrations were

highest in the BT treatment (pairwise test, p(MC) = 0.041) and the

PM (pairwise test, p(MC) = 0.032) treatment compared to the CF.

The leftovers of the labelled algae showed different vertical

distributions among treatments (Table 1, Fig. 2): they mainly

remained at the surface in the CF treatment, whereas they were

efficiently mixed downwards to 3 cm depth in the PM treatment

and to a lesser extent in the BT treatment (Table S3, S4). At depth

of the BI treatment (6–9 cm), small TO13C concentrations were

measured. Hardly any trace of label was found at depth of the CF

and PM treatment.

Oxygen penetration depth and consumption. Oxygen

penetration reached an average depth of 4.560.2 mm, but

differed among treatments (Permanova pseudo-F4,70 = 14.18,

p = 0.001) and was significantly deeper in the BI microcosms

(5.960.4 mm) and significantly shallower in the PM treatment

(3.560.1 mm) (Fig. 3, pairwise tests Table S5). There were no

significant differences for the TRxDay interaction (2-way

Permanova, p = 0.80) in oxygen consumption, but differences

between treatments and between days were observed (TR: pseudo-

F4,20 = 4.72, p = 0.008; Day: pseudo-F1,20 = 5.98, p = 0.024):

sediment community oxygen consumption (SCOC) was lower in

the PM and C treatment compared to both the BT treatment

(pairwise tests BT-C: p(MC) = 0.016; BT–PM: p(MC) = 0.008)

and BI treatment (BI–C: p(MC) = 0.041; BI–PM: p(MC) =

0.019). SCOC measurements were highest on day 10, but are for

simplification presented as averages of the two measurement days

in Fig. 3.

Biota
Nematode distribution. Total nematode density differed

among experimental treatments (Fig. 4, Table 1) and was highest

in the BI microcosms (pairwise tests, p(MC) ,0.05 for

comparisons with CF, BT and PM treatments). The survival in

the BT treatment was significantly lower than that in the PM

(pairwise test p(MC) = 0.038). Nematode density profiles differed

among treatments (Table 1, Fig. 4): most nematodes concentrated

in the top layer in the C, CF and BI treatment (although with a

high variability among replicates in the latter two) and their

density declined rapidly below 2 cm in the C and CF treatment,

while it was more or less equally distributed in the BI treatment

(Table S7). Nematodes in the PM treatment shifted to the

undisturbed subsurface layers (below 2 cm). Nematode density in

the deeper layers of the BI treatment was higher than in the deep

layers of the other treatments (Table S6, Fig. 4).

Nematode food uptake. Nematode samples showed a

varying degree of 13C enrichment. Nematode specific uptake

(Dd13C) ranged between 1.6 (‘other nematodes’ in the 8-end layer

of the BT treatment) and 864 % (‘other nematodes’ in 0–2 cm of

the CF treatment) and was different among TR and among

Species and Depths (SpxD interaction and TR factor significant,

Table 2, Fig. 5). Nematodes showed the highest specific uptake in

the PM treatment compared to the BT (pairwise test: p(MC) =

0.022) and BI treatment (p(MC) = 0.018) and this specific uptake

in the PM treatment was slightly higher than in the CF (p(MC)

= 0.081) treatment. At intermediate depths, Sabatieria had a higher

specific uptake than the ‘other nematodes’ (p(MC) = 0.017) and

Richtersia (p(MC) ,0.001). In the deeper layer, ‘other nematodes’

showed a higher specific uptake than the other two groups (p(MC)

= 0.002). These ‘other nematodes’ showed a particularly high

specific uptake in the 5–8 cm of the PM treatment although no

Mixing Effects on Benthic Food Web Dynamics
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traces of 13C were found in the sediment at that depth. The

nematode community in this layer was mainly composed of

Sabatieria breviseta (36%) and S. celtica (15%), with Daptonema spp.

(7%) and Trefusia spp. (7%) as members of the ‘other nematodes’.

At the surface, ‘other nematodes’ showed a higher specific uptake

than Sabatieria (pairwise test: p(MC) = 0.0001) and Richtersia

(p(MC) = 0.0003). For ‘other nematodes’, the SF-value (% of

labelled algae in food taken in excess of bulk OM), calculated from

the d13C signal in nematodes, diatoms and in averaged sediment

TOC (in Fig. 5) was very small, ranging between 0.24% (BT

treatment) and 0.84% (PM treatment) in the surface layer. In the

case of Sabatieria and Richtersia, the SF-value at the surface of the

CF and BI treatment was even slightly negative, indicating that the

d13C in the sediment was higher than the d13C in the nematodes.

Although the SF-ratio was always .0 in the subsurface layers, the

selectivity for the labelled diatoms remained very limited, never

exceeding 1%.

Total uptake did not differ significantly among treatments,

probably due to the high variance in uptake and nematode

densities in the surface layers of the CF and BI treatments (Fig. 4).

However, the nematode groups did differ in their uptake of diatom

carbon within depth layers (Table 2, Fig. 6). At the surface, the

total uptake of ‘other nematodes’ was higher than the uptake by

Sabatieria, which in turn was larger than the uptake by Richtersia

(virtually zero). In the intermediate depth layer, the Sabatieria

uptake was higher than that of Richtersia. The total uptake by

Richtersia did not differ among depth layers.

The total uptake as a percentage of the added diatom carbon by

the nematodes integrated over depth ranged between

0.002460.0008% (BT treatment) and 0.005860.0027% (CF

treatment), with intermediate values in the PM (0.00426

0.0008%) and in the BI treatment (0.003960.0029%).

Macrobenthic food uptake. The diatom addition triggered

the immediate response of Abra alba and Lanice conchilega, as

apparent from the sudden appearance of the siphons and tentacles

at the surface and their instant clearing of the diatom mat. As a

result, the average specific uptake of the macrobenthic animals

after 17/18 days was quite high: 117666% in A. alba and

256643% in L. conchilega. In terms of total uptake, the

consumption of the enriched diatoms by A. alba and L. conchilega

tissue totalled respectively 2.560.6% and 2.760.9% of the added

diatom carbon after 18 days. This is about 3 orders of magnitude

higher than the total uptake by nematodes, but is partly explained

by the 100x higher macrobenthic biomass.

Budget
Fig. 7 shows the contribution of the different compartments to

the fate of the added diatoms. After 18 days, ,3% of the added

diatom 13C was assimilated by the macrobenthos and nematode

compartment, about 10% was left in the sediment and the rest

(690%) can be assumed to have been respired. From the increase

in SCOC between the C and the CF treatment (on average

5.60 mmol O2 m22 d21) (Fig. 3), it can be estimated (assuming a

respiratory quotient of 0.85 [21]) that 1.03 g C m22 was respired

over the 18 days of experiment, equalling 104% of the added

carbon.

Table 1. Results from Permanova analysis for differences in
chlorophyll-a content (mg g21), total TO13C (mg m22) within
the sediment and nematode density (ind. 10 cm22) amongst
experimental treatments (TR) (control, control+food,
bioturbator, bio-irrigator and physical mixing) and depth (D),
based on a Euclidean resemblance matrix.

Factors Chlorophyll-a TO13C sediment
Nematode
density

TR df 4 3 4

MS 3.23E-03 55.92 2589.5

Pseudo-F 3.76 6.12 a 10.10 a

D df 8 8 8

MS 5.74E-02 559.72 9739.8

Pseudo-F 108.64 b 117.75 b 35.83 b

Rep (TR) df 9 8 9

MS 8.58E-04 9.14 0.943

Pseudo-F 1.62 1.92 2.55

TRxD df 32 24 32

MS 2.73E-03 32.45 692.73

Pseudo-F 5.16 b 6.83b 2.55 a

Res df 72 64 72

= Rep(TR)xD MS 5.28E-04 4.75 271.87

a: 0.001 ,p,0.05;
b: p,0.001
Control was not included in the TO13C sediment analysis.
doi:10.1371/journal.pone.0018078.t001

Figure 1. Depth profiles of chlorophyll-a in control (C), control + food (CF), bioturbator (BT), bio-irrigator (BI) and physical mixing
(PM) treatments. Profiles differed significantly and significant results of pairwise tests of treatments within TRxD(epth) are indicated by the colour
of the bars: black bars indicate higher and white bars lower chlorophyll-a values among pairs; grey bars indicate slices not detected as significantly
different from the same depth slices in other treatments by pairwise tests. Significantly lowest values are marked with ‘‘*’’. ‘‘x’’: chl-a content in the
0–1 cm of BI treatment only higher than 0–1 cm of BT treatment. Error bars indicate SE.
doi:10.1371/journal.pone.0018078.g001

Mixing Effects on Benthic Food Web Dynamics
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Discussion

Mixing processes are important for degradation of phytodetritus

[22] and bacterial members of the lower food web: in case

phytodetritus arrives at the surface and remains unmixed, only

bacteria in the top layer can profit from the deposition event,

whereas bioturbation and bio-irrigation can supply food to deeper

living bacteria [6]. The effect of mixing processes on the dynamics

of the metazoan members of the lower food web was so far

unknown. In this experiment, both physical and biological mixing

had a pronounced and contrasting effect on the dynamics of the

metazoan members of the lower food web. Biological and physical

mixing both induced reallocation of this smaller infauna to the

subsurface compared to the control situation. Although survival of

this smaller infauna was highest in the bio-irrigated treatment, this

did not coincide with the highest diatom uptake in smaller infauna.

In contrast, physical mixing induced the highest access to food by

the smaller infauna over 17/18 days.

Mixing effects on environmental parameters
While chl-a and TO13C - indicators of the freshly added

diatoms - remained at the surface of the control treatments, a

clearly different environment was created in the microcosms

experiencing physical and biological mixing. Chl-a was depleted in

the upper 2 cm of the bioturbation treatment, revealing intense

grazing by the bivalve [4,7]. In the subsurface (2–3 cm) of the

bioturbation microcosms, the labelled material accumulated,

which might be in the form of faecal pellets [23]. High

concentrations of chl-a were also found at the surface of the bio-

irrigated microcosms, while small peaks of TO13C were traced at

depth (6–9 cm). At the same time, oxygen was drawn deeper into

the sediment owing to bio-irrigation. Physical mixing efficiently

distributed chl-a and TO13C over the upper two centimetres and

oxygen penetration was shallower and SCOC lower than in the

other treatments. Since macrobenthos was absent, transport

occurred mainly via molecular diffusion, resulting in a lower

oxygen flux from water to sediment (SCOC). Initial deep oxygen

penetration was also observed in other physical mixing exper-

iments [22], but the redox boundary then rapidly shifted to

shallower depths and the buried OM degraded at a slower pace

via anaerobic pathways [22]. The significantly higher TO13C pool

remaining in the physically mixed microcosms at the end of the

Figure 2. Sediment TO13C distribution in control + food (CF), bioturbator (BT), bio-irrigator (BI) and physical mixing (PM)
treatments. Profiles differed significantly and significant results of pairwise tests of TR within TRxD are indicated by the colour of the bars (cf.
Figure 1). Significantly lowest values are marked with ‘‘*’’. Compare with the original addition of 6400 mg algal 13C to the surface of the microcosms
at the start of the experiment. Error bars indicate SE.
doi:10.1371/journal.pone.0018078.g002

Figure 3. Maximum oxygen depth at the end of the experiment
(upper) and averaged oxygen consumption of measurement
on day 3 and 10 (lower) in control (C), control + food (CF),
bioturbator (BT), bio-irrigator (BI) and physical mixing (PM)
treatments. Results of pairwise tests are indicated by the colour of the
bars (cf. Figure 1). Significantly lowest values are marked with ‘‘*’’. Error
bars indicate SE.
doi:10.1371/journal.pone.0018078.g003

Mixing Effects on Benthic Food Web Dynamics
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experiment also corroborates the hypothesis that degradation is

slower when organic matter is buried [22]. Similarly in the

bioturbated microcosms, organic matter was taken away from the

faster aerobic degradation processes at the surface because Abra

alba filters large amounts of water resulting in subsurface

deposition of its faecal pellets [23].

Mixing effects on lower food web dynamics
Distribution. Nematode survival was enhanced in the bio-

irrigated treatment. The presence of bio-irrigators induces an

extension of the habitat of smaller infauna from the surface into

the deeper sediment horizons and this appears to be important for

the survival of the lower metazoans [7,24,8]. In the control

treatment, nematodes remained at the surface, while they

redistributed over the upper 3 cm in the bioturbation treatment.

This subsurface concentration of nematodes is probably explained

by a combination of competition for food at the surface (see

further), disturbance by the bivalve siphons and attraction to faecal

pellets deposited in the subsurface [7]. In the bio-irrigation

treatment, oxygen is drawn deeper into the sediment, which is

directly beneficial to oxiphilic nematodes [7]; indirectly this

oxygen in the deep sediment layers stimulates the growth of

bacteria in the tube mucus linings [25] and/or in the sediment

surrounding the tubes [26], providing food for the nematodes. In

contrast, nematodes in the physically mixed treatment

concentrated in the 2–4 cm horizon, which may indicate

intolerance to disturbance at the surface or habitat creation at

depth (burial of organic matter as a food source).

Food uptake. The freshly added diatoms were most

accessible (highest specific uptake) to the nematodes in absence

of biological mixing. The slightly higher specific uptake in the

physically mixed treatment compared to CF suggests that diatom

consumption was easier for the nematodes when it was diluted

over the 2 cm compared to the concentrated layer in the CF

treatment as has been reported for bacteria [6].

Specific uptake by the nematodes at the surface of the biologically

mixed treatments was only 20–50% of that at the surface of

physically mixed treatments, except for Sabatieria (equal specific

uptake at surface in BT and PM treatments). This indicates that

macrobenthos was favoured over the nematodes in terms of access

to the diatoms in the concentrated patch [6] (exploitative

competition). However, macrobenthos assimilation was low as

well (,3% of the added diatom C incorporated after 18d). This

indicates that we probably missed the immediate assimilation of

the added algae [6,27–29]. Indeed, the sudden appearance of

siphons and tentacles at the surface indicates a fast and may be

one-off feeding response that may have been missed after 18d due

to the rapid turn-over of assimilated algal matter (starting after 5

days [30]). Although this turn-over accounts for nematodes as well,

it is possible that they could continue feeding on the diluted

patches of labelled matter [6] until the end of the experiment.

Alternatively, part of the 13C assimilation by nematodes may have

resulted from feeding on bacteria which had utilised organic

matter originating from the labelled diatoms [31].

In the deeper layers, nematode uptake was again highest in the

physically mixed treatment. The uptake in this deep layer (5–8 cm)

of the physically mixed treatment is even similar to the uptake at

the surface of the biologically mixed treatments, although no label

was measured in the bulk sediment, deeper than 3 cm. This

indicates active migration of nematodes, either by surface dwelling

nematodes that migrated to depth at day 1 to avoid disturbance

(first physical mixing event after food addition); or deep dwelling

nematodes moving to the surface to feed and then returning to

deeper layers. The genera found in this depth layer (Sabatieria celtica

and S. breviseta, Daptonema spp. and Trefusia spp.) have a long and

slender body type, which favours migration and anoxia resistance

[32]. The low d13C signal of Sabatieria and Richtersia at the surface

of the CF and BI treatments rather reflects the sedimentary d13C

signal of the deeper layers, which suggests migration between

deeper and surface layers. For Sabatieria spp. [33–35] and

Figure 4. Depth profiles of nematode densities in control (C), control + food (CF), bioturbator (BT), bio-irrigator (BI) and physical
mixing (PM) treatments. Profiles differed significantly and significant results of pairwise tests of TR within TRxD are indicated by the colour of the
bars (cf. Figure 1). Significantly lowest values are marked with ‘‘*’’. Error bars indicate SE.
doi:10.1371/journal.pone.0018078.g004

Mixing Effects on Benthic Food Web Dynamics
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Daptonema spp. [36] this migration to fresh food had been observed

already, but this is the first time for Trefusia and Richtersia spp.

A small uptake at depth in the biologically mixed treatments

was observed, primarily in the ‘other nematodes group’. This

might be related to the transport of label (Fig. 2) and thus food

sources to depth [27]. Rapid subduction of labelled 13C has been

shown frequently both in deep sea environments [29,8] and North

Sea sediments [27]. In our study, this subduction is not

pronounced: a similar density of tube-irrigating polychaetes

subducted 6 to 23% of the added label deeper than 5 cm [8],

while Lanice conchilega was responsible for the burial of only 0.6% of

the TO13C deeper than 5 cm (calculated from Fig. 2). Similarly,

Tellinid bivalves in [27] at half the density of Abra alba in this

experiment showed a strong bioturbation capacity that resulted in

increased DdTO13C values in the 4–7 cm sediment layer of an

order of magnitude higher than those found in the bioturbator

microcosms. Nevertheless, this small amount of subducted algal

material and eventually stimulated bacteria that feed on the

diatom 13C resulted in labelled nematodes at depth. Alternatively,

the nematodes could also have migrated from the surface to depth

to avoid disturbance and competition or to take profit from the

newly created habitat at depth of the biologically mixed

treatments.

Specific uptake of the added diatoms differed among nematode

groups and depth layers. Generally, nematodes are analysed in

bulk (because of practical reasons, biomass constraints, high genus

diversity), which dilutes the uptake signals, since the response of a

variety of feeding types is pooled. Here, we were able to

differentiate the uptake of 2 dominant genera from the uptake of

the ‘other nematodes’ pool. The uptake rates and the index of

selectivity (SF-value) were higher in ‘other nematodes’ than in

Sabatieria and Richtersia, probably because the latter migrated more

often in between surface (enriched) and deeper (non-enriched)

layers, hence a mixed signal in their diet. Sabatieria and Richtersia

demonstrated a slightly negative SF-value in the surface layers of

the CF and BI treatments, which contrasts with a positive SF-value

in the more mixed BT and PM treatments. This suggests that these

migrating nematode groups were also feeding non-selectively on

the bulk organic matter and on diatoms in case these were mixed

into the bulk organic matter (BT and PM treatments). However,

the total uptake and selectivity were very low (SF-ratio’s ,1% in

all cases).

Budget. The low total uptake of fresh labelled food by

nematodes even after 17/18 days is not unusual [33,37,38]. Since

this uptake does not meet the nematodes daily respiratory needs

(0.66% in [33], 0.1–5.1% in [38]), it is clear that meiobenthos does

not feed exclusively on the fresh algal material added to the

sediment microcosms, but also exploits other carbon sources,

naturally available in the sediment microcosms [39,33]. This is

indeed consistent with the low SF-value, indicating non-selective

feeding. At the end of the experiment, only between 4.7 and

12.3% of the added label was recovered as TO13C in the

sediment, while ,3% of the label had accumulated in the fauna.

The difference in SCOC between the control with and without

food was in the range of the amount of added diatoms (104%),

taking into account measurement and conversion errors. SCOC

comprises respiration of macro – and meiofauna (generally max.

20%) and bacteria. This points at the large role of bacteria in the

mineralisation of the added algal matter [29,40].

Conclusions
We have shown that the metazoan members of the lower food

web feed non-selectively on the bulk organic matter. Thus, after a

pulse deposition of fresh diatoms, they rely on external processes to

mix the food in the sediment matrix. Physical mixing diluted the

diatom layer into the subsurface, which increased its accessibility

for the metazoan members of the lower food web, but slowed

down the bacterial degradation as reflected in oxygen consump-

tion. Bioturbation, and especially bio-irrigation facilitates the

lower trophic levels both on the short-term (supply of phytodetritus

to bacteria [6]) and the long-term (deep density peaks and

enhanced survival of small infauna in this experiment). Since the

added diatoms contributed only to a limited extent to the carbon

requirements of the metazoan members of the lower food web, this

macrobenthic facilitation via transport processes was more

important in structuring the lower trophic levels than were

negative effects such as competition. The present study considered

the effects of bioturbators and bio-irrigators at average natural

densities in microcosms. However, high density patches of the

studied species often occur in the field [41–44]. It has been shown

that the ecosystem engineering effects of the bio-irrigating

polychaete Lanice conchilega are density dependent, reaching a

maximum at a certain threshold density (.1500 ind.m22), after

Table 2. Results from Permanova analysis for differences in
Dd13C (%) and total uptake Itotal (mg C m22) amongst the
experimental treatments (TR), replicates (Rep) nested in TR,
depth layers (D) and nematode groups (Sp) and their
interactions TRxD, TRxSp, DxSp, Rep(TR)xD, Rep(TR)xSp,
Rep(TR)xDxSp, TRxDxSp and Error term, based on a Euclidean
distance based resemblance matrix
(df = 3,3,2,8,9,6,6,15,15,15,17,48 resp.).

Factor Dd13C Itotal

TR MS 17787 57.14

pseudo-F 4.33a 0.34

D MS 55818 697.08

pseudo-F 12.89 c 2.49

Sp MS 64375 323.94

pseudo-F 11.91 b 1.53

Rep (TR) MS 1135.8 111.82

pseudo-F 9.85E-02 0.37

TRxD MS 4703.6 81.25

pseudo-F 1.25 0.29

DxSp MS 66871 1031.6

pseudo-F 19.28 c 4.03a

Rep(TR)xD* MS 1870.5 271.5

pseudo-F 0.16 0.89

Rep(TR)xSp* MS 2135 160.97

pseudo-F 1.19 0.53

TRxSp MS 10258 43.60

pseudo-F 1.95 0.21

Rep(TR)xDxSp* MS 1917.3 246.28

pseudo-F 0.16 0.81

TRxDxSp* MS 7332.1 130.86

pseudo-F 2.15 0.51

Res MS 11535 305.88

a: 0.01, p,0.05;
b: 0.001,p,0.01;
c: p,0.001
‘‘*’’: term has one or more cells with a single replicate.
doi:10.1371/journal.pone.0018078.t002
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which the facilitation effects may decline [20,42,43]. Similar

patterns can be expected in high density patches of the

bioturbating bivalve Abra alba.

Materials and Methods

Study site and sampling
Sediment from a fine sandy coastal station (known as Stn

115bis; 51u 09.29 N, 2u37.29 E; 3.5 km off the coast, 13 m depth)

was collected with a NIOZ Boxcorer from the RV Belgica.

Characteristics of the benthic communities at Stn 115bis are given

in [45] and [39]. Sediment median grain size was 194.661.1 mm,

sediments comprised 4.260.5% silt and 0.0960.003% organic

carbon. The sediment was sliced into 0–1 cm, 1–3 cm, 3–5 cm, 5–

8 cm, 8-end cm sections, wet sieved to remove macrobenthos

(.1 mm) and finally brought to a temperature-controlled room in

the lab (14uC) at day -9. The water overlying the 0–1 cm section

was aerated overnight to ensure survival of oxygen-sensitive

nematodes in that layer. At day -8, the sediment column was

reconstructed by stacking subsequent sediment horizons in

Figure 5. Specific uptake (Dd13C) of labelled diatoms by ‘other nematodes’, Sabatieria and Richtersia and averaged TOC in the
different depth layers in the control + food (CF), bioturbator (BT), bio-irrigator (BI) and physical mixing (PM) treatments. Specific
uptake differed among TR (PM. BI and BT) and among DxSp. For nematodes, the results of the pairwise tests of Sp within DxSp interaction are
indicated by the colour of the bars (cf. Figure 1). Coarse striped bars indicate ,3 replicates. Note different scaling of x-axes. Error bars indicate SE.
doi:10.1371/journal.pone.0018078.g005
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cylindrical microcosms of 14.5 cm internal diameter and 30 cm

height. These microcosms were left to acclimatise in the dark for

24 h at 18uC with recirculating filtered seawater (15 cm) of salinity

32.

The bio-irrigating polychaete Lanice conchilega was collected in

the intertidal area by means of metal frames [46] at day -15, left to

acclimatise for 8 days within its natural sediment and subsequently

introduced into the microcosms within its tube as described in [47]

at a density of 850 ind.m22 (14 ind. microcosm21). To check the

fitness of the animals, the fringed tube end was cut after

introduction to the sediment. The next day, all animals had

rebuilt a new crown of fringes. The bioturbating bivalve Abra alba

Figure 7. Mineralisation of the added diatom C in the control + food (CF), bioturbator (BT), bio-irrigator (BI) and physical mixing
(PM) treatment by the nematode (&, black) and macrobenthic (&, gray) compartments and due to respiration (&, light gray). Only
‘‘Remaining’’ algal C (%, white) differs significantly among treatments. Error bars not shown.
doi:10.1371/journal.pone.0018078.g007

Figure 6. Total uptake (mg C m22) of labelled diatoms by ‘other nematodes’, Sabatieria and Richtersia in the different depth layers.
Total uptake only differed among DxSp. The results of the pairwise tests of Sp within the DxSp interaction are indicated by the colour of the bars (cf.
Figure 1). Significantly lowest values are marked with ‘‘*’’. Error bars indicate SE.
doi:10.1371/journal.pone.0018078.g006
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was sampled at day -3 with a Van Veen grab from the RV

Zeeleeuw and introduced into the microcosms at a density of 1273

ind.m22 (21 ind. microcosm21), which is within the ranges of its

natural density [48]. A. alba specimens that did not burrow within

30 min. were replaced by fitter individuals.

Experimental set-up
15 microcosms were allocated to 5 treatments in triplicate: 2

controls (reconstructed sediment without additional macro-

benthos; hereafter referred to as experimental control [C] and

reconstructed sediment without additional macrobenthos, howev-

er with food added, hereafter referred to as [CF]), sediments with

the bioturbator Abra alba added, sediments with the bio-irrigator

Lanice conchilega added and sediments receiving physical mixing

(hereafter referred to as [BT], [BI] and [PM] treatment). In the

latter, the sediment was physically mixed by a simple device

manually stirring the sediment for 30 s to a depth of 2 cm starting

from day -1 and this was repeated every 48 h. Microcosms were

incubated at constant room temperature of 18uC for 18 days. We

have deliberately chosen this experiment duration based on

observations of maximal meio – and macrobenthic uptake [30,33].

Microcosms were fitted with a lid equipped with a magnetic stirrer

and water was continuously aerated and recirculated at a rate of

14.4 l h21 to an aerated tank with 180 l of filtered seawater at

salinity 32.

Culturing and addition of algae
A strain (radius: 3.8 mm) from the diatom Skeletonema costatum,

which naturally occurs during the autumn bloom in Belgian

coastal waters [49] was obtained from the NIOO-CEME and

cultured axenically in f2 medium [50] in sterile Erlenmeyer flasks

at 16uC with a 12:12 h light-dark period. Diatoms were labelled

through addition of NaH13CO3 (13C, 99%, Cambridge Isotope

Laboratories, 336 mg per 100 ml milliQ H2O). After labelling, the

medium was removed and the diatom cells were harvested by

triple centrifugation (3500 rpm, 5 min), lyophilised and stored at

280uC prior to experimental use. This labelling technique

resulted in an average d13C value of 59 776 % equalling ca.

40.46% algal 13C. On day 0 the frozen algae were thawed and

2.94 ml of diatom suspension was added to each microcosm by

means of a long pipette. This equals a concentration of 986.46 mg

C m22 (383.73 mg 13C m22), which is in accordance with the

magnitude of the natural phytoplankton deposition during the

entire autumn bloom [1]. Magnetic stirrers attached to the

microcosm lids were switched off during diatom addition and only

turned on again 1 h after complete settlement of the diatoms. The

algal carbon deposition resulted in an increase of sediment organic

carbon concentration of 27% of the carbon in the upper cm of the

CF treatment and of 14% carbon over the entire CF treatment

compared to the C treatment.

Oxygen depth and consumption measurements
The flux of oxygen across the sediment-water interface was

determined on day 3 and 10. Each core was sealed with an air-

tight lid and incubated in darkness for max. 6 h, which prevented

the overlying water oxygen concentration to decrease below 50%

air-saturation. O2 concentration was measured with a Unisense

microsensor (type ox25) in start and end samples (10 ml) of bottom

water and O2 consumption was then calculated assuming a linear

decrease in O2 concentration. Vertical oxygen profiles (5 per

microcosm) were measured at the end of the experiment (day 16)

using Unisense oxygen microsensors (type ox25) in vertical

increments of 250 mm.

Slicing
On day 17 and 18, all experimental microcosms were sliced in

1 cm sections. The sediment slices were homogenised and

subsamples were taken for nematode density and community

analysis (10 ml) and stored in a buffered 4% formalin solution,

stained with Rose Bengal. Meiofauna was extracted by centrifu-

gation with ludox [17]. All nematodes were counted and the

samples from the deep layers of the physical mixing treatment

were hand-picked, mounted onto slides and identified to genus or

species level where possible according to the pictorial key of [51]

and using the NEMYS database [52]. The remaining sediment in

each slice was further subsampled for analyses of Total Organic

Carbon [TOC] (2 ml), pigments (2 ml) and nematodes for stable

isotope analysis (remaining, approx. 180 ml). TOC and pigment

subsamples were stored at 280uC until analysis. Next, pigment

samples were lyophilised and pigments were extracted in 90%

acetone from the homogenised sample. Chlorophyll-a [chl-a]

concentrations of the supernatant were determined using HPLC

(Gilson) analysis [53]. TOC samples were lyophilised, homoge-

nised and acidified with dilute HCl until complete decarbonisa-

tion. After acidification, TOC was measured using a Thermo

Scientific Flash 2000 elemental analyser.

Isotope analysis, data treatment and analysis
Since slicing the microcosms often implied sacrificing the

macrobenthic species, gut clearance was not possible. Sand tubes

and bivalve shells were removed and the entire macrobenthic

tissue was freeze-dried, ground and a subsample of 0.5 g was

prepared in pre-glown (overnight at 550uC to remove any

contaminating OM) Ag cups for isotope analysis. For sediment

isotope analysis, aliquots of 0.5 g without conspicuous fauna were

dried, ground and homogenised. This sediment was then acidified

in Ag cups with dilute HCl to eliminate the carbonate fraction.

The cups were subsequently pinch closed and stored in Multi-well

Microtitre plates under dry atmospheric conditions until analysis.

For stable isotope analysis of nematodes, sediment from within

each replicate, but from several slices was combined in 0–2 cm, 2–

5 cm, 5–8 cm and 8-end cm to gather sufficient nematode

biomass. Frozen natural and enriched nematode samples were

thawed, rinsed over a 38 mm sieve and centrifuged once with

Ludox to extract the meiofauna. The colloidal silica gel Ludox

does not affect the d13C signal of the nematodes as observed

during laboratory tests (Moens, unpubl. data). No colouring or

preservatives were used to avoid C contamination of the samples.

After centrifugation, the nematodes were washed with milliQ

water and hand-picked immediately with a fine sterile needle,

rinsed in milliQ water to remove adhering particles and

transferred to a drop of milliQ water in 2.566 mm pre-glown

(550uC) Al cups. Nematodes from the dominant genera Sabatieria

and Richtersia (hereafter referred to as ‘Sabatieria’ and ‘Richtersia’)

were picked separately from other nematodes (hereafter referred as

‘other nematodes’). The cups were oven-dried at 60uC, pinched

closed and subsequently stored in Multi-well Microtitre plates

under dry atmospheric conditions until analysis. Lipids were not

extracted from the macrobenthic and nematode samples. The

macrobenthos, nematodes and sediment were analysed for d13Corg

using a Fisons CN elemental analyzer coupled online, via a

Finnigan Conflo Il interface, with a THERMO Finnigan Mat

Delta Plus Isotope Ratio Mass Spectrometer. Data are expressed

in standard d-unit notation, where d13C = [(Rsample/RVPDB) 2 1]

6103, where R is the 13C:12C ratio. These values are reported

relative to the Vienna Pee Dee Belemnite standard (VPDB) with

an isotopic ratio of RVPDB = 0.0111797. Incorporation of 13C is

reflected as excess (above background) 13C and is expressed as
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specific uptake (Dd13C, the difference between d13C of the

enriched sample and the natural d13C value of the non-enriched

sample) and total uptake in mg 13C m22 calculated as the product

of excess 13C (E) and total biomass (organic carbon) [54] and

further expressed in terms of C by correcting for the algal labelling

(40.46%). For TO13C, the bulk uptake is calculated as the product

of excess 13C, the organic C content, the porosity and the density

(assumed to be 2.55 g cm23). E is the difference between the

fraction 13C of the sample (Fsample) and the control (Freference),

where F = 13C/(13C+12C) = R/(R+1). The carbon isotope ratio (R)

was derived from the measured d13 C values as R = (d13C/

1000+1) 6RVPDB.

If we assume that nematodes feed on the one hand on bulk

sediment (isotopic ratio dTO13C sediment) and on the other hand

specifically select labelled diatoms (d13C diatoms), and assuming

that the isotopic composition of nematodes is a weighted fraction

of its food sources, we have:

d13C nematodes~p d13C diatomsz 1 { pð Þ dTO13C sediment

where p is the fraction of algae selectively ingested.

Based on this equation we calculated an index of selective

feeding (SF = p*100):

SF ~ d13C nematodes { dTO13C sediment
� �

= d13C diatoms
�

{ dTO13C sediment
�
� 100

where d13C is about 15–20% lower than the Dd13C shown in

Fig. 5 (d13C of non-enriched nematode and sediment samples

<215 to 220%). SF was calculated for the different nematode

groups, depth layers (d13C averaged over two 1 cm slices) and

treatments. The resulting SF is a quantitative measure (0–100%) of

labelled diatom selection by the nematodes. A SF-value ,0 results

from a sedimentary dTO13C higher than the d13C of nematodes in

a specific depth layer. This could either be due to the fact that

steady-state was not reached or point to nematodes feeding non-

selectively in layers where the organic matter is less labelled, and

later migrating to the layer where they were sampled. Since it is

highly unlikely that steady state was not reached after 18 days, a

SF-value ,0 is ascribed to migration.

To test the difference in profiles of nematode densities and

environmental variables, non-parametric permutational ANOVAs

(Permanova) with a fully crossed three-factor design were

performed with random factor replicate [Rep] nested in the fixed

factor treatment [TR], next to the fixed factor depth [D]. The

interaction term TRxD informs about the difference in depth

profiles of nematode densities or environmental variables among

treatments. Since data from different depth layers from a single

replicate core are not fully independent, we chose to run these

permutational ANOVAs; they can be used as univariate ANOVAs

with p-values obtained by permutation [55]. A Euclidean distance

based resemblance matrix was used. In case of significant TRxD

interactions, pairwise tests of TR and D within TRxD were

performed to investigate in which slice the treatments differed or

vice versa. Because of the restricted number of possible

permutations in pairwise tests, p-values were obtained from

Monte Carlo samplings [56]. To test the difference in uptake of

algae by nematodes (Dd13C and total uptake) among treatments,

depth layers and nematode groups, a fully crossed 4-factor

Permanova was carried out with TR, D and nematode group

[Sp] as fixed factors and Rep nested in TR. Homogeneity of

multivariate dispersion was confirmed by Permdisp for any of the

tested terms in each Permanova which indicates that patterns

found were not confounded by artefacts due to variable

dispersions. Again pairwise tests were carried out when factors

interacted significantly. Difference in remaining chl-a and TO13C

in the sediment, oxygen penetration depth and nematode survival

were tested with a single factor (TR) Permanova with subsequent

pairwise tests. A two-factor Permanova was carried out to test the

difference in oxygen consumption among TR and measurement

day. All analyses were performed within PRIMER v6 with

PERMANOVA+ add-on software [57,58]. Results are expressed

as mean values 6 standard error of triplicates, except for the C

treatment that is represented by mean values of duplicates and

their standard deviation.
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