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Abstract
AIM: To investigate the biological features of hepatitis 
B virus (HBV)-transfected HepG2.2.15 cells. 

METHODS: The cell ultrastructure, cell cycle and apop-
tosis, and the abilities of proliferation and invasion of 
HBV-transfected HepG2.2.15 and the parent HepG2 cells 
were examined by electron microscopy, flow cytometry, 
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide and trans-well assay. Oncogenicity of the two 
cell lines was compared via  subcutaneous injection 
and orthotopic injection or implantation in nude mice, 

and the pathological analysis of tumor formation was 
performed. Two cytoskeletal proteins were detected by 
Western blotting.

RESULTS: Compared with HepG2 cells, HepG2.2.15 cells 
showed organelle degeneration and filopodia disappear-
ance under electron microscope. HepG2.2.15 cells pro-
liferated and migrated slowly in vitro , and hardly formed 
tumor and lung metastasis in nude mice. Flow cytom-
etry showed that the majority of HepG2.2.15 cells were 
arrested in G1 phase, and apoptosis was minor in both 
cell lines. Furthermore, the levels of cytoskeletal pro-
teins F-actin and Ezrin were decreased in HepG2.2.15 
cells.

CONCLUSION: HepG2.2.15 cells demonstrated a low-
er proliferation and invasion ability than the HepG2 cells 
due to HBV transfection.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the primary malig-
nancy of  the liver. It is the third leading cause of  cancer 
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death in the world, and the second in China[1,2]. It is gener-
ally accepted that hepatitis B virus (HBV) plays a major 
causative role in the development of  HCC[3,4]. To inves-
tigate the pathogenesis of  HBV in HCC, several HBV 
expressing cell lines have been established by viral DNA 
transfection[5,6]. Most of  them are derived from HepG2 
and HuH7[7,8].

HepG2.2.15 cells are derived from the human hepato-
blastoma cell line HepG2 and are characterized by having 
stable HBV expression and replication in the culture sys-
tem[9]. As a cell source that can produce HBV, HepG2.2.15 
has been frequently used in studies of  HBV infection. 

In this study, to clarify the cellular and biological fea-
tures associated with HBV transfection, we examined 
HBV-producing HepG2.2.15 and parental HepG2 cells in 
a variety of  biological processes including cell prolifera-
tion, cell invasion, tumor development and metastasis. We 
also explored the underlying mechanism accounting for 
the different features between the two cell lines.

MATERIALS AND METHODS
Cell lines and culture
HepG2.2.15 and HepG2 cells were cultured in DMEM 
medium (Hyclone, Logan, UT, USA), supplemented with 
10% fetal bovine serum (Invitrogen, Carlsbad, CA, USA), 
in 5% CO2 at 37℃. A final concentration of  380 mg/L 
G418 (Invitrogen) was added into the medium for the 
maintenance of  HepG2.2.15 cells.

Enzyme-linked immunosorbent assay
To detect the expression and replication of  HBV in He
pG2.2.15 cells, hepatitis B surface antigen (HBsAg) and 
hepatitis B envelope antigen (HBeAg) levels in the medi-
um at 24 h, 48 h and 72 h were determined semi-quantita-
tively using enzyme-linked immunosorbent assay (ELISA) 
kits (Sino-American Biotechnology Company, Shanghai, 
China) according to the manufacturer’s instructions. All 
experiments were performed in triplicate.

Electron microscopy
HepG2.2.15 and HepG2 cells were collected and fixed 
in 2.5% glutaraldehyde (GA) overnight, dehydrated in a 
graded series of  ethanol and embedded in Quetol-812. 
The ultrathin sections were cut and stained with lead 
citrate. The girds were examined under a JEM-1220 elec-
tron microscope. 

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide assay
HepG2.2.15 and HepG2 cells were seeded in triplicate 
into 96-well plates at 4 × 103 cells per well. Twenty micro-
liters 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (5 mg/mL) was added to the medium and cul-
tured for another 4 h. DMSO (150 μL) was added and the 
absorbance of  each well was read using a Bio-Rad model 
550 microplate reader at a wavelength of  490 nm. It was 
tested for 5 d and the data were expressed as mean ± SD. 

Flow cytometry 
Cell cycle assay was monitored using propidium iodide (PI) 
staining of  the nuclei. The cells were fixed in 75% cold al-
cohol overnight, resuspended in 300 μL PBS and stained 
with 500 μL PI (250 μg/mL) for 30 min in the dark. An-
nexin V/PI double staining was used for apoptosis assay. 
Annexin V and PI were added for incubation for 15 min 
at 4℃. The cells were analyzed by flow cytometry (BD 
BioSciences, San Jose, CA, USA).

Trans-well assay
The invasive abilities of  HepG2.2.15 and HepG2 cells 
were determined using matrigel (BD) coated 24-well 
trans-well chambers (Corning Costar, NY, USA) as de-
scribed previously[10]. In brief, trans-well was coated with 
10 μL matrigel and dried in the air; and 5 × 104 cells in 
serum-free DMEM were seeded into the upper chamber, 
with the lower chamber supplemented with DMEM con-
taining 10% FBS. The trans-well was incubated at 37℃ in 
5% CO2. Incubation time was different due to different 
invasive abilities of  the two cell lines. The cells that had 
penetrated through the pores were fixed, stained with he-
matoxylin and eosin (HE) and photographed under light 
microscope. The experiments were conducted in triplicate. 

Western blotting analysis 
Total protein extracts of  cultured cells were performed 
routinely. Twelve-microgram samples were size fraction-
ated by SDS-PAGE and electrophoretically transferred to 
nitrocellulose membranes. The membranes were incubat-
ed with F-actin or Ezrin antibodies (Bioss, Beijing, China), 
and detected using Western blue (Promega, Madison, WI, 
USA). GAPDH (Calbiochem, Gibbstown, NJ, USA) was 
used as internal control.

Animals
Four-week-old female BALB/c nude mice were main-
tained in the laboratory for animal experiments under 
specific pathogen-free conditions. The experiments were 
conducted in accordance with the Guideline for Animal 
Experiments of  the National Cancer Center of  China.

Tumor formation assay via subcutaneous injection
HepG2.2.15 and HepG2 cells were harvested and resus-
pended to 2 × 107/mL with PBS, and 300 μL was injected 
subcutaneously into the left flank of  each of  eight nude 
mice. The tumor volume was calculated according to the 
formula: V = mean diameter3 × π/6[11] and measured and 
recorded every 2 d.

Tumor development and metastasis assay via orthotopic 
implantation 
Once the subcutaneous tumor reached 1 cm in diameter, 
it was removed and cut into 1 mm × 1 mm × 1 mm 
cubes freshly at 4℃. Another group of  mice were anes-
thetized with an intra-peritoneal injection of  pentobarbi-
tal at a dose of  60 mg/kg. Tumor cubes were implanted 
into the liver as described previously[12]. The mice were 
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killed 60 d after implantation to harvest the liver and 
lung. The volume of  tumor was determined according to 
the method described by Janik et al[13]. The liver and lung 
were removed and fixed in 4% formalin for standard 
pathological studies. 

Tumor development and metastasis assay via liver 
injection
HepG2.2.15 and HepG2 cells (1.5 × 106 cells/150 μL) 
were prepared in PBS at 4℃ for injection. The mice were 
anesthetized and the liver was exposed as mentioned 
above. The cells were injected into the left lobe of  liver 
of  ten nude mice. The mice were observed for 60 d. Liver 
and lung were sampled for standard pathological studies 
as described above.

Statistical analysis
Data were expressed as percentage, mean ± SD. Com-
parisons between two groups were analyzed by the χ2 
and Student t test. Mann-Whitney U-test was employed 
for analysis of  subcutaneous tumor growth. P < 0.05 was 
considered statistically significant.

RESULTS
Ultrastructure of HepG2.2.15 cells
Ultrastructural analysis demonstrated that HepG2.2.15 cells 
had obviously decreased filopodia (Figure 1A) compared 
with HepG2 cells (Figure 1D). Plentiful filopodia formed 
around HepG2 cells and higher amplification showed mi-
crofilaments in the filopodia (Figure 1E). Moreover, viral 
inclusion bodies existed in the cytoplasm of  HepG2.2.15 
cells (Figure 1B), and many organelles, such as mitochon-

dria, ribosome and endoplasmic reticulum, were found 
to be degenerated in HepG2.2.15 cells (Figure 1C). In 
contrast, HepG2 cells contained normal and abundant or-
ganelles including ribosome, glycogen, microfilament and 
microtubule (Figure 1F). 

Lower proliferation ability of HepG2.2.15 cells
HBsAg and HBeAg were detected in the culture super-
natant of  HepG2.2.15 cells by ELISA. While the HBsAg 
level increased in a time-dependent manner, HBeAg level 
peaked at around 24 h and remained largely unchanged 
until 72 h (Figure 2A). As shown in Figure 2B, HepG2 
cells had a significantly higher proliferation rate than 
HepG2.2.15 cells from Day 2 (P < 0.01), especially on 
Day 4 and Day 5 (P < 0.001).

Cell cycle G1/S arrest in HepG2.2.15 cells
To further investigate the reduced proliferation of  He
pG2.2.15, we tested cell cycle and apoptosis by flow cy-
tometry. The results indicated that the percentage of  the 
G1 phase of  HepG2 was significantly lower than that of  
HepG2.2.15 (P < 0.01), but the HepG2 cells in S phase 
were increased significantly (P < 0.001) (Figure 2C), indi-
cating cell cycle arrest at the G1/S phase in HepG2.2.15 
cells. The apoptosis analysis showed no significant differ-
ence in apoptosis between HepG2.2.15 and HepG2 cells 
(Figure 2D).

Lower invasion ability of HepG2.2.15 cells in vitro
Trans-well analysis demonstrated that HepG2.2.15 and 
HepG2 cells were significantly different in invasion ability 
in vitro. HepG2 cells on the lower part of  the membrane 
were detected as early as 2 h after incubation, with an in-
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Figure 1  Ultrastructure of HepG2.2.15 and HepG2 cells. A: Filopodia disappearance in HepG2.2.15 cells (EM × 2500); B: Viral inclusion bodies in the cytoplasm of 
HepG2.2.15 cells. Arrows indicate the viral inclusion bodies (EM × 15 000); C: Arrows indicate degenerated mitochondria (EM × 25 000); D: Plentiful filopodia around 
HepG2 cells. Arrows indicate filopodia (EM × 2500); E: Microfilament appearance in filopodia in HepG2 cells in high power field. Arrows indicate microfilament (EM × 
25 000); F: Abundant organelles in the cytoplasm of HepG2 cells (EM × 25 000). 
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creasing number of  cells invading through the membrane 
at 4 h, 6 h and 12 h (Figure 3A). In contrast, the invasion 
of  HepG2.2.15 cells into the lower chamber was detected 
at 24 h, 36 h, 48 h and 60 h, respectively (Figure 3B). 
These results suggested that HepG2.2.15 cells had lower 
invasion ability and took longer time to go through the 
membrane.

Decreased expression levels of F-actin and Ezrin in 
HepG2.2.15 cells 
To elucidate the mechanism accounting for the difference 
in cell invasion between HepG2.2.15 and HepG2 cells, 
we examined the expression of  F-actin and Ezrin, which 
are both cytoskeleton proteins that play crucial roles in 

maintaining cell shape and promoting cell invasion. West-
ern blotting analysis showed a 0.7-fold decrease of  F-actin 
level and a 3.8-fold decrease of  Ezrin level in HepG2.2.15 
cells compared with HepG2 cells (Figure 3C). 

Lower tumorigenicity of HepG2.2.15 cells in vivo
To explore the biological features of  HepG2.2.15 cells 
in vivo, we monitored subcutaneous tumor growth in vivo. 
Two days after injection of  HepG2 cells, the nodules were 
visualized and the diameter reached 0.6 cm on Day 6, and 
100% (8/8) mice formed tumors. In contrast, only 25% 
(2/8) mice injected with HepG2.2.15 cells formed tumors, 
significantly lower than that of  HepG2 cells (P < 0.01), 
and tumor formation was slower than the mice injected 
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Figure 2  Cell proliferation and apoptosis flow cytometry. A: The levels of hepatitis B surface antigen (HBsAg) and hepatitis B envelope antigen (HBeAg) in 
HepG2.2.15 cell supernatant. The supernatant was collected every 24 h and tested by enzyme-linked immunosorbent assay; B: 3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide assay of cell proliferation. The absorbencies of test wells were read every 24 h and the data represent the mean ± SD (bP < 0.001); C: 
Flow cytometry of cell cycle; D: Apoptosis percentages in B1, B2 and B4 areas. All experiments were repeated three times with similar results.
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with HepG2 cells (Figure 4A). Notably, 100% (10/10) 
mice injected with HepG2 cells formed tumor in the liver 
60 d after tumor cubes implantation, and the mean vol-
ume was 1.7 ± 0.4 cm3. Furthermore, all the mice (10/10) 
developed tumor in the liver after the injection of  HepG2 
cells and the mean volume of  tumor was as big as 3.1 ± 
1.1 cm3. Nevertheless, the incidence of  tumor formation 
in HepG2.2.15 group (40%, 4/10) was significantly lower 
than the HepG2 group (P < 0.05). The mean volume was 
2.3 ± 0.3 cm3 (Figure 4B). Only one case formed tumor 
(10%, 1/10) with a volume of  2.1 cm3 (Figure 4B). The 
incidence of  tumor formation in the liver was significantly 
higher in HepG2 implantation group (P < 0.05) and injec-
tion group (P < 0.001) when compared with HepG2.2.15 
group. Taken together, these results indicated the low tu-
morigenicity of  HepG2.2.15 cells in vivo, being consistent 
with their reduced cell proliferation and invasion in vitro.

Pathological analysis of tumor formation
Lung metastasis was observed under light microscope 
with a highest percentage of  50% (Figure 4E) in HepG2 
group. The growth pattern (Figure 4C), invasion and 
changes in tumor and surrounding normal tissues were 
also analyzed in all the groups (Table 1). Most non-tumor 
livers showed obvious fatty changes in HepG2.2.15 
groups (Figure 4D) and the invasion to surrounding or-
gans occurred more frequently in HepG2 groups.

DISCUSSION
This study found that HepG2.2.15 cells had lower pro-
liferation and invasion ability than the HepG2 cells.The 
majority of  HepG2.2.15 cells were arrested at G1-S phase 
and the level of  two important cytoskeletal proteins de-
creased.
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HBV contains four open reading frames S, C, P, and X. 
Kanda et al[7] and Kim et al[14] showed that HBx transfec-
tion down-regulated cell viability and induced apoptosis. 
HBx suppressed tumor cell proliferation, induced apop-
tosis and caused cell cycle arrest at G1-S in vitro[15]. These 
results are partly consistent with our findings in this study. 
It has been shown that HBV replication depends on the 
cell cycle and the decrease in S phase[16], so HBV replica-

tion may affect cell cycle progression. This may partly 
explain the G1-S arrest in HepG2.2.15 cells. Proteome 
analysis of  HepG2.2.15 and HepG2 cells displayed abun-
dant differentially expressed proteins[17]. In this study, we 
found that the expression level of  Ezrin and F-actin was 
lower in HepG2.2.15 than in HepG2. F-actin is the major 
cytoskeletal element and Ezrin is a member of  the ERM 
(ezrin-radixin-moesin) cytoskeleton-associated protein 
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Figure 4  Tumor formation of HepG2 and HepG2.2.15 cells in vivo. A: The volume of subcutaneous tumors were measured and recorded every 2 d. The differ-
ence of tumor growth rate between HepG2 and HepG2.2.15 groups was significant (P < 0.01, Mann-Whithey U test); B: Tumor development in four groups in vivo; C: 
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Table 1  Pathological analysis in vivo

Tumor behavior HepG2 HepG2.2.15

Cell injection (n  = 10) Tissue implantation (n  = 10) Cell injection (n  = 10) Tissue implantation (n  = 10)

Formation (%) 100 100 10d 40a

Volume (cm3) 3.1 ± 1.1 1.7 ± 0.4 2.1 2.3 ± 0.3
Growth Expensive growth and 

central necrosis 
Same Same Same 

Surrounding tissue Degeneration and necrosis  Same Same Same
Normal tissue Spotty or piecemeal 

necrosis, scattered fat 
droplets and vacuolation, 

focal inflammatory 
infiltration 

Spotty or piecemeal necrosis, 
diffuse fatty change 40% and 

focal inflammatory infiltration

Spotty or piecemeal necrosis, 
diffuse or scattered fatty 

change 50%, focal inflammatory 
infiltration and diffuse 

cytoplasmic swelling of liver cells

Spotty or piecemeal necrosis, 
diffuse fatty change 40%, focal 
inflammatory infiltration and 

mild cytoplasmic swelling of liver 
cells

Tumor invasion Abdominal wall 100%; 
pancreas 37.5%; esophago 

12.5%

Abdominal wall 50%; pancreas 
12.5%; diaphragma/ribs 10%

Abdominal wall 10% Diaphragma/ribs 10%

Metastasis    
   Intra-liver 75% (6/8) 30% (3/10) 0 0
   Lung 50% (4/8) 0 10% (1/10) 10% (1/10)

aP < 0.05 vs HepG2 tissue implantation group; dP < 0.001 vs HepG2 cell injected group, χ2 test.
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family[18]. Both of  them have membrane-cytoskeleton 
linking functions[19] and participate in cell migration, 
growth regulation[20], filopodia formation[21], and cancer 
metastasis[22]. Therefore, reduced level of  Ezrin and F-actin 
in HepG2.2.15 cells may contribute to the lower prolifera-
tion and invasion ability. Additionally, the lower expres-
sion of  Ezrin was accompanied with reduced filopodia 
in HepG2.2.15 cells. The dysfunction of  organelles and 
cytoskeleton in HepG2.2.15 cells may also contribute to 
the slower cell growth and invasion both in vitro and in vivo. 

Notably, non-tumor liver tissues showed mild to se-
vere hepatic fatty changes, necrosis and neutrophil infil-
tration in HepG2.2.15 groups. In the mice injected with 
HepG2.2.15 cells, the low rate of  tumor formation was 
accompanied by severe degeneration and necrosis in liver 
tissues. Interestingly, similar results have been reported by 
other researchers. For example, overexpression of  HBx 
caused negative accommodation of  microsome triglyeride 
transfer protein and accumulation of  intracellular trigly-
eride and cholesterol in hepatocyte[23]. Liver tissue from 
the HBx transgenic mice showed mild to severe hepatic 
necrosis, fatty changes, mild to moderate chronic hepatitis 
and cytoplasmic vacuolation[24]. So, the correlations be-
tween HBV, hepatic degeneration and inflammation are 
striking and need to be further investigated.

In summary, HepG2.2.15 cells demonstrated decreased 
proliferation and invasion ability compared with its parental 
HepG2 cells due to HBV transfection. HBV-induced cell 
cycle arrest and cytoskeletal alteration might be implicated 
in the mechanism. Our findings will help better under-
stand the cellular and biological features of  HepG2.2.15 
cells associated with HBV, and select the most suitable cell 
lines for research. These findings also shed new light on 
the interaction between HBV and host cells.
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